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Abstract

Radio frequency (RF) propagation modeling poses unique
electromagnetic simulation challenges. While recent neu-
ral representations have shown success in visible spectrum
rendering, the fundamentally different scales and physics of
RF signals require novel modeling paradigms. In this pa-
per, we introduce RFScape, a novel framework that bridges
the gap between neural scene representation and RF propa-
gation modeling. Our key insight is that complex RF-object
interactions can be captured through object-centric neural
representations while preserving the composability of tradi-
tional ray tracing. Unlike previous approaches that either
rely on crude geometric approximations or require dense
spatial sampling of entire scenes, RFScape learns per-
object electromagnetic properties and enables flexible scene
composition. Through extensive evaluation on real-world
RF testbeds, we demonstrate that our approach achieves
13 dB improvement over conventional ray tracing and 5 dB
over state-of-the-art neural baselines in modeling accuracy,
while requiring only sparse training samples.

1. Introduction

Recent advances in neural rendering have transformed 3D
scene understanding and reconstruction in computer vision
[4, 13, 14, 17, 32, 34, 38–40, 42]. Methods such as Neural
Radiance Fields [20] and 3D Gaussian Splatting [9] have
demonstrated exceptional capabilities in modeling complex
light transport and material interactions for photorealistic
scene reconstruction. These advances in modeling optical
frequencies suggest promising approaches for addressing
challenges in radio frequency (RF) propagation modeling,
as both domains share fundamental physical principles. RF
signals, like visible light, follow Maxwell’s equations and
exhibit similar wave phenomena, including reflection, re-
fraction, and diffraction. However, the much longer wave-
lengths, smaller antenna aperture, and ability to penetrate
common objects, result in more sophisticated interaction

with objects.
Accurate modeling of RF propagation remains a chal-

lenging problem in wireless systems with diverse use cases.
For instance, RF simulation enables optimal deployment
of access points [16] and intelligent reflectors [19, 26], by
computing signal coverage across all possible deployment
configurations. While industry-standard ray tracing algo-
rithms [25, 28] approximate electromagnetic wave behav-
ior through ray-object interactions, they often exhibit sig-
nificant simulation-to-reality gaps due to simplified model-
ing of surface characteristics and material electromagnetic
properties. Recent neural approaches in RF modeling, such
as NeRF2 [43], have shown potential in learning detailed
RF-object interactions. However, these data-driven models
require dense spatial sampling and complete model retrain-
ing when environmental conditions change, highlighting the
need for more efficient and adaptable approaches.

In this paper, we introduce RFScape, a novel RF sim-
ulation framework that synergistically integrates the high-
fidelity of neural representation and the flexibility and in-
terpretability of ray tracing. The core novelty of RFScape
lies in its approach of generating dedicated neural represen-
tations for individual objects within a scene and seamlessly
importing these representations into a ray tracing pipeline.
By implicitly modeling the minute structural details and
complex material properties of objects using neural rep-
resentations, RFScape captures the intricacies of RF sig-
nal propagation and interactions. Simultaneously, RFScape
preserves the inherent flexibility of traditional ray tracing
methods, enabling editing and dynamic updates of the sim-
ulated RF environment as objects are added, moved, or re-
moved. To enable optimization of scene geometries in RF-
Scape, differentiable ray-geometry intersections are needed
for gradient-based optimization. We choose to represent ge-
ometries using Signed Distance Functions (SDFs), as they
provide continuous and differentiable distance fields that
are compatible with automatic differentiation, making them
suitable for gradient-based optimization of object shapes
and positions [2, 35, 36].

By decoupling object representations from ray propaga-



tion modeling, RFScape facilitates flexible editing of an RF
simulation scene, such as modification of objects and con-
figuration of radio hardware. This flexibility is highly de-
sirable for the design and verification of wireless commu-
nication and sensing systems. Moreover, RFScape paves
the way towards a modularized primitive library, analogous
to the well-established practice of curating libraries of 3D
mesh models in computer graphics. Such a library would
enable large-scale, modularized RF simulation through pre-
trained object representations, primed for plug-and-play in-
tegration into the design process of wireless systems.

