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Abstract—In a multi-user MIMO (MU-MIMO) network, an AP
with M antennas can only serve up to M users out of a large user
population. The M users’ rates are inter-coupled and depend on
their channel orthogonality. Substantial theoretical studies focused
on selecting users to maximize capacity, but they require feedback
of channel state information (CSI) from all users. The resulting
overhead can easily overwhelm useful data in large scale networks.
In this paper, we propose a scalable user selection mechanism
called orthogonality probing based user selection (OPUS). OPUS
only requires up to M rounds of CSI feedback. In each round, it
employs a novel probing mechanism that enables a user to evaluate
its orthogonality with existing users, and a distributed contention
mechanism that singles out the best user to feedback its CSI.
Software-radio based implementation and experimentation shows
that OPUS significantly outperforms traditional user selection
schemes in both throughput and fairness.

I. INTRODUCTION

Multi-user MIMO (MU-MIMO) downlink transmission has
been enabled in state-of-the-art wireless network standards
including 802.11ac WLAN, WiMax and LTE cellular networks.
MU-MIMO holds the potential to substantially improve spec-
trum efficiency, by allowing concurrent transmissions from a
multi-antenna access point (AP) to multiple users. In theory,
downlink capacity grows linearly with the number of transmit
or receive antennas, whichever is smaller [1]. In practice, an
AP’s number of transmit antennas is always limited, e.g., up to
8 in existing standards, yet the number of users can grow to
hundred-scale. Thus, the AP needs to select a limited number
of users to serve in each MU-MIMO transmission. A user
selection strategy must be judiciously devised, because the
users are coupled and their achievable rates depend on the
orthogonality of their instantaneous channel states.

Substantial theoretical research has focused on the user
selection problem for MU-MIMO [2], with an objective of
maximizing downlink capacity. This optimization problem can
be solved by assuming that the AP knows instantaneous channel
state information (CSI) of all users. In practice, CSI has
to be obtained from users’ feedback and entails formidable
overhead, which grows linearly with the number of users
and can overwhelm the actual channel time spent in data
transmission [3]. Moreover, the feedback may span a longer
duration than channel coherence time — some users’ CSI may
become outdated by the time the AP is ready to make the
decision on user selection.

Therefore, a user selection mechanism must be scalable —
given a growing user population, it should bound the CSI
overhead while maximizing the downlink capacity, in order to
optimize the overall throughput. This objective puts traditional
user selection schemes [2] in a dilemma: for scalability, only

the “best” user group should be served in each MU-MIMO
transmission, but selecting the best group requires all users
to feedback their CSI, which compromises scalability. CSI
compression algorithms [3] alleviate the overhead, but do not
stop its growth with user population. Random user selection
obviates the need for full CSI feedback, yet it neglects the
coupling among users and reduces downlink capacity [4].

In this paper, we propose Orthogonality Probing based User
Selection (OPUS), a scalable user selection mechanism for
MU-MIMO networks. OPUS is compatible with the 802.11ac
MU-MIMO standard, which requires an AP to sequentially
poll/receive CSI feedback. Standard 802.11ac assumes the set
of users to be served is already given (e.g., via random selec-
tion). OPUS replaces this assumption by integrating a light-
weighted user selection procedure into each round of “probe-
and-feedback”. In each round, each unselected user estimates its
potential to boost capacity when grouped with existing selected
users. Then, the unselected users initiate a distributed feedback
contention, where the one with the highest capacity potential
wins and immediately sends its CSI back to the AP. The entire
round of operations repeats until the number of selected users
reaches the upper-bound, i.e., the number of antennas on the
AP. In this way, OPUS bounds the overhead even if the user
population grows. Meanwhile, it optimizes downlink capacity
by selecting users properly.

Since 802.11ac reserves the medium before a downlink
transmission, and OPUS only takes effect in the reserved
duration, it would not affect the performance of legacy 802.11ac
devices nearby.

