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ABSTRACT
Mobile Virtual Reality (VR) is essential for achieving convenient
and immersive human-computer interaction and realizing emerging
applications such as Metaverse and spatial computing. However, ex-
isting VR technologies require two separate renderings of binocular
images, thereby causing a significant bottleneck for mobile devices
with limited computing and battery capacity. This paper proposes
a new approach to optimizing mobile VR rendering called YORO.
By utilizing the per-pixel attribute, YORO can generate binocular
VR images from the monocular image through genuinely one ren-
dering, saving half the computation over conventional approaches.
Our experimental evaluation and detailed user study indicate that,
YORO can save 27% power consumption on average and increase
frame rate by 115.2%, while maintaining similar binocular image
quality compared with state-of-the-art mobile VR rendering so-
lutions. YORO is production-ready and has already been tested
in real VR applications. The source code, demo video, prototype
android app, video game engine plugins, and more are released
anonymously at YORO-VR.github.io.

CCS CONCEPTS
• Human-centered computing→ Virtual reality; • Computer
systems organization → Real-time systems; • Computing
methodologies→ Rendering.
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1 INTRODUCTION
Mobile Virtual Reality (VR), encompassing smartphone VR and
standalone or all-in-one VR systems (e.g., Meta Oculus Quest), uti-
lizes mobile devices to create a binocular, image-based virtual space.
It is capable of simulating vision and a sense of depth, thereby im-
mersing the user in meticulously crafted scenes [28]. Consequently,
mobile VR users have skyrocketed in recent years, now surpassing
desktop/PC VR users by nearly threefold, and the global market for
mobile VR is anticipated to grow to $20.9 billion by 2025 [13]. Fur-
thermore, VR technology is increasingly seen as the next significant
mobile computing platform. It is deemed an essential content type
for the forthcoming iterations of the Internet and various emerging
applications, including Digital Twins, spatial computing, and the
Metaverse [56].
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Figure 1: YORO proposes an approach of mobile VR opti-
mization for energy-saving and efficiency with a negligible
loss in image quality.

However, certain challenges, especially those related to render-
ing, significantly impede the widespread adoption of mobile VR.
Rendering is particularly resource-intensive, consuming almost
twice the energy required for rendering conventional planar videos.
This can easily cause the mobile device to heat up and exceed its
Thermal Design Point [32, 41]. Such high power consumption and
thermal radiation hinders high frame rates (90-120 Frames-Per-
Second) and high-quality graphics, which in turn compromises
immersion and can cause motion sickness for users. As a result,
current mainstream mobile devices, typically equipped with 3500
to 5000 mAh batteries, can only sustain mobile VR applications for
approximately two to three hours, which is insufficient for many
practical usage scenarios [27]. Moreover, mobile VR usually can
only support VR apps with a computational complexity ranging
from 350k to 1,000k triangles [16] in the mesh-represented VR scene.
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In contrast, profitable and complex VR scenes often contain more
than 2,000k triangles, limiting the functionality and applicability
of mobile VR. Additionally, the current VR frame rate on mobile
devices still falls short of the ideal 90-120 frames-per-second (FPS)
range required for immersive VR experience [8]. Consequently,
optimizing VR rendering to minimize computational requirements
can fundamentally decrease power consumption and enhance the
usability of mobile VR.

In this paper, we propose YORO, a rendering optimization frame-
work for mobile VR. As shown in Figure 1, unlike the conventional
binocular VR rendering method, YORO only needs rendering once
for the binocular image. Unlike existingworks that only save compu-
tation on geometrical information in the rendering process, YORO
saves an entire rendering pass calculation, including geometrical
information and shading information such as textures, lighting, and
shadowing (detailed in Section 3.1). YORO is designed to achieve
the following salient properties: (i) Energy efficiency: It requires
less energy to provide an equivalent user experience. It prevents
heat and processor degradation while improving battery life on
mobile VR applications; (ii) Computational efficiency: It makes
mobile VR more efficient and reliable on less computing recourse
in practice. Compared to conventional algorithms, it enables higher
and more stable frame rates for the same VR scenes and can handle
more complex scenes with the same computational resources; (iii)
Practicality: It is a general framework-level approach for VR ap-
plications, does not need specialized hardware, and is compatible
with most current mobile platforms.

To realize YORO, we need to address two technical challenges:
(1) A new computational optimization paradigm for mobile VR.We
propose to optimize the mobile VR through VR binocular image
generation by rendering once. We develop a new reprojection ma-
trix to quickly reproject frames from one eye to the other, followed
by a new filter-based patching method to fill in the missing infor-
mation. Our algorithm has about half of the computational com-
plexity compared to conventional rendering algorithms (Section
10.3). This in turn improves the energy efficiency of the entire VR
system. (2) Implement the YORO as an efficient software framework
underlying practical VR applications. To achieve the goal of compu-
tation efficiency and energy saving, we design and implement the
YORO rendering algorithms in a lightweight and highly parallel
way. Our implementation resides at the framework layer, which
contains Reprojector and Patcher modules to generate binocular
VR images with a single-round rendering (Section 4). Moreover, we
build this framework from scratch with low third-party and system
functions dependencies, while allowing it to function properly for
customized VR apps and commercial VR app products across mul-
tiple mobile platforms, including Android phones and standalone
VR headsets. Our evaluation indicates that, on average, YORO can
save 27% power consumption and increase the frame rate by 115.2%
compared to the baseline binocular rendering and state-of-art VR
optimization methods. Meanwhile, our quantitative analysis along
with subjective user study indicate that YORO maintains similar
binocular image quality and achieves a smoother VR experience
owing to a much higher frame rate.

Our contributions can be summarized in four-fold:

• We investigate the redundancies in the VR rendering process
and propose a novel paradigm of mobile VR optimization. To
our knowledge, this is the first work to attempt “rendering
once” for efficient mobile VR.
• We design a lightweight post-processing rendering mecha-
nism to achieve the YORO principle, and implement our de-
sign as a general framework layer to support various mobile
VR applications. This implementation includes the codbase,
along with an open-source dataset with 29,128 groups of
images from eight representative scenes with mainstream
rendering style.
• We extensively evaluate YORO in eight representative VR
3D scenes and two open-source VR app products with differ-
ent shading styles and scene complexities. Further, we test
the robustness and practicality of YORO on eight different
mobile VR devices across various mobile platforms.

2 RELATEDWORK
Visual Optimization for VR: There are three mainstream solu-
tions for optimizing the visual/graphics aspects of VR.