We have implemented RFScape and performed exten-
sive evaluation using various wireless testbeds, including
WiFi radios (both sub-6 GHz and 60 GHz bands) and
millimeter-wave (mmWave) radar. Our microbenchmark
results demonstrate that RFScape generates RF signals that
match the ground truth with high fidelity, achieving 13 dB
improvement in RF-object characterization compared to
conventional visual model based ray tracing. With merely
1.25 samples/sq ft of training data, RFScape outperforms
the state-of-the-art (SOTA) NeRF2 by around 5 dB in WiFi
channel prediction, and even higher for mmWave. In addi-
tion, RFScape can adapt to changes in a scene with a small
set of 3 to 5 additional data samples.

Our contributions can be summarized as follows:
• We propose RFScape, a novel RF simulation framework

that reduces the sim-to-real gap of conventional ray trac-
ing while maintaining flexibility.

• We design a novel neural representation that can cap-
ture detailed structure and material properties of objects
while ensuring compatibility with ray tracing. We further
present an efficient training strategy for learning these
neural representations.

• We evaluate RFScape extensively across diverse real-
world wireless environments. Our results demonstrate
RFScape’s effectiveness and its potential to foster new ap-
plications of RF simulation.

2. Related Work
RF propagation and EM field simulation. RF signal
propagation and environmental interaction simulation is
essential for wireless communication and sensing system
design. Full-wave simulation methods, including Finite
Element Method (FEM) [8] and Finite-Difference Time-
Domain (FDTD) [33], provide high-accuracy results but
are computationally intensive, limiting their application to
small-scale RF device design such as antenna development.
For large-scale simulations, ray tracing methods [15, 25] of-
fer computational efficiency by modeling electromagnetic
waves using geometrical optics principles. Ray tracing
simulation encompasses transmitters (Tx), receivers (Rx),
and mesh-based object representations within a scene. The
mesh representation comprises multiple polygonal elements

that approximate the object’s surface geometry. The simu-
lation initiates with ray emission from each Tx across all
directions, where angular resolution parameters define the
ray density distribution. The simulator subsequently com-
putes ray-mesh intersections and, at each intersection point,
generates secondary rays based on the number of specified
interactions. These secondary rays are propagated accord-
ing to their interaction mechanisms (e.g., reflection, refrac-
tion, or diffraction). The simulator also computes the direc-
tional radiance, which quantifies the ray’s power distribu-
tion along specific directions post-interaction, determined
by the material properties (e.g., permittivity and conductiv-
ity) of the intersected objects. Ray propagation terminates
upon reaching either the Rx or a specified maximum inter-
action threshold. The simulator aggregates all received rays
at the Rx through coherent combination, computing the rel-
ative phase differences based on their respective propaga-
tion path lengths.

The accuracy of ray tracing simulations depends crit-
ically on precise object geometry and material property
models, which exceed the capabilities of conventional sens-
ing systems. Notable challenges arise even for specular ob-
jects with simple geometric structures, as visual 3D recon-
struction methods often fail to capture microscale surface
features that, while visually insignificant, can substantially
influence RF signal interactions.
Neural representations for EM simulation. Neural scene
representations have established a significant position in
computer vision and computer graphics, particularly fol-
lowing the introduction of Neural Radiance Fields (NeRF)
[21]. NeRF implements neural networks to model two fun-
damental scene properties implicitly: the volumetric density
at each spatial coordinate and the directional radiance (com-
prising color and intensity) emitted from that coordinate.
Through learning these spatially and directionally depen-
dent radiance functions from multiple input images, NeRF
generates photorealistic novel viewpoints without explicit
geometric or surface representations.