Practical implementation of OPUS entails unique challenges.
First, how can a user estimate its contribution to downlink
capacity when grouped with those already selected ones? A
straightforward solution may run a “test transmission” that
serves the selected users plus an unselected one, and then
measures the resulting bit-rate. But the number of test transmis-
sions grows with the number of users, incurring huge overhead.
OPUS overcomes this problem using a novel orthogonality
probing scheme. It reengineers the 802.11ac probing/polling
frame, and embeds a training preamble simultaneously steered
to all channel directions that are orthogonal to the selected users
in the signal space. Upon receiving the probing frame, each
user evaluates its preference metric, which reflects its channel
quality and orthogonality to selected users, and can be used to
infer its potential contribution to downlink capacity.

Thereafter, OPUS’s AP needs to identify the user with
the highest preference metric, but again at low overhead —
without requiring all users to report their metrics one by one.
OPUS’s feedback contention mechanism meets this challenge
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Fig. 1. CSI feedback mechanism in 802.11ac.

through a distributed protocol, whereby the best user is ensured
to be singled out among all unselected ones. The protocol
incurs a small, fixed overhead that does not grow with the
user population. In addition, OPUS optimizes the number of
concurrent users, in order to balance a traceoff between MIMO
multiplexing gain and diversity gain. Instead of maximizing
the number of concurrently served users (default operation in
802.11ac [5]), it can intelligently terminate the user selection
when adding more users compromises channel orthogonality.

We have built a prototype of OPUS on the WARP [6]
software radio platform. OPUS’s components are implemented
on top of a MU-MIMO modulation/decoding module that we
built following the 802.11ac PHY. Extensive experiments show
that the overhead of existing user selection schemes [2], [7]
can easily nullify their capacity gain, even in a medium sized
network with 8 to 20 users. In contrast, OPUS enables efficient
user selection, leading to low overhead and high throughput
even if the network size grows to hundred-scale — arguably
the maximum size of a WLAN cell. In a typical 802.11ac
MU-MIMO WLAN with a 2-antenna AP and 20 users, OPUS
achieves a throughput gain of 1.4× to 5.1× compared with
three state-of-the-art user selection schemes.

To our knowledge, this work represents the first experimental
study of state-of-the-art user selection schemes [2], [7] in
MU-MIMO networks, and the first user selection scheme that
achieves scalability in medium to large sized networks.

The rest of this paper is organized as follows. Sec. II presents
background for CSI feedback and user selection in MU-MIMO.
In Sec. III, we introduce the motivation behind a scalable
user selection scheme. We describe the design choices and
components of OPUS in Sec. IV and validate its performance
in Sec. V. Finally, Sec. VII concludes the paper.

II. BACKGROUND

In this section, we briefly review the CSI feedback and user
selection problems in MU-MIMO. We focus on a multi-antenna
AP and single-antenna users — the default configuration for
802.11ac MU-MIMO [5]. The results can be easily extended
to multi-antenna users following [8].

A. CSI feedback mechanism

Before a MU-MIMO transmission, the AP needs to know
the CSI (i.e., the channel matrix from its transmit antennas
to intended users) based on users’ feedback. Fig. 1 illustrates
802.11ac’s MAC operations related with CSI feedback.

First, the AP sends a null data packet announcement (NDPA)
frame to notify intended users for beamforming and reserve
channel from neighboring WLAN cells. Immediately after-
wards, it sends a null data packet (NDP) which contains a

training preamble. Upon receiving the NDP, each intended user
k estimates its CSI, i.e., channel gain vector between transmit
antennas and itself. The first user sends its CSI back to the
AP immediately. Other intended users each provides feedback
only upon receiving a probing/polling packet from the AP. The
users’ ordering is conveyed in the NDPA.

As the number of users increases, CSI feedback costs more
time, but is always sent at the lowest modulation rate for
reliability. Unfortunately, the data packet’s duration does not
increase — it can even decrease with data rate. Thus the over-
head becomes overwhelming in high-rate 802.11ac networks.

To alleviate the feedback overhead, 802.11ac quantizes the
CSI numerical values into 4 to 8 bits fixed-point numbers, and
allows up to 4 adjacent OFDM frequency bins to share CSI.
Yet after such compression, the per-user overhead still ranges
from 100 to 800 bytes, and grows linearly with the number of
intended users [3]. Alternatively, CSI report can be sent less
frequently. But to ensure accuracy, the feedback period must
be much shorter than the channel coherence time. In indoor
environment with static or walking users, feedback period needs
to be shorter than 15ms to maintain CSI accuracy [9].