(1) Content Optimization: Content optimization, such as Level-
Of-Detail (LOD) [21, 45] and Occlusion Culling (OC) [24]), can in-
crease efficiency by reducing the amount of content to be rendered.
However, such methods strongly rely on the visual content, and
require extra analysis and modifications of each 3D model. (2) Ren-
dering Optimization: Rendering optimization usually reduces the
amount of computation and increases efficiency by adjusting the
image generation pipeline. The most straightforward approach is to
hugely decrease the image quality (e.g., resolution) or frame regions
to reduce workload [27, 29, 61, 65]. However, this approach can
significantly degrade the image quality/user experience or require
specialized hardware modification with eye-tracking functional-
ity. An alternative technique, Single Pass Instancing (SPI) [60] (or
Single Pass Stereo [59] on PC and MultiView [10] on Oculus), can
improve efficiency by reusing computational information across
eye views, reducing GPU draw calls and geometric processing over-
head. However, SPI only reduces GPU draw calls on the CPU side
[5] and requires significant additional shader code modifications.
The existing SPI implementation only supports forward rendering
mode, wherein each light source requires separate computational
passes, making it challenging to efficiently process scenes with dy-
namic or multiple light sources (including reflections). As a result,
SPI-based VR applications are restricted to environments with min-
imal lighting complexity. Our experiments show that the rendering
efficiency of SPI falls short in practical VR scenes (detailed in Sec-
tion 3.1&10.3&10.6). Notably, aside from application programming
interfaces (APIs), no open-source SPI implementation is currently
available. Another emerging solution attempts to separate the frame
regions for rendering [28]. However, this approach cannot reduce
the computation significantly because it still needs to render the
foreground twice. (3) Reprojection: The reprojection-based so-
lutions are also developing swiftly in recent years. A few designs
have been proposed [52, 66] to achieve reprojection and mitigate
the associated artifacts (details in Sections 6 & 7). However, ex-
isting works only target boosting high-end PC VRs’ frame rates
and are not applicable to mobile VR optimization, due to funda-
mental differences in hardware capabilities, power constraints, and
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computational resources. PC VR reprojection techniques assume
high-end graphics processing and consistent power supply, whereas
mobile VR requires ultra-lightweight methods that minimize en-
ergy consumption and computational overhead. In contrast to these
existing three categories of solutions, YORO is a lightweight rendering
optimization framework that is ready to deploy on mobile VR.
Computational Optimization for VR: Table 1 summarizes var-
ious methods for improving the computational efficiency of VR
applications. One representative approach leverages specialized
hardware components (e.g., the display panel), or offloads the com-
putation to remote edge/cloud servers [25, 31, 36, 40]. However,
these methods often entail additional hardware cost, and often
struggle to reduce the overall energy consumption due to sophis-
ticated computation-communication trade-offs. Other approaches
include supersampling [47, 67], image precomputing and caching
[23], motion prediction [51, 54], parallel computing [35], and com-
munication protocol [43, 44, 54]. However, these techniques, while
effective for high-end PC VR systems, are often impractical for
mobile VR applications. They tend to fundamentally prioritize per-
formance and image quality rather than addressing constraints
on energy, processing power, and thermal management. Notably,
YORO’s monocular-to-binocular rendering method is complemen-
tary and can be combined with these techniques once mobile com-
puting power evolves to today’s PC level.

3 BACKGROUND AND PRELIMINARY
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Figure 2: We can reuse the spatial pixel information of a
single-eye image to construct the information of the other
eye in a speedy manner via one single matrix transforma-
tion, thus saving one entire rendering pass and about 50%
computation amount. Note: The IPD between the left eye
and right eye (i.e., the pixel difference among eyes) here is
enlarged for illustration.

3.1 VR Rendering Process
The rendering process in VR generates 2D images or frames as a
field of view (FoV) originating from the 3D scene. The locations
and shapes of the objects in an image/frame are determined by
their geometry, the characteristics of the environment, and the
placement of the camera in that environment. The appearance of
the objects is affected by material properties, light sources, textures,
and shading models [17]. Specifically, geometry is described by a
large collection of triangles grouped into 3D meshes together to
approximate the contour of 3D objects in the scene. Therefore, the

number of triangles is the measure of scene complexity, with a
higher number of triangles usually resulting in more detailed and
realistic imagery. In mobile VR, rendering relies on rasterization, a
computationally efficient technique that transforms 3D scenes into
2D pixels. This approach balances visual quality and performance,
and is expected to remain the primary rendering method for VR in
the future [7].

The conventional rasterized rendering pipeline comprises two
steps: (1) Projection: The renderer utilizes viewmatrices that depend
on the position and rotation of the camera to transform the input
geometry from model coordinate space to view space. Then the
geometry will be converted into clipping space using the projection
matrix, which depends on the parameters of the camera. Here the
redundant geometry is clipped out, and finally, the geometry is
mapped to the screen space. (2) Shading: The geometry is then
rasterized to the screen pixels and colored by the fragment shader.
The color of a pixel depends on many factors, such as texture,
reflection, refraction, direct and indirect light, and air medium.
Therefore, the shading process is more computationally expensive
than the projection process (about 3:1). As VR games or other
applications evolve towards higher 3D fidelity, more factors and
computational load will be added. Generally, in VR rendering, the
conventional process is to render the left eye and the right eye
images separately, which requires rendering twice, 2× a frame
rendering consumption, including two projection processes and two
shading processes [5, 20]. Existing rendering optimization, such as
Single Pass Instancing (SPI) [60], can only eliminate one projection
process. In contrast, YORO can reduce more energy by eliminating
one projection and one shading process as shown in Figure 2.

3.2 G-Buffers Exploration for VR Optimization
The renderer mentioned in Section 3.1 usually outputs the follow-
ing property images: (1) RGB: The Red-Green-Blue three-channel
image represents the color of the rendering. RGB is the color model
used in mainstream electronic devices and picture formats [34],
as it is based on the principle of monitor display and human per-
ception of color. Almost all mainstream renderer solutions output
RGB images. (2) Depth: The depth image is a grayscale image
(single-channel) in which each pixel’s brightness represents the
distance of the object in logarithmic space. The brighter the pixel,
the closer to the camera. These above-mentioned images are parts
of G-buffers [3], a screen space representation of geometry and
material information of the rendering process. It is worth noting
that getting the G-buffers does not add extra computation since it
is already given by the regular rendering pipeline. After obtaining
the screen space information, we can usually simulate visual effects
on images, such as post-processing effects (occlusion, reflection,
shadow, mobile blur, etc.). Thus, this mechanism can also aid us in
optimizing mobile VR by utilizing the G-buffers which have already
been generated as part of the regular rendering pipeline, without
extra computational costs.

Moreover, conventional binocular rendering methods require
separate rendering for both eyes (parallax) to allow users to have a
sense of depth (stereopsis). The depth information is a consistent
information in the rendering process. Therefore, in principle, it
is possible to do a single rendering of the image with the depth
information to build binocular images without rendering twice.



MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Xingyu Chen, Xinmin Fang, Shuting Zhang, Xinyu Zhang, Liang He, and Zhengxiong Li

Table 1: A Comparison of Mobile VR Optimization approaches.

Works Optimization Method Frame Rate
Improvement

Power
Consumption

Data Transmission
Amount Image Quality Mobile

Generalization

Huang et al. [35] Parallel the rendering process on
CPU end High (+37%) High (+5% ∼ 10%) No Reduction Lossless Low

Pohl et al. [51] Reduce rendering area High (+90%) High (Raytraicng) No Reduction High (-5%) Low
Xiao et al. [67] Super sampling High (+40%) High (+10% ∼ 20%) Not Discussed Medium (-10%) Low

LookinGood [47] Neural re-rendering Low (-27%) High (+50% ∼ 150%) Low (−50% ∼ 75%) Medium (−3% ∼ 10%) Low

Friston et al. [29] Accelerate rasterization using
perceptual information Low (−10% ∼ 15%) Low (−20% ∼ 35%) Low (-25%) High (-1%) Low

Single Pass Instancing (SPI) [60] Use a warped camera to render two
view at once High (+15% ∼ 20%) Medium

(−5% ∼ +5%) No Reduction Lossless Low

Fink et al. [28] Render far field using one camera and
near field using two Low (-5%) Medium (+2%) No Reduction High (-3%) Low

CollabVR [38] Render one eye on the cloud, and
reproject the other eye on the edge Not Discussed Low (-71%) on edge,

extra on cloud Low (-42%) High (−3% ∼ 10%) High

YORO (Ours) Reprojection + Patcher High (+115.2%) Low (-27%) Low (-39.6%) High (-3%) High
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Figure 3: We can reuse the spatial pixel information of a
single eye image to construct the information of the other
eye image in a speedy manner via one single matrix trans-
formation, thus saving one entire rendering pass and saving
about 50% computation amount. Note: The IPD between right
and left eyes (i.e., the pixel difference among eyes) here is
enlarged for illustration.
4 SYSTEM OVERVIEW
An overview of YORO is shown in Figure 4. In contrast to the
conventional VR rendering, which requires one render for each eye
image, YORO only renders once for the dominant eye of the user.
The dominant eye is decided by personal habits and unchanged
across VR applications. The renderer outputs the intermediate re-
sult that contains the RGB color image and the depth image. The
intermediate results are then fed into the Reprojector. The Repro-
jector quickly creates a new cropped geometry based on the RGB
and depth pixel information. This cropped geometry is then repro-
jected to the new eye matrix. The final output of the Reprojector
is resolution-independent Intermediate Buffers (ImBuffer) (de-
tailed in Section 6). The ImBuffer are then fed into the Patcher,
which leverages information from the ImBufferto sample and fill
in the disocclusion, i.e., scene regions that become newly visible
to one eye but were not visible in the original rendering for the
dominant eye. The rendered and patched frames are combined as
the binocular image and then displayed on the VR headset.