There have been efforts to adapt neural representation for
RF applications [5, 18], with NeRF2[43] being a prominent
example. This method models the entire scene as an im-
plicit neural representation, preventing the clear delineation
of object boundaries and their RF interaction characteris-
tics. This limitation introduces constraints on system adapt-
ability and increases susceptibility to environmental varia-
tions. While WiNeRT [23] advances this approach by incor-
porating neural network-based material reflection parame-
ters into ray tracing simulations, its reliance on traditional
3D mesh representations remains insufficient for capturing
detailed structural features of physical objects [31].

RFScape employs a learnable geometry representation
with a neural material network to capture the complex and
intrinsic RF properties of physical objects. Additionally,
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Figure 1. An overview of the RFScape framework.

RFScape separates empty space and medium to reduce op-
timization complexity and improve sampling efficiency.

3. Preliminaries

3.1. RF Ray Tracing

The proliferation of wireless communications and sensing
systems has made accurate modeling of RF propagation in-
creasingly critical. While full-wave electromagnetic (EM)
solutions provide high accuracy, their computational com-
plexity makes them impractical for large-scale scenarios.
RF ray tracing offers an efficient alternative by applying ge-
ometric optics principles to electromagnetic wave propaga-
tion, enabling fast yet accurate predictions of radio coverage
in complex environments. RF waves interact with the envi-
ronment through reflection, refraction, diffraction, and scat-
tering. These interactions are governed by Maxwell’s equa-
tions but can be approximated using ray optics when the
wavelength is much smaller than environmental features.

The workflow begins with environment modeling, where
the physical space is discretized into polygonal surfaces
with assigned electromagnetic properties. Each material i
is characterized by its complex permittivity εi and conduc-
tivity σi:

εc = εi − j
σi

ωε0
, (1)

where ω represents the angular frequency and ε0 is the free
space permittivity. From each transmitter location rt, rays
are launched at discrete angles (θ, ϕ) and traced according
to Fermat’s principle:

d

ds

(
n
dr

ds

)
= ∇n, (2)

where n denotes the refractive index of the medium, s repre-
sents the path length parameter, and r is the position vector.

3.1.1. RF Channel Calculation
The electric field E at receiver position rr is computed by
summing contributions from all paths:

E(rr) =

Np∑
p=1

Ape
−jk0sp

Ni∏
k=1

Rk ·E0, (3)

where the amplitude spreading factor Ap accounts for geo-
metric attenuation, k0 represents the free space wavenum-
ber, sp denotes the total path length,

∏Ni

k=1 Rk incorporates
all reflection and transmission coefficients along the path,
and E0 represents the reference field at unit distance. The
reflection coefficient for perpendicular polarization follows:

R⊥ =
η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

, (4)

where ηi represents the wave impedance in medium i, and
θi, θt are the incident and transmitted angles respectively.

3.2. Signed Distance Field (SDF)
Inspired by recent advances in computer graphics [35, 41],
we propose to represent the geometric structure of an object
using an SDF. Given an object Ω and its boundary ∂Ω, an
SDF SΩ(p) defines the signed distance between any point p
in the space and the object’s surface ∂Ω:

SΩ(p) = s(p,Ω) · d(p, ∂Ω), (5)

where d(p, ∂Ω) = infq∈∂Ω d(p, q) denotes the minimal dis-
tance between the point p and any point q on the object’s
surface ∂Ω. In addition, the sign s(p,Ω) indicates the con-
taining relation between the point p and the object Ω, where
a positive sign means that the point p is outside the object,
i.e., p /∈ Ω while a negative sign means p ∈ Ω. Intuitively,
the SDF clearly defines the object’s boundary, which are the
solutions to the equation SΩ(p) = 0.

One fundamental property of SDF is the satisfaction of
the Eikonal equation [30]:

∥∇SΩ(p)∥ = 1. (6)

It implies that the gradient of SΩ at any point on the surface
∂Ω has a unit magnitude. Therefore, ∇SΩ(p) is exactly the
normal vector n of the surface, which is necessary informa-
tion for ray tracing to calculate new directions of RF rays



after interacting with an object. In practice, the normal vec-
tor n(p) at any point p on the surface can be approximated
by finite differences:

n(p) = ∇SΩ(p) =


SΩ(p+ϵx)−SΩ(p−ϵx)

2ϵx
SΩ(p+ϵy)−SΩ(p−ϵy)

2ϵy
SΩ(p+ϵz)−SΩ(p−ϵz)

2ϵz

 , (7)

where ϵx, ϵy , and ϵz are small perturbations in the x, y, and
z directions, respectively, and ϵ is the magnitude of these
perturbations.