Besides, frame aggregation can reduce the relative overhead
of CSI. In large-scale wireless networks, contention causes
long inter-packet service delay, leaving more opportunities for
accumulating and aggregating frames from the upper layers.
802.11ac allows up to 5.5ms of aggregated frame duration [5].

B. Incremental User Selection
For an AP with M antennas, MU-MIMO requires selecting

a subset of up to M users to serve based on the CSI of
all K users in a network. This problem involves MAC-layer
fair scheduling as well as PHY-layer capacity maximization.
The latter is particularly important and unique to MU-MIMO,
because the sum-rate of a downlink transmission is determined
by channel orthogonality among served users [1]. But even
with full CSI knowledge at the AP, it is still computationally
prohibitive to find the optimal user set that maximizes the sum-
rate, especially when total user number K is large [8].

Suboptimal algorithms that perform incremental user selec-
tion (e.g., SUS [2]) have been shown to well approximate
the optimal capacity at low computational complexity [8].
The AP can choose the first user with the highest channel
quality. Then, it selects the next user that provides the best
potential performance when grouped with those selected ones.
The procedure repeats until M users are selected. However, in
each iteration, identifying the “next best” user still requires full
CSI from all unselected users.

III. MOTIVATION AND CHALLENGES

In this section we establish a theoretical model to understand
how user selection affects MU-MIMO performance and why
existing schemes are insufficient.

A. Impact of user selection in practical MU-MIMO networks
Practical MU-MIMO implementation in 802.11ac need to

satisfy two constraints: per-antenna power budget and low com-
putational complexity. The first constraint roots in the hardware
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structure of 802.11ac transceivers, which accompanies each
antenna with a separate RF front-end. Existing analysis of user
selection mostly focused on cellular networks with total-power
constraint [2]. Few works considered optimizing MU-MIMO
under per-antenna power constraint (e.g., [10]), but the solutions
involve sophisticated non-linear optimization. In what follows,
we analyze the impact of user selection under the two practical
constraints. The analysis will provide guidelines for designing
the orthogonal probing mechanism in OPUS.

1) MU-MIMO system model: Owing to its low complexity,
Zero-forcing beamforming (ZFBF) is widely adopted for im-
plementing MU-MIMO downlink transmissions. ZFBF allows
an AP to precode data symbols and steer them towards desired
users, while precanceling the mutual interference. Consider an
AP with M transmit antennas and a set of selected users S.
Let dk be the data symbol intended for user k; hk the 1×M
channel state vector between transmit antennas and user k. With
precoding, each transmit antenna emits a weighted combination
of the users’ data. For user k, the weights on different antennas
form a M × 1 precoding weight vector wk. Let nk denote the
noise level of user k, its received signal after AP’s precoding
and channel distortion becomes:

yk = hkwkdk +
∑
j∈S,j 6=k hkwjdj + nk, k ∈ S (1)

To realize MU-MIMO, ZFBF enforces the following con-
straint: hkwj = 0,∀j ∈ S, j 6= k. Consequently, user k only
receives its desired symbol dk, whereas other users’ symbols
are cancelled owing to the composite effects of precoding and
channel distortion.

Suppose |S| = K. Given a channel state matrix H =
[h1,h2, · · · ,hK ]T from AP’s transmit antennas to all users,
the beamforming weight matrix W = [w1,w2, · · · ,wM ] that
satisfies the ZFBF constraints is usually computed from the
pseudo inverse: W = H† = H∗(HH∗)−1. Note that pseudo
inverse implicitly enforces a constraint hkwk = 1.

2) Impact of user selection under per-antenna power con-
straint: Since data symbols have unit power, the per-antenna
power constraint implies

∑K
k=1 |Wmk| ≤

√
P for each antenna

m with power budget P . To satisfy both this constraint and the
ZFBF constraints, we must divide the precoding vector of all
users by the same factor fs = max

m

∑K
k=1 |wmk| = ||W ||∞.