5 OBSERVATIONS AND RATIONALE FOR
YORO

To ensure YORO can run effectively on mobile GPUs, we also
consider the following computation architecture aspects: (C1)

Read/Write Operations.On themobile GPU, textures, and buffers
are stored in texture memory, which takes much longer time to
access than the GPU’s local memory and registers. Therefore, it is
imperative to avoid frequent reads and writes to texture memory
on the mobile GPU to improve efficiency. (C2) Thread safety.
Multiple threads reading and writing to the same memory location
at the same time can cause thread conflicts, not only by creating
flickering artifacts but also by significantly increasing the time
consumption due to the racing condition. It is thus critical for us to
ensure thread safety.

In addition, we exploit two practical Observations to curtail
unnecessary computation: (O1)When reprojecting from one eye to
the other, the pixels will only be displaced in the opposite direction.
For example, when we reproject from the right eye to the left eye, all
pixels will only displace along the positive X-axis (i.e., to the right)
for a certain distance (range from 0 to texture width), as shown
in Figure 3 (3-Pixel Shift). Therefore, we can save computing time
by completely disregarding the calculation of the Y-axis and the
negative X-axis. (O2) The depth of the disocclusion is always fur-
ther than the nearest colored pixel in the opposite direction (when
the right eye is the dominant eye), as shown in Figure 3 (2-Left
Eye Depth (Ref.))&(4-Reprojected). In other words, the disocclusion
should always be patched with backgrounds, not foregrounds. This
observation helps optimize the rendering process by reducing un-
necessary calculations and focusing only on the background when
filling in the disocclusion.
6 REPROJECTOR
This module is mainly designed to solve themonocular-to-binocular
generation problem in mobile VR, i.e., generating a one-eye frame
from another one with depth information to form a binocular image.
To this end, we explore the reprojection technique, which recon-
structs a new frame with a different perspective through existing
color and depth information–information that can be naturally
obtained from the renderer. There exist a few works on using re-
projection to achieve VR optimization. Asynchronous Reprojection
[6] or Asynchronous Time Wrap [46] (ATW) uses reprojection to
generate a frame from previous frames for a new head rotation for
VR when the GPU can not keep up with the headset’s target frame
rate. However, It requires motion vectors to achieve reprojection
which already requires substantial computation [12], unsuitable for
mobile devices. Besides, Wißmann et al. [66] attempts to use hard-
ware tessellation to achieve projection, and Schollmeyer et al. [52]
achieves reprojection via a warping grid and ray-casting. However,
both have heavy computation overhead, lack system design and
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Figure 4: The system overview for YORO achieves the high-efficiency VR binocular image generation. Compared to conventional
VR rendering, YORO only uses one rendering. Therefore it reduces the amount of computation and thus increases efficiency
and saves energy.

implementation details, or rely on information that is not practical
on mobile GPUs, such as the accumulation buffer (A-buffer) [2].
Therefore, existing reprojection methods do not properly take into
account the constraints of mobile VR devices.

Before introducing ourReprojector, we brief on the principle of
the renderer. As mentioned in Section 3.1, the current mainstream
real-time renderer is dominated by the rasterization renderer. Its
core idea is to traverse each triangle of each 3D model in the scene
and project it from the world space to the screen space using the
view and projection matrix. The matrices are denoted as:

𝑹 =


1 − 2𝑟2𝑧 − 2𝑟2𝑤 2𝑟𝑦𝑟𝑧 − 2𝑟𝑥 𝑟𝑤 2𝑟𝑦𝑟𝑤 + 2𝑟𝑥 𝑟𝑧 0
2𝑟𝑦𝑟𝑧 + 2𝑟𝑥 𝑟𝑤 1 − 2𝑟2𝑦 − 2𝑟2𝑤 2𝑟𝑧𝑟𝑤 − 2𝑟𝑥 𝑟𝑦 0
2𝑟𝑦𝑟𝑤 − 2𝑟𝑥 𝑟𝑧 2𝑟𝑧𝑟𝑤 + 2𝑟𝑥 𝑟𝑦 1 − 2𝑟2𝑦 − 2𝑟2𝑧 0

0 0 0 1


, (1)

𝑽 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 · 𝑹 ·

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

 , (2)

𝑷 =



1
𝐴𝑠𝑝𝑒𝑐𝑡×𝑠𝑖𝑧𝑒 0 0 0

0 1
𝑠𝑖𝑧𝑒

0 0

0 0 − 2
𝑓 𝑎𝑟−𝑛𝑒𝑎𝑟 − 𝑓 𝑎𝑟+𝑛𝑒𝑎𝑟

𝑓 𝑎𝑟−𝑛𝑒𝑎𝑟
0 0 0 1


, (3)

where 𝑹 is the rotation matrix. 𝑽 is the view matrix. 𝑷 is the pro-
jection matrix. (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) is a 3D vector represents the camera
world position. (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 , 𝑟𝑤) is a unit quaternion that represents
the camera rotation. 𝐴𝑠𝑝𝑒𝑐𝑡 is the screen aspect ratio, 𝑠𝑖𝑧𝑒 is half
height of the view frustum. 𝑓 𝑎𝑟 is the distance of camera’s far plane,
𝑓 𝑎𝑟 = 1000 be default [58]. 𝑛𝑒𝑎𝑟 is the distance of camera’s near
plane, 𝑛𝑒𝑎𝑟 = 0.3 be default [58]. The 3D camera can only render
objects with distances between the far plane and the near plane.

The projection of rasterization can be formulated as:

𝑥

𝑦

𝑧

1

 · 𝑽𝑷 =


𝑢

𝑣

𝑑

1

, (4)

where (𝑥,𝑦, 𝑧) is the world position of mesh model’s vertex. (𝑢, 𝑣)
is the pixel position on the screen, and 𝑑 is the depth of the corre-
sponding pixel.

𝑢

𝑣

𝑑

1

left ·𝑴 =


𝑢

𝑣

𝑑

1

right, 𝑴 = (𝑽𝑷left )
−1 · 𝑽𝑷right, (5)

With Equation 5, we can perform reprojection, which essentially
calculates the other camera’s screen coordinates of each pixel from
the depth map of the current camera. This reprojection process
is simply a single matrix transformation and can be computed in
parallel on the GPU. To further enhance the performance, our

Reprojector design and employs four key strategies. We specifi-
cally focus on minimizing computational bottlenecks, such as GPU-
CPU communication, and reducing the overall computational load
through both architectural (a-c) and algorithmic (d) optimizations.

(a) Thread-safe Hybrid Shader Architecture: Reprojection
operation in VR commonly employs Compute Shader (CS), i.e., spe-
cialized programs designed for parallel GPU processing. However,
mobile devices provide limited support for CS, resulting in an insuf-
ficient performance boost and often causing additional computation
burden. Flickering artifacts also appear due to the conflict of mul-
tiple threads writing to the same pixel location, which will cause
flicker and shake on certain areas of the images. To overcome these
challenges, we propose a thread-safe hybrid shader architecture
that leverages the strengths of both Compute Shaders and Image
Effect Shaders (IES). Specifically, we apply the principle of separa-
tion of concerns, under the guidance of Observation O1 in Section
5. The IES is used to efficiently handle matrix transformation com-
putations, which are typically uniform and do not require random
access to memory. On the other hand, the Compute Shader is specif-
ically tasked with buffer random writing, but instead of allowing
threads to operate freely across the entire image, the workload is
parallelized per row of pixels. By restricting each thread to operate
within a specific row, the chances of multiple threads writing to
the same pixel location are eliminated.