Following the above definition, every object occupying
physical space has an associated SDF that implicitly en-
codes the object’s precise surface details. In addition, SDF
defines a continuous signed distance field rather than dis-
crete polygon surfaces, thus enabling gradient-based end-
to-end optimization. However, SDF itself does not encode
any material information, and lacks explicit definition of the
object boundaries – both critical for RF ray tracing.

4. Method

RFScape is an RF simulation framework that integrates
high-fidelity object models into a ray tracing engine, achiev-
ing both high accuracy and flexible editability for com-
plex and even dynamic scenes. The framework consists of
three primary components: 1) RFScape primitives, which
model the geometric structures and material properties of
objects for RF simulation; 2) RF Ray Tracing, which ac-
curately simulates RF interactions; and 3) Dynamics Han-
dling, which incorporates prior knowledge about scene
changes to modify the RFScape scene. Additionally, RF-
Scape’s optimization module enables end-to-end differen-
tiable forward simulation and gradient-based backward op-
timization of the primitives’ parameters.

4.1. RFScape Primitives

A RFScape primitive represents an object in a scene to be
simulated via ray tracing. Such a primitive must meet two
requirements: 1) encoding of fine-grained geometric struc-
ture and material properties of the object, and 2) seamless
interaction with RF rays. The first requirement can be ful-
filled using trainable neural representations, such as NeRF
[21, 43]. To further meet the second requirement, we need
the neural representation to clearly define the boundary of
the object, so that the geometric intersections between RF
rays and objects can be localized. Unfortunately, as a scene-
level model, NeRF obscures the clear delineation of individ-
ual objects. On the other hand, conventional mesh-based
geometric representation suffers from inaccuracy (Sec. 2)
and discontinuity, impeding its integration into an end-to-
end optimization model.

4.1.1. Neural Representations of Geometric Structure
and Material

To approximate the geometric structure of the object with
fine-grained details, we propose to represent the SDF of the
object using a structure model. As shown in Fig. 2, our
structure model is a trainable neural network, which takes
as input the position p of a marching ray and outputs a
signed distance, subsequently used for sphere ray tracing.
By learning the neural SDF representation, RFScape can
eventually localize the interactions between rays and ob-
jects with infinitesimally small errors, potentially eliminat-
ing the sim-to-real discrepancies that plague conventional
mesh representation.

However, only knowing the intersection of the ray and
the object is insufficient for calculating the reflective and
penetrative rays, which additionally depends on the local
material properties of the object. Conventional RF ray
tracing [15] usually calculates the Fresnel coefficients, as-
suming that the object has known and homogeneous mate-
rial properties. Unfortunately, a practical object’s material
properties are distributed unevenly across its surface and in-
terior and are often not measurable. To overcome this chal-
lenge, we employ a second neural network to model the ob-
ject’s material distribution and learn the directional attenu-
ation coefficients caused by materials. As shown in Fig. 1,
the inputs of this material model include any position p of
the marching ray, the carrier frequency fc of the RF sig-
nal, the local structure features f generated by the structure
model, and the direction (θ, ϕ) of the resulting reflective or
penetrative rays. The output is an attenuation coefficient α
along that direction.

We emphasize that this model encapsulates all RF prop-
agation effects (reflection, penetration, scattering, etc.)
through the directional attenuation coefficient. These ef-
fects can all be represented by the attenuation along arbi-
trary directions after a marching ray interacts with a point
on/within the object. In addition, unlike conventional ray
tracing, where interactions only happen at the boundaries
of objects, our material model accounts for the interior of
the object. Specifically, when the position of a marching ray
is inside the object, i.e., p ∈ Ω, the material model can out-
put the attenuation coefficient for the propagation direction
of the ray.