Then the received signal at user k becomes:

yk = hk(

√
Pwk

‖W ‖∞
dk) + nk =

√
P

‖W ‖∞
dk + nk

Also note that W = H†, we can obtain the SINRk at
receiver k as follows.

SINRk =
P

σ2‖W ‖2∞
=

P

σ2
(
‖H‖∞
C∞(H)

)2 (2)

where C∞(H) denotes the infinity norm condition number [11]
that reflects channel orthogonality among users, and is related
with H by: C∞(H) = ‖H‖∞‖H†‖∞ = ‖H‖∞‖W ‖∞. It is
known that C∞(H) approaches infinity when any two of the
users’ channels are linearly correlated and approaches 1 when
the users are fully orthogonal [11].

Based on the analysis above, we can conclude that under per-
antenna power constraint, the MU-MIMO SINR is determined

by both the condition number C∞(H) which reflects selected
user’s mutual channel orthogonality, and the infinity norm
‖H‖∞ = max

k∈S

∑M
m=1 |hkm| which reflects channel quality. It

is critical to select a proper subset of users with low correlation
(small C∞(H)) and high channel quality (large ‖H‖∞), in
order to maximize the sum rate of all users.

Note that it is the infinity norm condition number C∞(H)
of the channel matrix H that affects the performance of MU-
MIMO. This fundamentally differs from single-link MIMO,
whose capacity is known to be determined by the channel
matrix’s 2-norm condition number C2(H) [1].

Also note that the work in [12] argues that selecting different
user subsets can cause at most 3-4 dB SINR difference, so user
selection would not affect the throughput performance much.
However, the conclusion is based on a total power constraint.
In Sec.V-B, we will show through experiments that under
a per-antenna power constraint, improper user grouping can
significantly affect the users’ SINR.

B. Challenges in User Selection
An optimal user selection scheme should evaluate each

subset of users with size M , which entails an exhaustive search
over all possible

(
K
M

)
combinations. Incremental user selection

can reduce the computational complexity to M × K [8], but
it requires full CSI from all users. As mentioned above, per-
user CSI feedback incurs 100 to 800 bytes overhead sent at the
lowest modulation rate of 6Mbps. Suppose there are 20 users,
then the channel time cost can be up to 800× 20/6 = 2666µs,
equivalent to multiple data packets’ durations. Consider the re-
quirement of 15ms feedback period. Due to channel contention
latency, only one or two transmissions may be delivered within
this period. In other words, even with 20 users, the channel
time cost of existing schemes can be comparable to or even
exceed that of actual data transmission.

In addition, existing user selection algorithms evaluate the
potential capacity of each user based on theoretical channel
models [2], [7], [8]. It remains an open problem how this
can be realized in practical MU-MIMO protocols. Our OPUS
mechanism is designed to overcome such limitations.

IV. OPUS DESIGN

A. Design Overview
OPUS inherits the low-complexity of incremental user se-

lection, but it dramatically reduces the feedback overhead, thus
achieving scalability. Instead of requiring the AP to obtain all
users’ CSI, OPUS runs distributed user selection, whereby each
user evaluates its potential contribution to downlink capacity
when grouped with those already selected ones. Such potential
is characterized using a preference metric.

Fig. 2 illustrates a typical flow of operations in OPUS.
OPUS preserves the basic operations in 802.11ac, except that
it adds a fixed-duration contention period before CSI feedback,
and reengineers the polling packet to facilitate its orthogonal
probing mechanism. At a high level, OPUS works as follows:

(i) First, the AP announces its intention for MU-MIMO
downlink transmission through the NDPA and NDP packets.
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Fig. 2. Orthogonality probing based user selection.

The first user (“core” user) is selected by the AP and announced
in the NDPA based on a throughput fairness criteria (Sec. IV-E).

(ii) Each user k estimates its CSI, i.e., channel state vector hk
independently based on the NDP. The core user returns its CSI
report to the AP, completing the first round of user selection.

(iii) In subsequent rounds, given CSI from already selected
users, the AP computes possible directions to probe in the sig-
nal space, which are orthogonal to the selected users’ channels.
It then beamforms a probing frame towards these directions,
with different training data sequences for each direction.