(b) Disocclusion Tracking: To optimize the use of information
shared between modules during computation, we introduce a novel
Disocclusion Tracking method. In this approach, the CS is designed
to operate in a per-row parallelized manner, enabling it to calculate
and store both the location and width of disocclusions caused by the
reprojection process in a single pass. By efficiently capturing this
disocclusion data during the same operation, it can be seamlessly
utilized by the subsequent module (i.e., the Patcher, as detailed
in Section 7) to accelerate its processing. This design minimizes
additional computational overhead while significantly improving
the overall efficiency of the pipeline.

(c) Resolution-Independent Intermediate Buffers: As the
displays of mobile VR devices evolve, their resolution will gradu-
ally increase to 4K or even 8K [15]. However, the reprojection is
independent of the scene complexity but is related to the screen
resolution (Section 10.3), which may significanlty increase the com-
putation load. To proactively address this issue, we propose the
resolution-independent Intermediate Buffers (ImBuffer). The
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resolution of ImBuffer can be set to a constant or downsampled 1/2
to 1/16 of per-eye resolution before applying YORO shaders. The
ImBuffer records the distance the pixel shifts along the horizontal
contour. The final full-resolution image is sampled based on lin-
ear interpolation of the distance shifted. This will avoid the extra
computation burden when YORO is applied to higher resolution.

(d) Linear Interpolation: When down-sampling the ImBuffer
from floating-point UV coordinates to integer XY pixel coordinates,
errors can occur if the fractional positions are not correctly han-
dled. We address these issues by applying linear interpolation at the
horizontal axis to improve image quality. While this approach dou-
bles the shader operations, making it optional serves as a strategic
design choice that enables dynamic adaptation to diverse mobile
hardware capabilities - high-end devices can enable it for maximum
visual quality, while devices with limited processing power can dis-
able it to maintain performance, thereby effectively implementing
the hardware adaptability principle outlined in Consideration C1
of Section 5.

Algorithm 1 Reprojector Stage1 (Image Effect Shader, Parallel per
pixel)
Input: 𝑫 : Depth buffer of rendered eye.

𝑴 : Precomputed transformation matrix in Eq.4 .
𝒖𝒗: The resolution-independent pixel coordinate ranges (0,1). Provided by the shader.

Output: Intermediate buffer pixel at coordinate 𝒖𝒗.
1: c← (𝒖𝒗 *2-1, 𝑫 [𝒖𝒗 ], 1)
2: 𝑐←𝑴 * c
3: return (𝑐 .x + 1 * 0.5, 𝑐 .z)

Algorithm 2 Reprojector Stage 2 (Compute Shader, Parallel per
row of pixel)
Input: 𝑺 : Intermediate buffer.

𝑾 : Texture width. 𝒚 : The row id. Provided by the shader.
Output: 𝑺 : Transformed Intermediate buffer.
1: 𝑥0 = 0
2: for 𝒙 = 0 :𝑾 do ⊲ For each pixel along the row
3: 𝒄 = 𝑺[𝒙 ,𝒚]
4: �̂�← 𝒄 .x ⊲ Get the x location to write to
5: 𝒅← 𝒄 .y ⊲ Get the depth
6: if 𝑺 [�̂�,𝒚].y < 𝒅 then
7: 𝑤← �̂� − 𝑥0 ⊲ Calculate the width of disocclusion
8: for 𝒊 = 𝑥0 + 1 : �̂� do ⊲ And iterate through it
9: 𝑺 [𝑖 ,𝒚]← (𝑥0, 𝒅, 𝑤 ) ⊲ Stores disocclusion’s
10: end for ⊲ (left edge, depth of right edge, width)
11: 𝑺 [�̂�,𝒚]← (𝒙, 𝒅, 0) ⊲ Stores (pixel location that
12: end if ⊲ comes from, reprojected depth)
13: 𝑥0 ← �̂� ⊲ Update disocclusion tracking pixel
14: end for

As shown in Algorithm 1, YORO first takes the full resolution
depth map and downsamples ImBuffer as input, and computes the
"location will be written to" value and "reprojected depth" value
via a per-pixel-parallel image effect shader. However, Algorithm 1
calculates the matrix transformation but does not perform buffer
random read/write operations (writing to texture location that
doesn’t belong to the current thread). Therefore, the ImBuffer is
further fed into a per-row-parallel compute shader Algorithm 2 and
transforms the "location will be written to" value to "locations
that come from" value via a scan along the X-axis. When multiple
pixel values are written to the same location, Algorithm 2 keeps
the value with the lowest depth. Besides, it will also detect if the
"location will be written to" value has a change of more than one
pixel (i.e., a disocclusion) and add its start location and width to
the ImBuffer.

Examples of reprojection are shown in Figure 3 and 5 (using the
right eye as the dominant eye). The reprojected image has a new
perspective but inevitably contains some disocclusion. Therefore,
we use the Patcher to fill in the disocclusion (detailed next).

7 PATCHER
As shown in Figure 5, the reprojected image inevitably contains
some disocclusions, missing some information/details. The prob-
lem of filling in the missing information of an image is called image
patching or image inpainting. Existing solutions for image patching
can be divided into the following five main categories: (1) ReRen-
dering renders the disocclusion region via traditional renderer and
scene information [66]. This approach still needs to compute the
geometric information twice, and necessitates ray tracing which
causes heavy computation overhead, thus making it ineffective
for mobile VR. (2) Iterative approach applies optimization algo-
rithms on the image and fill in the information by continuously
iterating and optimizing the pixels of the image [49]. Therefore,
it can not process real-time tasks and, naturally, is not suitable
for this work. (3) Sequential method needs to iterate through all
the unpatched pixels in one thread [22, 62]. Besides, it cannot be
parallelized due to the read/write conflicts and thread safety (see
Consideration C1&C2, Section 5), not suitable for improving effi-
ciency. (4) Data-driven neural network models [30] are trained
with large amounts of data and then empirically fill in the missing
information in the images. They require a large memory space,
computational power, and massive training data, and their gener-
alization capability remains a concern. (5) Filter-based approach
can be parallelized and requires a relatively small amount of mem-
ory compared to other image patching categories. However, this
approach still entails onerous computation, unsuitable for mobile
VR [50, 68]. It is important to note that ReRendering and Iterative
approaches can not work well on mobile VR and are thus excluded
in the evaluation.

(a) Unpatched RGB
& Reprojected Depth

(b) Patched Image (c) Left Eye
Ground Truth

Figure 5: (a) is the unpatched input image and the depth map.
(b) is the patched image. (c) is the rasterized left ground truth
image.

To enhance the image quality, we design YORO’s Patcher, a
new filter-based approach, to fill the image details. We note that
the existing filter-based methods overlap the kernel range with
the disocclusion region when sampling the target pixel, repeatedly
reading pixels with zero information that does not contribute to
the final result. The traditional kernel designs also read and cal-
culate foreground pixels, leading to incorrect results. Therefore,
we store the disocclusion information in advance in the previous
Reprojector stage (see Section 6 (b) Disocclusion Tracking). The
information contains the location of the nearest non-disocclusion
pixel and the width of the disocclusion. This allows us to quickly
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determine the kernel starting position and reduce the waste of
texture reading operations.