Following the success of the NeRF model [21], we im-
plement both structure and material models as multi-layer
perceptrons (MLPs). The interaction between a marching
ray at p and the RFScape primitive of an object Ω can be
formalized as follows:

MΩ : (p, θ, ϕ, fc) → (d, α). (8)

Both the signed distance d and the directional attenuation
coefficient α are used to update the ray upon any interac-
tion, including penetration and reflection along all possible
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directions.

4.2. RF Ray Tracing with RFScape Primitives
Signal propagation along each ray path involves complex
interactions with one or multiple objects. A vital step in
ray tracing is to locate the interaction. Conventional ray
tracing algorithms widely adopt the Möller–Trumbore al-
gorithm [22] to compute the intersections between the rays
and the polygons of a mesh-based object model. In con-
trast, SDFs represent surfaces through continuous values
without an explicit object boundary. To overcome this chal-
lenge, RFScape locates the intersection point p by itera-
tively searching for the SDF zero-crossing along the ray di-
rection. The iterative process is as follows:

T (p0, ω0) =

N∑
i=0

SΩ(pi), pi+1 = pi + ω0 · S(pi), (9)

, where p0 and ω0 denote the initial position and propaga-
tion direction of the ray, and T , is the total distance traveled
by the ray. The search terminates when |S(pi)| < ϵ, where
ϵ = 0.01, or when it reaches maximum iteration depths N .
This is known as sphere tracing [7] for SDF-based object
models.

Upon intersection, i.e., d = 0, RFScape estimates the
local normal vector n using Eq. (7) and determines the di-
rection of the reflection ray, i.e., ωr = ω0 − 2(ω0 · n)n ac-
cording to Snell’s Law, and the direction of the penetrative
ray, i.e., ωt = ω0.

Given the directions of the rays after interactions, we can
use the material model to obtain the attenuation coefficients
for reflection and penetration, i.e., ar and at. To constrain
the complexity of the RFScape ray tracing, we follow a
Monte Carlo strategy and only select either of the reflective
or penetrative ray for further propagation, with probabilities
proportional to their directional attenuation coefficients.

Penetrating through an object, i.e., d < 0, is similar to
propagation in the free space, except that the attenuation
coefficients are estimated using the material model and ac-
cumulated to obtain the total attenuation within the object,
i.e., aΩ =

∫ tout

tin
M(p0 + t · ω) dt. When the interior ray

reaches the boundary of the object again, the same Monte
Carlo strategy is used to select either the internally reflective
ray or the exiting ray.

Following the conventional ray tracing, RFScape emits
rays from a Tx, calculating all interactions between the rays
and the objects in the scene and eventually identifying the
rays that reach the Rx to establish valid paths. Each valid
path is characterized by its traversal distance τ and attenu-
ation coefficient. We record all the intermediate segments
of the rays and calculate the total distance τ and attention
coefficient a along the path:

τ =
∑
i

ti, a =
∏
i

ai, (10)

and the received signal can be calculated as:

STX = a · SRX · e−j2πfcτ . (11)

4.3. RFScape Optimization
To capture the real structure and material properties of the
objects and accurately represent the scene with RFScape
primitives, we need to optimize their parameters Θ to mini-
mize the sim-to-real discrepancy, i.e.,

Θ∗ = argmin
Θ

M∑
i=0

L(ŝi, si), (12)

where ŝ are RF measurements in the scene and M is the
number of measurements. L is the loss that quantifies the
discrepancy between real measurements ŝ and RFScape’s



RF simulation output s. We expect that a few shots of RF
measurements, i.e., a small M , is sufficient since RFScape
obviates the need to capture expansive empty regions and
only focuses on objects in the scene. Besides, the physical
laws of ray propagation pose extra constraints on the RFS-
cape primitives of objects.