(iv) After receiving the probing frame, each unselected user
evaluates its maximum SINR along all training directions,
which is later used as its preference metric.

(v) All unselected users join a feedback contention. The one
with maximum preference metric wins and sends its CSI to the
AP who adds it to the set of selected users.

(vi) Repeat steps (iii)-(v) (a user-selection round) until the
number of selected users reaches M . The AP may terminate
the procedure early if adding any unselected user hurts the MU-
MIMO performance. Afterwards, based on the collected CSI,
the AP runs ZFBF and delivers data frames to all selected users.
Note that multiple data frames can follow one user-selection
procedure, provided that they span much shorter duration than
the coherence time, as we mentioned in Sec. II.

We proceed to describe all components of OPUS in detail.

B. Orthogonality Probing Mechanism

OPUS’s orthogonality probing mechanism allows individual
users to evaluate their potential contribution to downlink ca-
pacity based on a probing frame from the AP.

1) Basic operations: We describe how orthogonality probing
works using a simple example in Fig. 3(a). In the beginning of
user-selection round n, the AP already has CSI from (n − 1)
users selected in previous rounds. It then constructs a probing
frame pointing to M− (n−1) directions that are orthogonal to
the selected users’ channels. Each unselected user k receives
the probing frame, evaluates its overhearing SINR for each
probing direction, and subsequently computes its preference
metric gk. Simply put, gk is associated with the direction
that user k is best aligned to, thus reflecting channel quality
and orthogonality with selected users. Fig. 3(b) illustrates user
channels and probing directions of this user-selection round in
vector space.

2) Designing the probing frame: The probing frame must
“point” to directions that are orthogonal to selected users in the
signal space. OPUS meets this goal by redesigning a VHT-LTF
preamble in the probing frame. In legacy 802.11ac, the VHT-
LTF carries a ZFBF-precoded known data sequence to facilitate

dir 2
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user4
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Fig. 3. An example of orthogonality probing.

packet decoding. In OPUS, we define M known training
sequences. In user-selection round n, the AP precodes the first
M − (n − 1) known training sequences and steers them to
desired M−(n−1) probing directions. The precoded sequences
are embedded into the VHT-LTF and emitted simultaneously
through M antennas. So, how to design the precoding weights?
We answer this question in the following claim.

Claim 1 For user-selection round n, suppose Hn−1 is the
channel matrix formed by the (n− 1) users selected in pre-
vious (n − 1) rounds. The set of directions to probe form a
basis of the null space of Hn−1, which can be probed all
at once by precoding M − (n − 1) known data sequences,
and sending the precoded sequences simultaneously through
802.11ac’s VHT-LTF preamble. The precoding matrix should
be a M × (M − (n− 1)) matrix: W p = Null(Hn−1).

Proof: Given Hn−1, the AP needs to compute all M −
(n− 1) probing directions that are orthogonal to all the selected
users’ channel directions. Let pi be a 1×M unit vector denoting
the i-th probing direction. Then the AP beamforms the probing
frame to all probing directions as if it is serving a group of
“fake users” with the (M − (n− 1))×M fake channel matrix
P = [pT1 ,p

T
2 , ...,p

T
M−(n−1)]

T .
Let Sn−1 be the set of selected users. The orthogonality

requirement for pi entails that: hk · pi = 0, k ∈ Sn−1; or
Hn−1p

∗
i = 0 in matrix form. The set of all p∗i satisfying this

equation forms a basis of the null space of Hn−1, i.e.,

P ∗ = [p∗1,p
∗
2, ...,p

∗
M−Sn−1

] = Null(Hn−1) (3)

To probe the M − (n− 1) directions in the fake channel
matrix P , similar to ZFBF, the precoding matrix can be
designed by pseudo-inverse: W p = P †. Note that the set
of all probing directions are orthonormal, thus the probing
direction matrix P ∗ is a semi-orthogonal matrix, with an
intrinsic property: P ∗ = P †. It then follows that W p = P ∗,
which can also be written for each beamforming direction as:
wp
i = p∗i = Null(Hn−1), thus completing the proof. ut
3) Designing the preference metric: Upon receiving the

probing frame, each unselected user needs to compute its
preference metric, which reflects its potential contribution to
downlink capacity when grouped with selected users. More
specifically, the preference metric needs to reflect both its
channel quality and mutual orthogonality with selected users’
channels. OPUS meets this goal as follows.
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Claim 2 For user-selection round n, the preference metric of
user k can be defined based on its overhearing SINRik for each
probing direction pi as: gk = maxpi∈P (SINRik).