ImBuffer = (𝑥0,𝑑0,𝑤0)

ImBuffer = (𝑥2,𝑑2,0)

ImBuffer = 𝑥1,𝑑1,𝑤1

𝒙𝟎

Patching Left Eye Rendered Right Eye

Skipping
Foregroundkernel

𝒘𝟏
𝒘𝟎 + 𝟏

kernel

𝒘𝟎

𝒅 > 𝒅𝟎
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𝒙𝟏

𝒘𝟏 + 𝟏

Skip
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Figure 6: The illustration of YORO’s Patcher’s kernel. Since
the pixels are shifting right, we only sample toward left. Us-
ing ImBuffer we can quickly determine the starting location
of the kernel without wasting samples on pixels that do not
contribute to final results. The foreground pixels can also be
skipped since the disocclusion comes from the background.

As shown in Algorithm 3, YORO’s Pathcer is lightweight (∼
20 texture memory access per pixel compared to ∼ 2500 access
from Xiao et al. [68]) and parallel per pixel. For each pixel, it first
checks if the pixel is disocclusion (line 3). If not, then return the
color sampled from the full-resolution renderer image of the ren-
dered view, using the location provided by the ImBuffer. Since the
ImBuffer is downsampled, we use UV-Coordinate samplers where
linear interpolation is automatically applied. If the current pixel is
disocclusion (line 5), we accumulate the values of all pixels within
the kernel and apply the weights. We skip the foreground according
to Observation O2 in Section 5 by checking the depth of pixel can-
didates (line 8). The kernel has the same width as the disocclusion
at the current row and height of ℎ (ℎ = 3 by default). The weights
𝑊 are calculated by:

Algorithm 3 Patcher (Image Effect Shader, Parallel per pixel)
Input: 𝑰 : Downsampled intermediate buffer. 𝑪 : RGB color buffer of renderer eye. 𝒖𝒗:

The resolution-independent pixel coordinate ranges (0,1). Provided by the shader.
Output: Final full-resolution patched image at coordinate 𝒖𝒗
1: 𝒓 ← 𝑰 [𝒖𝒗 ] ⊲ Intermediate Info
2: 𝒖, 𝒗 ← 𝒖𝒗
3: if 𝒓 .𝑧 == 0 then ⊲ If isn’t disocclusion
4: return 𝑪 [ (𝒓 .𝑥, 𝒗 ) ] ⊲ return sampled color
5: else ⊲ If is disocclusion
6: 𝑐𝑎𝑐𝑐 , 𝑤𝑟𝑒𝑚 ← 0, 1
7: for each pixel 𝒋 in kernel from (𝒓 .𝑥 − 𝒓 .𝑧 : 𝒓 .𝑥 ) do
8: if 𝑰 [ 𝑗 ] .𝑦 > 𝒓 .𝑦 then
9: Continue ⊲ Skip foreground pixels.
10: end if
11: 𝑤 ←𝑊 (𝒖, 𝒓, 𝑤𝑟𝑒𝑚 )
12: 𝑐𝑎𝑐𝑐 ← 𝑐𝑎𝑐𝑐 + 𝑪 [ 𝑗 ] · 𝑤
13: 𝑤𝑟𝑒𝑚 ← 𝑤𝑟𝑒𝑚 − 𝑤

14: end for
15: return 𝑐𝑎𝑐𝑐/(1 − 𝑤𝑟𝑒𝑚 )
16: end if

𝑾 (𝒖, 𝒓,𝒘 ) = 𝒘

2
+ 0.3𝒘 × ( 𝒖 − 𝒓𝑥

𝒓𝑧
), (6)

where 𝒖 is the coordinate provided by the shader, 𝒓 is the inter-
mediate info,𝒘 is the remaining weight. The kernel generation is
visualized in Figure 6.

8 IMPLEMENTATION
YORO Implementation. YORO was implemented as a modular
and highly parallelizable framework tailored to operate seamlessly
across various mobile VR platforms. The development process in-
volved addressing unique challenges, such as the efficient imple-
mentation of compute shaders and image shaders, which differ
significantly from CPU-based implementations. Additional chal-
lenges included adapting to diverse hardware architectures and
platforms, optimizing computational efficiency.

Given the varying levels of support for compute shaders and VR
frameworks across platforms, we made platform-specific adjust-
ments to YORO. On PC, we utilized the Mock HMD framework
in conjunction with the Vulkan API. On mobile platforms, we em-
ployed Google Cardboard and the OpenGL API, while on Oculus
Quest, we employed the Quest framework with the OpenGL API.

We have adapted and tested our implementation on seven rep-
resentative different mobile VR devices (six smartphone VR and
one standalone VR) across different mainstream mobile platforms
(see Table 2). Considering the high integrity of mobile devices,
we employ the Android Battery Historian [19] to measure power
consumption in a non-invasive way.
Implementation of Baselines: We have implemented two group
of VR optimization systems on the respective mobile platforms as
the baselines.

(1) End-to-End Systems: (i) We consider the conventional binoc-
ular rasterizer as the baseline (Ground Truth, GT) for the entire VR
system evaluation. The renderer parameters are the default parame-
ters of the Unity engine, where the rendering path is set to Deferred
Shading [33]. (ii) Besides, the state-of-the-art solution from Fink et
al. [28] and SPI [60] are also employed. Fink et al. did not publicize
the source code, and some technical details in the paper are unclear.
Thus, we reproduce its work following the descriptions in [28]. SPI
is implemented using Unity XR’s built-in APIs.

(2) Patcher Systems: We employ three types of patcher algo-
rithms for comparison, including four handcrafted algorithms and
one deep-learning-based algorithm. (i) Filter-based: Median Filter
[50] and Xiao et al. [68]; (ii) Sequential: Navier-Stokes [22] and
Telea [62] with the default parameters and are ported to mobile
devices with OpenCV for Unity [18]; (iii) Data-driven: The Gener-
ative Adversarial Network (GAN) style (pix2pix-based) [37]. The
model is pre-trained under default settings for each scene on the
dataset and is deployed on mobile devices via Unity Barracuda [63].
It is worth mentioning that Xiao et al. (2022) [68] initially imple-
mented CUDA, targeting PC VR and running on the PC GPU. We
have thus translated its open-sourced CUDA code to mobile-capable
shader code.

9 EVALUATION SETUP
VR Scene Preparation: To verify the effectiveness of our YORO
system, we selected eight representative 3D VR scenes with varying
rendering styles and complexity. VR application rendering styles
can be categorized into realistic shading, which aims for photo-
realistic images using high-frequency textures, complex lighting,
and detailed models, and stylized shading (e.g. cartoon, anime),
which uses simpler textures and models. We chose comprehensive
scenes covering both rendering styles (Figure 9), including those
developed by us and from public archives [9, 48], depicting typical
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environments and objects like humans, plants, vehicles and build-
ings. The triangle counts of the scenes ranged from 22k to 2,833k,
representing different levels of complexity. This diversity of scenes
allows thorough testing of YORO and baselines.
Evaluation Metrics:We evaluate the YORO’s optimization perfor-
mance on frame rate improvement, energy cost, and CPU overhead
using percentages where the conventional rendering is ground
truth. In addition, we evaluate the stability by analyzing the stan-
dard deviation of frame rate and memory usage. Besides, we evalu-
ate the image quality of the binocular image generated by YORO
using Structural Similarity (SSIM) and Peak Signal Noise Ratio
(PSNR) as the evaluation metrics. SSIM has qualified to reflect
the subjective quality perception of the human eye. PSNR is a
widely used image quality evaluation metric, as a higher value
means less distortion. The image quality is widely recognized as
excellent and acceptable if the image’s SSIM reaches over 0.95
among [0,1] and PSNR reaches over 20.0 [42, 64]. SSIM is denoted
as: 𝑆𝑆𝐼𝑀 (𝑥,𝑦) = (2𝜇𝑥 𝜇𝑦+𝑐1 ) (2𝜎𝑥𝑦+𝑐2 )

(𝜇2𝑥+𝜇2𝑦+𝑐1 ) (𝜎2
𝑥+𝜎2

𝑦+𝑐2 )
, where 𝑥 and 𝑦 show the

the baseline image (GT here) and the processed image respec-
tively, 𝜇𝑥 is the average of 𝑥 , 𝜇𝑦 is the average of 𝑦, 𝜎2𝑥 is the
variance of 𝑥 , 𝜎2𝑦 is the variance of 𝑦. 𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2 are
the constants used to maintain stability. 𝐿 is the dynamic range
of the pixel values. 𝑘1 = 0.01, 𝑘2 = 0.03. PSNR is denoted as:
𝑃𝑆𝑁𝑅 = 10 log10 (

(2𝑛−1)2
𝑀𝑆𝐸

), where MSE is the mean square error
between the baseline image (GT here) and the processed image.