To promote the generation of continuous surfaces by the
SDFs and ensure adherence to the eikonal constraints in
Eq. (6), we further apply discrete Laplacian and eikonal reg-
ularization. This guarantees that the norm of the gradient
remains unity, maintaining the physical plausibility of the
neural SDF models.

4.4. Handling Scene Dynamics
Owing to the compatibility with conventional ray tracing,
RFScape can support diverse radio configurations and dy-
namic scenes with little or even zero retraining efforts.

4.4.1. Tx/Rx Configurations
RFScape supports flexible configurations of radio antennas
in simulation. Ideally, rays are shot uniformly in all direc-
tions with equal strength at Tx, while rays arriving at Rx
are equally combined, assuming both Tx and Rx antennas
are isotropic. For a practical antenna with known direc-
tivity (i.e., antenna gain pattern), RFScape applies weights
that are proportional to the antenna’s directive gains to rays
along different directions. For a phased array that consists
of multiple antenna elements, we can view the array as an
equivalent directional antenna with switchable beam pat-
terns. The radiance field of the antenna beam patterns can
thus be simulated separately. By incorporating these an-
tenna configurations into the ray tracing algorithm, we can
directly reuse the RFScape primitives to simulate the per-
formance of different radio configurations in a scene.

4.4.2. Object Dynamics
RFScape can handle dynamic scenes where objects can be
added, removed, or moved. We assume that the RFScape
primitives of newly added objects are available in a pre-
trained RFScape library. Otherwise, they can be trained fol-
lowing the optimization procedure in Sec. 4.3, by freezing
the already trained RFScape primitives of other objects in
the scene. Unlike scene-wise neural representations [18, 43]
that have to be completely retrained even upon partial envi-
ronmental changes such as object locations, RFScape only
needs to adapt to the partial changes, depending on how
these changes are specified.

First, when visual sensors (e.g., cameras or lidars) are
available, RFScape can utilize them to extract the identities
of moving objects and their poses (i.e., translation and ro-
tation vectors) with sufficient accuracy. Given the updated
pose of an object, RFScape transforms the global position
and directions of marching rays into the original coordinate
system of this object before it moves, so that its RFScape

primitive can be used to model the interactions with the
rays. This allows for updates of the scene based on the vi-
sual changes in the environment.

Second, when visual sensors are unavailable but RF mea-
surements (e.g., signal strength) can be sampled within the
scene, we can freeze the RFScape primitives of the objects,
and only optimize the poses of the foreground dynamic ob-
jects following Sec. 4.3. As inputs for the optimization, the
RF measurements can be collected by devices already de-
ployed within the scene.

We note that, similar to conventional ray tracing applica-
tions, it is also common that the scene dynamics are speci-
fied by users as part of an RF simulation process, i.e., when
specifying and iterating over possible base station locations
to optimize coverage.

5. Experiment
5.1. Experimental Settings
Dataset We conduct real-world wireless measurements us-
ing a mobile robotic platform. We utilize a Turtlebot4
equipped with an integrated LiDAR sensor and Simultane-
ous Localization and Mapping (SLAM) system for precise
navigation and positioning. The platform follows prede-
fined trajectories with designated waypoints to ensure con-
sistent data collection across the target space. For wire-
less signal acquisition, we deploy an ASUS RT-AC86U
router operating in concurrent dual-band mode (2.4 GHz
and 5 GHz) as the access point, paired with an iPhone 14
Pro client device leveraging the AirPort Utility application
[1] for Received Signal Strength Indicator (RSSI) measure-
ments. Additionally, our setup incorporates two 802.11ad-
compliant MikroTik wAP 60G×3 routers [3] for 60 GHz
WiGig measurements, running OpenWrt with Mikrotik Re-
searcher Tools [6] to enable RSSI collection.

60GHz Router

5GHz AP

5GHz Receiver

TurtleBot

Phase Array

Figure 3. Room-level Wireless Channel Distribution Collection
Setup.