Proof: Let σ2
k denote noise floor of user k, then SINRik can

be modeled as follows.

SINRik =
|hk · pi|2∑

pj∈P ,j 6=i |hk · pj |
2 + σ2

k

(4)

The correlation between two channel vectors can be evalu-
ated using the Hermitian angle [2], [13]. Let 0 ≤ ΘH(hk,pi) ≤
π
2 denote the Hermitian angle between channel vector hk and
probing direction pi, we have

|hk · pi| = ‖hk‖‖pi‖ cos ΘH(hk,pi) (5)

Note that pi is unit vector, then Equ. (4) can be written as

SINRik =
(cos ΘH(hk,pi))

2∑
pj∈P ,j 6=i (cos ΘH(hk,pj))2 +

σ2
k

‖hk‖2
(6)

From Equ. (6), we can observe that the SINRik of user
k reflects both its channel direction and channel quality.
High SINRik requires cos ΘH(hk,pi) to be large and all
cos ΘH(hk,pj) small, which implies that channel of user k has
good alignment with one of the probing directions, i.e., good or-
thogonality with the channels of all selected users. Meanwhile,
high SINRik also requires a large channel magnitude ‖hk‖2,
which reflects high channel quality.

In selection round n, there are M−(n−1) probing directions
that are “equally” orthogonal with all selected users’ channel
directions. But for an unselected user k, its channel quality may
differ along these directions. Thus its preference metric should
be defined according to the direction with highest overhearing
SINR as: gk = maxpi∈P (SINRik). ut

The analysis above is only used to justify our design of
preference metric. The actual OPUS implementation adopts a
practical way to evaluate SINRik: First we view it as the SINR
of an equivalent channel, whose input is the training sequence
(Sec. IV-B2) for probing direction pi and output is the data
symbols user k receives from the probing frame. Then, with
both input and output known, user k estimates the channel gain
and noise floor for each equivalent channel separately, based on
which it computes the SINRik (similarly to [3]). Note that a user
does not have to differentiate different directions. It only needs
to evaluate the maximum SINR among them.

C. Distributed Feedback Contention

For scalability, OPUS’s feedback contention mechanism
needs to single out the user with the highest preference metric
in a distributed manner.

1) Overview: The feedback contention mechanism works
as follows (Fig. 4). After receiving the probing frame, each
unselected user k computes and quantizes its preference metric
gk into N bits. These bits are mapped to a N -stage contention
procedure. In each stage, users with “1” on the corresponding
bit send a short energy burst, whereas those with “0” listen to
the channel. If a listening user senses a busy channel in any
stage, then it infers that someone else has a larger preference
metric, hence it quits the contention immediately and will not

g1=10101011

g2=10101010

g3=10001010

1 1 10 0 0 11

1 1 10 0 0 1 0X

10 X0

CSI1

Sense channel busy, quit

8-stage Contention
Probe

AP

Client 1

Client 3

Client 2

Fig. 4. An example for the CSI feedback contention mechanism.

join later stages. Meanwhile, since 802.11 radios are half-
duplex, users with bit “1” cannot listen to the channel and
will survive this stage. Finally, only the one who survives all
N stages wins the contention. In this way, the user with the
highest preference metric will finally feedback its CSI.

2) Energy burst design and detection: OPUS’s contention
mechanism is designed for compatibility with 802.11 hardware.
Its energy burst is produced by sending an 802.11 null data
packet (NDP) which only contains a preamble. Since the
minimum preamble length in 802.11 is 20µs and the switching
time between transmitting and receiving mode for the RF front-
end is typically smaller than 5µs [14], we design the duration
of each contention stage as 27µs (3 time slots in 802.11).