10 SYSTEM PERFORMANCE EVALUATION
We evaluate YOROwith the End-to-End System Evaluation base-
lines and metrics in Section 9 on all six representative smartphone
VRs (to keep the similar VR type) in all eight VR scenes mentioned
in Section 9, unless specified otherwise. Particularly, SPI is also
tested in Section 10.6 due to its limitation.

10.1 Power Consumption
To measure the power consumption on these mobile devices, we
test each device lasts for 10 minutes for each VR scene. We include
a Meta Oculus Quest 2 in this evaluation. As shown in Figure 7(a),
YORO’s power consumption keeps lower than the conventional
and Fink’s ones in all VR scenes. The lowest power consumption
is achieved among scene LostEmpire, which is 27% lower than the
conventional one. The average power consumption is only 73% of
the conventional one (a reduction of 27%), reaching 340 mW. For
comparison, the power consumption of watching a video is 335 mW,
and browsing a website is 380 mW, which is measured in the same
condition. The power consumption on mobile VR is slightly higher
than these common workloads, which fits the user experience and
further illustrates the necessity to save energy in mobile VR. These
results prove YORO has the ability to provide extended battery life
and even support sustainability in computing.

10.2 Frame Rate
In this section, we evaluate YORO’s performance in frame rate,
as shown in Figure 7(b). The Meta Quest 2 is included in this test.
YORO’s frame rate is higher than the conventional and Fink et
al. in all eight scenes. The performance of the conventional one
and Fink et al. are equivalents. It is worth mentioning that in the
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Figure 7: (a) The power consumption compared with the
conventional and Fink et al. in different VR scenes. (b) The
frame rate compared with the conventional and Fink et al.
in different scenes.
low-complexity scenes (e.g., UnityChan), the frame rate of YORO
is around 115-125% higher than the conventional process. While,
in the high-complexity scenes, like Bistro and SciFiCity, the frame
rates are 97.4% and 107.5% higher, respectively. The highest frame
rate we get happens in the scene Conference (53.2 FPS), which is
119.4% higher than the conventional one. The average frame rate is
115.2% higher, proving YORO the ability to improve the frame rate
under various conditions. Besides, YORO can achieve frame rate
improvements beyond the theoretical computational complexity
analysis in Section 10.3 (100%) on specific mobile devices. This is
related to buffering and scheduling in the mobile GPU. Especially
for binocular image rendering, extra bit block transfer (BitBilt)
operations and synchronization between the two eyes are required.

10.3 Computational Complexity
Since raster rendering requires traversing all triangles in the scene
and projecting them into screen space, this step is one of the main
bottlenecks in rendering (see Section 3.1). With a consistent shad-
ing style, the rendering time complexity can be formulated as
𝑂 (𝑛) = 𝑁 , where 𝑁 is the number of scene triangles. Since we
only need to render once, compared to the complexity 𝑇 (𝑛) = 2𝑁
for conventional binocular rendering, the complexity of YORO is
𝑇 (𝑛) = 𝑁 +𝐶,𝐶 << 𝑁 where 𝐶 represents the time required for
projection and patching. It is a constant time for a given resolution,
regardless of the scene complexity. In general, the overall compu-
tation amount for YORO is about half (50%) of the conventional
method. While SPI can only reduce about 25% of computation on
the CPU side and about 5% on the GPU side [5]. Thus, YORO can
perform less computation and achieve better efficiency and energy
saving.

Besides the theoretical analysis, to further illustrate this reduc-
tion, we compare the computational time consumption with the
conventional one, Fink et al., and SPI solutions under a controlled
experiment with linearly increased scene complexity. The results
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Figure 8: The evaluation of the computational time consump-
tion regarding the scene complexity between YORO and
other existing approaches.
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are shown in Figure 8. As the scene complexity grows, the time
consumption of the conventional one grows more significantly
than YORO. The results are consistent with our derivation. The
computational complexity of YORO is almost half (51.40%) of the
conventional one on average, while Fink et al. and SPI are 81.97%
and 75.96% of the conventional one, respectively. Therefore, the
results match the theoretical analysis, showing our method has
excellent optimization regarding the VR scene complexity.

10.4 Image Quality
To evaluate the image quality produced by YORO, we generate
images of the left eye from the right eye utilizing YORO. As shown
in Table 3 and Figure 9, the average image quality reached 0.97 for
SSIM and 34.09 for PSNR (over 0.95 and 20.0 thresholds, respectively,
see Section 9), where the standard deviation of SSIM is less than
0.02, and the PSNR is less than 4.12. The image quality reaches
the best in scene Sponza (SSIM: 0.98, PSNR: 41.90). Besides, the
generation of each binocular image by YORO is 53.1% faster than
conventional on average. The generated image of the left eye is
close to the ground truth in most scenes. Additionally, to better
illustrate the performance under extreme conditions, the zoom-in
images in Bistro, Prototype and UnityChan are shown in Figure 9.
Generally, only a few pixels are incorrect because the objects are
too close to the user’s eyes (< 50 cm), and the view image is highly
complex (more discussion in Section 14). However, these extreme
situations rarely happen in practical VR applications [53, 55]. These
results prove that YORO can generate binocular images with high
image quality, providing an excellent immersive experience.
10.5 System Overhead
We evaluate the system overhead of YORO in controlled conditions
by measuring the impacts on mobile CPU and temperature. The
frame rate and ambient temperature factors are controlled to the
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Figure 9: System performance evaluation of Binocular image
generation methods by YORO. GT is Ground Truth (conven-
tionally rendering twice).

same before each test. The resulting mobile CPU overhead and
temperature performance are shown in Figure 10. YORO’s average
CPU overhead and temperature are lower than the conventional and
Fink et al. in all VR scenes. The lowest CPU overhead is achieved
in scene LostEmpire, which is 24.05% lower than the conventional
process. Besides, YORO keeps the temperature lower than 40°C in
all scenes and reaches the lowest in scene Chat, proving YORO the
ability to reduce the computation amount and the VR application
overhead.
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Figure 10: (a) The CPU overhead compared with the conven-
tional and Fink et al. in different scenes. (b) The temperature
of the mobile device compared with the conventional and
Fink et al. in different scenes.

10.6 Comparison with Single Pass Instancing
In this section, we compare YORO with SPI, a representative and
production-ready VR optimization method [60]. As mentioned in
Section 1, SPI has limitations in finishing some regular tasks and
even crashes under those conditions, due to unsupported post-
processing methods and the number of light sources. Although this
has already proven the limited adaptability of SPI, we still try to
compare the optimization performance of YORO and SPI. Therefore,
we set up a group of additional experiments where VR scenes have a
smaller number of light sources (<5) and just basic post-processing
to meet the limitations of SPI (Note: this setting for SPI is not
practical for VR applications that may require advanced/custom
visual effects or a certain amount of light sources, such as for design,
tourism, training, education, and healthcare). Additionally, these
experiments are performed on the same devices shown in Table 2.