Baselines We employ NeRF2 [43] as the baseline, as it
represents the state-of-the-art in neural channel prediction,
outperforming other approaches such as Deep Convolu-
tional Generative Adversarial Network (DCGAN)[27] and
Variational Autoencoder (VAE)[11]. Our implementation
follows the default configuration provided in the publicly
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Figure 4. Object-level Wireless Channel Response Collection
Setup.

available code archive. The reproduced results show a per-
formance of 2.37 dB on BLE RSSI, 22.24 dB on WiFi SNR,
and 0.82 SSIM for the RFID spectrum, which aligns with
the original paper.
Model Implementation and Training
• Structure model: We employ an 8-layer Multilayer Per-

ceptron (MLP) with a width of 64 and integration of
skip connections. To address the spectral bias inherent
in MLPs, the input 3D location x undergoes positional
encoding with 6 frequencies. The actual implementation
is SΩ : x → (d, f), where we output additional 128-
dimensional local features f for the material model.

• Material model: The material model consists of an 8-
layer MLP with a width of 256 and incorporates skip con-
nections. The spatial inputs (x, n, θ) enhance the net-
work’s sensitivity to spatial variations. This architecture
is designed to encapsulate the intricate RF-material in-
teractions, ensuring a faithful representation of material
properties and electromagnetic wave behavior.
The training configuration includes a batch size of 4096

and utilizes the Adam optimizer [10]. The learning rate is
initialized at 3 × 10−4 and gradually decays to 3 × 10−5

following an exponential schedule. Default values are main-
tained for other hyperparameters, such as β1 = 0.9, β2 =
0.999, and ϵ = 10−7. On an NVIDIA A6000 GPU, the
network typically converges after approximately 300k iter-
ations when training on a single scene.

5.2. Results
In this section, we conduct a microbenchmark experiment
to evaluate RFScape’s capability in characterizing the inter-
action between RF signals and objects. We place individual
objects on a precise rotation stage with RF absorbers around
to isolate ambient multipath, as shown in Fig. 4. We posi-
tion an FMCW radar 1m from the target objects to transmit
mmWave signals and record the return signals. We rotate
the objects at intervals of 5 or 10 degrees while recording
the radar’s Range-FFT signals. We randomly select 50%
of the collected data for training and reserve the remain-
ing 50% for testing, ensuring uniform distribution across
rotation angles. The evaluation includes three objects with
increasing geometric complexity: a kettle, a teacup, and a

robot.

5.2.1. Object-level RF Characterization
Object Scanned Mesh RF Signature

(Ref.)
Ray Tracing

(On Scanned Mesh)
Ours

(Neural Object)

Figure 5. RF Characterization Prediction Results.
To establish a baseline, we employ Polycam [24], a

highly optimized commercial 3D mesh scanner application
[37], to capture mesh models of the objects. These models
are then simulated using well-established ray tracing algo-
rithms. The material parameters used in the simulations are
obtained from relevant literature [12, 29].

The results are shown in Fig. 5. The mesh models ob-
tained from visual scans fail to capture accurate microge-
ometry. They also assume objects have homogeneous ma-
terials throughout. Consequently, directly applying ray trac-
ing on visually scanned meshes yields significant errors,
with a large median error of 15.7 dB. In contrast, RFScape
leverages neural object representations to model the RF sig-
natures of objects using only around one sample/sq ft of
RF observations, reducing the median error to just 2.9 dB
while still preserving the scene editability. This makes RF-
Scape a much more accurate option for RF object modeling
compared to the mesh-based approaches commonly used in
traditional ray tracing. It is worth noting that NeRF2 did
not demonstrate learning from FMCW radar signals, and
the objects fit by NeRF2 cannot be edited or re-simulated,
hence its exclusion from this experiment.