During the contention a user with bit “0” only performs
energy detection instead of decoding. This design has two
advantages. (1) The energy burst can be detected from a long
distance, thus all users can participate in the contention. (2)
When more than one users send energy bursts in a contention
stage, contention still works because the listening users only
need to know if there is at least one user sending energy bursts.

3) Synchronization: Users’ contention stages should be
aligned with each other in time. OPUS leverage the probing
frame as a reference broadcast to synchronize users at the
beginning of the contention. The feasibility and effectiveness
of such reference broadcast has been validated in OFDMA
based wirelss LANs [14]. OPUS’s synchronization requirement
is even lower than OFDMA because it only relies on detecting
energy bursts that span multiple slots. It will not be affected
by small jitters in synchronization, e.g., those caused by prop-
agation delay, which is typically below 800ns [15] and much
shorter than the 9µs time slot in 802.11.

4) Contention overhead: A notable feature of the feedback
contention is that its channel time cost remains the same
irrespective of the user population. With N contention stages,
the total contention overhead is fixed to 3N time slots.

When users’ channels are correlated and have similar quality,
their preference metric may be similar as well. If the number
of contention stages (i.e., quantization bits for the preference
metric) N is not large enough, there can be more than one win-
ners sharing the highest preference metric, incurring collision.
OPUS has several intrinsic measures to reduce such risks.

First, collision probability of such binary-countdown like
mechanisms decreases exponentially with N [16]. In experi-
ments, we find that N = 8 (28 = 256 quantization levels) is
sufficient to keep collision to a minimum (Sec. V-C). Second,
OPUS enforces a lower limit to the preference metric, corre-
sponding to the minimum SINR required to support the lowest
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modulation rate, which can be obtained from a vendor-specific
look-up table (we use the one from Cisco [17]). Users with
preference metric below the limit will not participate in the
feedback contention. Similarly, OPUS enforces an upper limit
to the preference metric, corresponding to the maximum SINR
that AP can observe in its WLAN. Together with the lower
limit, this bounds the range of preference metric to quantize,
resulting in a high resolution after quantization. We choose
[7, 30] dB as the default range, corresponding to a resolution
of 23/256 = 0.09dB when N = 8. Thus, users can seldom
share the same quantized preference metric value.

In the rare case when collision occurs, OPUS’s AP stops the
user selection and directly starts MU-MIMO beamforming to
the selected users, so as not to waste the channel time.

D. User Number Selection (UNS): Early Termination

Instead of forcing M concurrent transmissions (i.e., greedily
exploiting multiplexing gain), OPUS can intelligently terminate
the user selection, if a higher downlink capacity can be achieved
by selecting a smaller user set (i.e., exploiting diversity gain).

The termination decision is made in two ways. First, after n-
th round (n < M ) of CSI feedback, the AP estimates the total
downlink rate, by computing the per-user SINR as in Equ. (2)
and mapping it to bit-rate following a look-up table [17]. If the
sum rate is lower than the (n − 1)-th round, the AP discards
the n-th user, and beamforms to the first (n− 1) users instead.

Second, in the n-th user-selection round, if a user’s pref-
erence metric is lower than the minimum SINR required
to support its lowest modulation rate, then it gives up the
feedback contention. If the AP hears no energy burst during the
contention stages, it infers all unselected users have low rate,
and starts beamforming to the (n− 1) users already selected.

E. Proportional Throughput Fairness

OPUS employs a simple randomized algorithm to arbitrate
proportional throughput fairness among users. To initiate user
selection, the AP appoints the first (“core”) user with certain
probability weighted by users’ historical throughput record,
which the AP can learn from ACKs. For proportional fairness,
users with lower throughput should have a higher probability
to be selected as the core user. To approach this principle, the
AP keeps a moving average of all users’ throughput. Let Rk
denote the average throughput of user k, the probability that
user k is selected as the “core” user is pk = 1/Rk∑

j∈K 1/Rj

,

where K is the set of all users. Alternative fairness measures
can be implemented by weighting the users in different ways.

F. Summary of Protocol Properties: Why is OPUS Scalable?

(i) Bounded CSI feedback overhead: Unlike existing schemes
(e.g., [2]) that need CSI from all K users as input, OPUS
only requires CSI from at most M selected users. K can grow
to hundred-scale, whereas M equals the number of transmit
antennas on the AP, which is bounded (e.g., to 8 in 802.11ac).