As shown in Figure 11(a), SPI can provide a frame rate boost
compared to the conventional one, but the average amount of frame
rate boost is inferior to YORO. The average frame rate of SPI is
57.76 FPS, while the YORO is 68.21 FPS. Besides, we observe that
SPI shows strong instability in optimization performance across dif-
ferent devices and rendering styles. Especially, SPI performs worse
than conventional on some devices (e.g., Samsung S10 and Samsung
S21), probably due to compatibility issues on the Samsung platform
(14.8% lower). While YORO performs reliably and consistently in
this regard. Moreover, the results also illustrate that SPI causes
35.8% more power consumption, 63.4% more CPU usage (Figure
11(b)), and 2.9°C higher average temperatures than YORO, further
highlighting the superiority of YORO.

11 ROBUSTNESS EVALUATION
11.1 Performance on Different Devices
To illustrate if YORO can work pervasively across the different
mobile platforms, we conduct the following experiments. The eval-
uation results are shown in Table 2. The frame rate increases and
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Table 2: YORO Performance on different mobile devices across different mobile platforms. YORO can generally reduce the
amount of computation, increase efficiency, and save energy among representative mobile VR devices over the conventional
approach.

Mobile VR Device Type Honor 8 Honor 30 Honor 30s Samsung
Galaxy S10

Samsung Galaxy
S21 5G

Xiaomi MI
6 Meta Quest 2 Meta Quest 3

Device RAM 3 GB 8 GB 8 GB 8 GB 8 GB 6 GB 6 GB 8 GB
Battery Capacity 3000 mAh 4000 mAh 4000 mAh 3400 mAh 4000 mAh 3350 mAh 3636 mAh 5050 mAh

Screen Size 5.2 inches 6.53 inches 6.5 inches 6.1 inches 6.2 inches 5.15 inches N/A N/A

Power reduction (mW) -35% -24% -25% -31% -15% -49% -6% -4%
Frame rate increased (FPS) +149.64% +142.65% +151.51% +169.77% +133.57% +139.31% +49.03% +22.63%
Execution time reduced (ms) -59.94% -58.79% -60.24% -62.93% -57.19% -58.21% -32.87% -17.49%

Memory reduced (MB) -2.13% -2.33% -2.26% -4.64% -4.57% -4.55% -1.26% -2.90%

Table 3: A comparison of binocular VR image generation
between YORO and the convention method (GT). The PSNR
for GT is N/A since the MSE for itself is 0.

Scene Name Time Memory PNSR SSIM

YORO
(Ours)

Bistro 28.6ms 52.21 MB 31.99 0.9505
SciFiCity 25.4ms 61.73 MB 29.58 0.9516
Conference 18.8ms 60.34 MB 34.68 0.9805
Sponza 19.8ms 51.30 MB 41.90 0.9802
LostEmpire 20.8ms 50.50 MB 39.25 0.9747
Prototype 19.6ms 56.10 MB 32.98 0.9751
Chat 19.4ms 70.20 MB 29.79 0.9697
UnityChan 20.2ms 61.78 MB 28.74 0.9643
Average 21.6ms 58.02 MB 34.09 0.9679

GT Average 46.1ms 60.51 MB N/A 1
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Figure 11: (a) The frame rate comparedwith the conventional,
Fink et al., and SPI in different scenes. (b) The CPU overhead
compared with the conventional, Fink et al., and SPI in dif-
ferent scenes.

the power consumption drops on all mobile devices compared to
the conventional one. Besides, YORO shows superior performance
on devices with early-released mobile devices (e.g., Samsung Galaxy
S10), where the frame rate increases 169.8% over the conventional
one. Additionally, towards the flagship mobile VR devices (e.g.,
Meta Oculus Quest 2), YORO improves FPS by about 49.03%. More-
over, the power consumption for all devices decreases significantly.
These results show YORO can smoothly work on a variety of mobile
devices without any extra hardware or software modification.
11.2 Adaptive Shading Style
Different VR applications usually have various rendering styles. To
ensure YORO can be used as a pervasive optimization algorithm,
we evaluate YORO’s image quality under different shading styles.
As shown in Figure 12(a), the five most representative and typical
shading styles are recruited. The average SSIM image quality is
0.9679, and the average standard deviation is lower than 0.02, prov-
ing YORO is capable of adapting various shading styles in most VR
applications.
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Figure 12: (a) The SSIM and PSNR of different shading styles.
(b) The SSIM and PSNR with different patching methods.

11.3 Adjustable Interpupillary Distance
Adjustable Interpupillary Distance (IPD) is an essential part of
commercial VR products since users have different interpupillary
distances. The IPD is the distance between the two lenses of VR
HMD. We evaluate YORO’s image quality at different IPD from 5.0
to 7.5 cm, the eye distance range of normal adult humans [26]. As
shown in Figure 13(a), the average SSIM is 0.963, and the average
standard deviation is lower than 0.02. The average PSNR is 31.31,
with an STD of 3.87. The results show that YORO has the ability to
adjustable IPD and broad applicability.
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Figure 13: (a) The SSIM and PSNR of different IPD. (b) The
SSIM and PSNR of different object distance.

11.4 Impact of Object Distance
As discussed in Section 10.4, some close objects are not shown
correctly. Since the view field of the human eye is a perspective
frustum (i.e., the closer the object is, the less pixel information
can be reused), subsequently, YORO inevitably has a limitation in
rendering near objects. The minimum object distance for YORO
is: 𝐷 = 𝐼

2 × cot(
𝜃
2 ), where 𝐷 is the minimum distance, 𝐼 is the IPD

distance, and 𝜃 is the field of view.𝐷 by default (𝐼 = 0.075, 𝜃 = 60 ) is
calculated at 0.129 meter. However, regular users will not encounter
objects in VR so closely, and it rarely happens in real practice.
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Figure 14: The error magnitude at each pixel (1-SSIM [28])
from YORO and Patcher Evaluation baselines are evaluated
for image quality.

Besides, the minimum practical distance in most VR applications
(e.g., supported by Unity Engine) is 0.3 meters. We conduct a micro
bench on the impact of object rendering distance. We chose an
irregular object (i.e., the bunny) as the subject and placed it at a
distance from 0.5 to 3 meters. The object’s scale is automatically
adjusted to maintain a consistent size across screens. The results
are shown in Figure 13(b). YORO keeps satisfactory image quality
of 0.95 SSIM and 38.73 PSNR, showing only a slight drop within
a distance of one meter. Moreover, to solve this extreme case, we
propose using a hybrid rendering approach by sacrificing energy
saving ability, using the conventional approach to render the near
objects (< 0.129 meters), and YORO for the rest of the objects.

11.5 Patcher Evaluation
To evaluate if our Patcher can repair the disocclusion of the im-
age, we recruit five algorithms as baselines (details see Section 8).
As shown in Figure 12(b) and Table 4, YORO has the highest effi-
ciency, with the patching time of each frame roughly 0.3ms, which
is faster than other algorithms. In addition, YORO’s SSIM keeps
above the threshold of 0.95 and PNSR over 20.0, providing excellent
image quality and immersive user experience. Moreover, it is worth
mentioning that although Median Filter [50] and Xiao et al. [68]
(Filter-Based type) keeps patching time at around 1ms and achieve
high FPS (around 100 FPS), their image quality is somewhat limited,
may not sufficient in mobile VR applications. Besides, although
the patching execution time of Navier-Stokes [22] and Telea [62]
(Sequential type) are at 10-20ms, they have limitations in working
parallel that restrict the whole rendering process. They can only
support around 3 FPS when applied to VR products, which is far
less than 30 FPS, and it is not practical on mobile VR.

Besides, the image quality comparison via error magnitude (1-
SSIM) [28] is shown in Figure 14. Bright pixels in the image repre-
sent the difference compared to the ground truth. Generally, fewer
bright pixels in the image and better patching performance achieve.
The results show YORO achieves equal or better patching perfor-
mance than other baselines.