5.2.2. Room-Level RF Channel Prediction Evaluation
To evaluate the performance and scalability of RFScape
in predicting the RF channel distribution, we compare it
with the state-of-the-art NeRF2[43] framework. The ex-
periments are conducted with 5-fold cross-validation using
the dataset provided by NeRF2, which includes 2.4 GHz
WiFi CSI, BLE RSSI, and RFID spectrum data [43], as
well as our self-collected 60GHz WiGig CSI and additional
5GHz WiFi data (Sec. 5.1). NeRF2 requires approximately
200 channel measurements per square foot as training data,
which presents significant limitations in practical applica-
tions. To evaluate performance under realistic conditions,
we evaluate both RFScape and NeRF2 across multiple train-
ing data densities: very small (0.625 samples/sq ft), small
(1.25 samples/sq ft), medium (2.5 samples/sq ft), large (5
samples/sq ft), and very large (10 samples/sq ft).

Fig.6, 7, and 8 present the comparison results between
RFScape and NeRF2 under different wireless protocols.
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For the small-sized WiFi CSI training dataset, RFScape
achieves a median SNR of 15.6 dB, outperforming NeRF2

by 5.3 dB. Similarly, on the small-sized RFID spectrum
datasets, RFScape is comparable to NeRF2, with SSIMs of
0.4498 and 0.5061, respectively. On the small-sized BLE
RSSI datasets, RFScape reduces the RSSI error to 5.3 dB,
which is 1.2 dB better than the baseline.

These results suggest that RFScape is more efficient in
learning and generalizing from limited data samples. This
is due to better physical constraints and clear object bound-
aries that eliminate the need to capture expansive empty re-
gions.

The advantage of RFScape becomes even more pro-
nounced at higher frequency bands, as demonstrated in
Fig. 8. The narrower beams, shorter wavelengths (hence
less diffraction), and higher path loss of the mmWave
signals together result in sparser signal propagation com-
pared to lower frequency bands. Accurately predicting the
mmWave channel requires finer-grained physical simula-
tion, which is incorporated in RFScape. In contrast, the
baseline NeRF2 struggles to predict mmWave band CSI, re-
sulting in a low SNR of 9.08 dB. RFScape, on the other
hand, maintains a 16.2 dB SNR in CSI channel prediction
for the mmWave band. These results indicate that RFS-
cape yields superior performance on high-frequency chan-
nels which are more sensitive to ray-object interactions.
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Figure 9. Channel Prediction Results.

5.2.3. Dynamics Adaptation Evaluation
In this section, we evaluate the adaptability of RFScape to
environmental alterations. The original scenario consists of
a long wooden table with chairs positioned along its length,

and additional plastic chairs are located in the corner of the
room. We consider a scenario where, after a conference dis-
cussion, the scene is modified by introducing a blackboard
and repositioning several chairs.

To facilitate RFScape’s adaptation to the modified envi-
ronment, we evaluate the two approaches proposed in Sec.
4.4.2. The first method involves utilizing assertions based
on visual information. We assume that information regard-
ing the location, orientation, and type of objects that are
added, changed, or removed is obtained from a camera in
the room. The second approach involves recollecting a
small set of 3 to 5 data points from the modified scenario.

Subsequently, we re-scan the environment using the
setup shown in Fig.3 as ground truth. Both methods suc-
cessfully update RFScape’s scene representation and ac-
curately predict the updated scene channels, with median
RSSI errors of 2.9 and 3.2 dB, respectively. These minimal
discrepancies between the adapted RFScape and the ground
truth demonstrate RFScape’s adaptability to scene dynam-
ics with minimal assisted information.

6. Conclusion
We have presented RFScape, a novel framework that seam-
lessly integrates high-fidelity neural object representations
with ray tracing for accurate and flexible RF simulations.
RFScape is inspired by state-of-the-art SDF-based object
modeling techniques in computer graphics, but overcomes
their incompatibility with ray tracing and lack of models for
RF-material interaction. The modular nature of RFScape
enables reconfiguration of the RF simulation scenes with
little or zero site-specific retraining. As an advancement to
the physics-based ray tracing simulators widely used in the
wireless industry, we believe RFScape can serve as a power-
ful computer-aided design tool for diverse wireless applica-
tions, such as network planning and inverse simulation for
3D reconstruction. We leave the exploration of such appli-
cations for future work.
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