12 REAL-WORLD EVALUATION
To reflect the actual performance, we evaluate YORO in Meta Ocu-
lus Quest 2, a commercial Mobile VR device. Meta Oculus Quest 2 is
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Figure 15: (a, b) are the FPS performance comparisons with
YORO, the conventional, Fink et al. and SPI in Unity VR
Sample [4] and The Escape Room [11], respectively. Bellows
are the typical scene view of (1) Unity VR Sample and (2) The
Escape Room.
currently the most potent and popular dedicated standalone mobile
VR device with high resolution (1832x1920 pixels per eye) and high
frame rate (90 FPS in default mode, 120 FPS in experimental mode).
This evaluation includes both local and streaming VR modes in real
practice.
Local VR application: To prove their feasibility, we apply YORO
to actual VR products. We employ two well-recognized official
public-accessible VR applications, as shown in Figure 15: (1) Unity
VR Sample [4] and (2) The Escape Room [11]. We recompile the
selected applications with YORO, install them into Oculus Quest
3, and make them work in the experimental mode. The results
of the graphic profiler are shown in Figure 15. The results show
that YORO can boost the frame rate of The Escape Room by 32.1%
than the conventional (YORO: Average 82.00 FPS, STD 23.39; the
Conventional one: Average 62.09 FPS, STD 24.49; Fink et al.: Average
73.09 FPS, STD 26.82; SPI: Average 62.68 FPS, STD 30.98), and boost
the frame rate of Unity VR Sample by 23% (YORO: Average 116.96
FPS, STD 8.60; the Conventional one: Average 95.36 FPS, STD 22.81;
Fink et al.: Average 82.21 FPS, STD 18.82; SPI: Average 113.54 FPS,
STD 15.95). The results show YORO can support VR APP products
working at higher and more stable frame rates compared with other
baselines, even reaching 110-120 FPS (Note: 120 FPS is the current
highest refresh rate for mainstream mobile screen products).

13 USER STUDY ON IMMERSIVE EXPERIENCE
To evaluate the overall user experience and image quality, we re-
cruited 14 participants, aged between 20 and 32 years, following the
Institutional Review Board (IRB) protocol. Each participant viewed
eight VR scenes using both YORO and the conventional method
(GT), following a random order. Participants are instructed to move
freely around the scene, interacting with objects as they would in
a typical game experience. They are also encouraged to move and
rotate rapidly to test the frame rate and latency. Participants rated

Table 4: Performance comparison of representative image
inpainting/patching algorithms on mobile devices.

Approach Patching Time FPS Memory PNSR SSIM

Xiao et al. 1.02ms 90.1 76.81MB 29.21 0.9170
Median 0.45ms 113.0 76.74MB 31.01 0.9516
NS [22] 28.0ms 11.1 79.88MB 31.96 0.9539
Telea [62] 48.8ms 6.5 79.89MB 32.25 0.9542
GAN [37] 37,142ms 0.03 165.39MB 28.07 0.9413
YORO 0.35ms 115.9 73.30MB 34.09 0.9679
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the image quality and user experience using a continuous slider
scale from 1 to 5 points.

We conducted a paired t-test [57] to compare the image quality
and user experience ratings between the two methods. The null
hypothesis assumed no difference between the methods. For Image
Quality, the t-statistic was 0.6196, with a p-value of 0.5462, an
effect size (Cohen’s 𝑑𝑧 ) of 0.1656, and a statistical power of 0.0887.
For User Experience, the t-statistic was 0.2946, with a p-value
of 0.7730, an effect size (Cohen’s 𝑑𝑧 ) of 0.0787, and a statistical
power of 0.0586. Given these results, the paired t-test does not
provide sufficient evidence to reject the null hypothesis, implying
no significant difference between the two methods in terms of image
quality and user experience.

However, the low values of effect size and statistical power are
noteworthy. A small effect size indicates the difference observed
between the samples is practically insignificant. The low statistical
power value suggests a risk of a Type II error, meaning the test
might fail to reject a false null hypothesis. Thus, the paired t-test
may not be sensitive enough to detect a difference if it exists. To
further evaluate the rating scores, we conducted an equivalence
test, specifically Two One-Sided Tests (TOST) [39], to determine
if the performances of YORO and the conventional method are
similar.

For Image Quality, the lower p-value was 1.1343 × 10−9 and
the upper p-value was 3.4048 × 10−9, with a confidence interval
(CI) of (−0.0559, 0.1008). For User Experience, the lower p-value
was 1.1266 × 10−8 and the upper p-value was 2.0626 × 10−8, with
a CI of (−0.0802, 0.1055). All p-values were clearly within the pre-
specified significance level (𝛼 = 0.05), and both CI results fell
entirely within the equivalence bounds ([-0.5, 0.5]). These results
indicate that the twomethods can be considered equivalent, and YORO
and the conventional method achive similar performance in terms of
image quality and user experience.

Moreover, participants’ feedback supported these findings, with
some noting no difference in image quality and others preferring
aspects of YORO, such as smoother frame rates and sharper textures.
The user study confirms that YORO offers a comparable immersive
experience to the conventional method in real-world scenarios.

14 DISCUSSION
Post-processing: Post-processing techniques, including bloom,
screen space ambient occlusion (SSAO), anti-aliasing, etc. are ap-
plied in the evaluation by default. These representative techniques
can provide more necessary functionalities and a better user ex-
perience, which have been widely used in medical, construction,
gaming, and other VR applications. Besides, through these settings,
the evaluations can reflect the real performance of YORO and
other related work comprehensively. In addition, post-processing
techniques are applied before YORO module; therefore, no alpha-
blending is involved during the projection stage. It is also worth
noting that the transparent geometry is not discussed in YORO.
Mobile VR barely supports transparent geometry practically since
the transparent geometry requires an extra forward pass to render,
and this extra effort will severely affect immersive performance
[14]. But for future work in other working scenarios, YORO can

still work with transparency objects by inserting the YORO mod-
ule before the transparent pass with further modification of the
renderer pipeline.
OpenGL Dependencies: To achieve the algorithms working paral-
lel, we use the Compute Shader to implement them on mobile GPU.
The Compute Shader runs on devices supporting at least OpenGL
Version 3.1, which was introduced in 2009 and is now supported
by most mobile VR devices [1].
Image Quality: During the evaluation, we observed that only a
small portion, approximately 1%, of the frame region, shows observ-
able differences from the ground truth. One substantial difference
(around 22% among this 1%) occurs when the object distance is less
than 0.5 meters. However, this distance happens rarely in main-
stream VR applications [53, 55]. Even if it occurs, the VR device
can revert back to the conventional binocular renderer. In addition,
other slight differences (around 78% among this 1%) are attributed
to minor shading variations between the two viewing angles, which
would not impact the user’s viewing experience in a noticeable way.
Immersive Content Streaming: Our approach can be viewed
as a form of semantic compression, where the extracted seman-
tic information is primarily depth data. thereby provides signifi-
cant advantages for VR streaming applications. While traditional
binocular VR streaming requires six-channel buffers (two RGB im-
ages), our method needs only a four-channel buffer (one RGB image
plus depth), reducing data volume by 33% theoretically and achiev-
ing 39.6% reduction in practical experiments with H.264 encoding.
These results demonstrate our method’s effectiveness in data trans-
mission reduction, with practical savings exceeding theoretical
predictions.
FutureApplications:YORO canwork on the driver layer, allowing
it to integrate seamlessly with the operating system and support
the wide use on VR applications.

15 CONCLUSION
In this paper, we designed and implemented a novel mobile VR
optimization method, YORO, a post-processing-based technique
to generate binocular VR images via rendering once. Compared to
conventional VR renderingmethods, YORO saves 27% in power con-
sumption and improves frame rates by 115.2%. In addition, YORO
can also be used as a rendering method for streaming VR videos,
capable of saving 39.6% of data transmission. We extensively eval-
uated YORO on comprehensive and representative multiple VR
scenes with different scene complexity and shading styles with six
smartphone VRs and one standalone VR. The results reflect the
feasibility of this practical mobile VR optimization approach across
different platforms and the superior performance in high efficiency
and energy saving, which pave the road to the next mobile VR
development.
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