(ii) Fixed feedback contention overhead: The overhead of
OPUS’s feedback contention mechanism is only determined by

the number of stages, which is fixed (to 8 by our default setting)
regardless of the total user number K.

(iii) Low feedback collision probability: As we have justified,
even with a fixed number of stages, the collision probability
during feedback contention can be kept to a minimum.

(iv) Capacity maximization: While fixing the user selection
overhead, OPUS leverages its orthogonality probing mechanism
to ensure the best set of users are grouped, so that the MU-
MIMO capacity gain is fully exploited and can scale with M .

(v) Limitation & Possible Improvements: OPUS’s feedback
contention protocol balances performance and compatibility
with existing 802.11 devices. However, it assumes all users
can overhear each other and may cause collision with hid-
den terminals. To overcome this limitation and further reduce
contention overhead at the cost of increasing hardware com-
plexity, frequency-domain contention mechanisms [14] can be
integrated. This is left as our future work.

V. PERFORMANCE EVALUATION

In this section, we validate OPUS’s performance through
testbed experiments, aiming to answer the following questions:
• Is user selection necessary in real MU-MIMO networks?
• How much throughput gain can OPUS achieve in compar-

ison with existing schemes?
• How much overhead does OPUS incur?
• Could OPUS work in mobile channel conditions?
• Is OPUS scalable?

A. Implementation and Experimental Setup

We have prototyped OPUS on top of an 802.11ac-
compatible MU-MIMO OFDM library that we built on WARP.
The library implements OFDM modulation, packet detec-
tion/synchronization, channel estimation and symbol demod-
ulation, ZFBF-based MU-MIMO precoding, along with the
MAC-layer probe-and-CSI-feedback (see [3] for details). To
realize OPUS, we modified the 802.11ac polling frame into the
probing frame that enables orthogonality probing (Sec. IV-B).
We further implement the computation and quantization of the
preference metric, and the user number selection mechanism.
Each user’s preference metric is derived from its measured
average SINR among all its OFDM subcarriers. Due to the
interface latency of WARP, we cannot directly implement a
real-time version of the feedback contention. However, since all
WARP radios in our testbed are connected to a PC controller,
we emulate the contention on the PC, which then commands
the winning contender to start the CSI feedback.

For performance comparison, we have also implemented
three state-of-the-art user selection schemes: (i) Semi-
orthogonal User Selection (SUS) [2]. SUS runs incremental
user selection, but requires full CSI and evaluates users in a dif-
ferent way than OPUS. It sets a threshold for orthogonality and
then selects qualified users with the highest channel quality. (ii)
Random User Selection (RUS), essentially the 802.11ac default,
which selects M users randomly with equal probability, and
only requires M CSI feedbacks. (iii) Random Beamforming
(RBF) [7], which randomly beamforms to multiple directions,
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Fig. 5. Receiving SINR for all possible user combinations in a 3-user network
(x-axis is the index of frame transmissions over time).

requires users to feedback their alignment with each direction,
and then beamform to users with best alignment.

Our experiments are conducted on a testbed comprised of
5 WARP nodes, located in an office environment. All MU-
MIMO transmissions run on a 2.4GHz channel unused and
non-overlapping with ambient wireless devices. Other PHY
parameters follow the 802.11ac default (e.g., 20MHz bandwidth
and 64 subcarriers). CSI values are compressed to 4 bits for
both real and imaginary components. Packet size is 1.5KB
unless noted otherwise.

B. Why Is User Selection Necessary?

We first verify the impact of user selection in a benchmark
topology (Fig. 5(a)) with a 2-antenna AP and 3 users. Fig. 5(b),
(c) and (d) plot the MU-MIMO performance of all possible user
combinations. We can observe that the combination {Rx2,Rx3}
results in around 15dB lower SINR compared to others. Obvi-
ously, user selection can significantly affect network capacity.

To reveal the deeper reasons behind, we examine the users’
channel characteristics in Fig. 6. From Equ. (2), we know the
receiving SINR is determined by the users’ channel orthogo-
nality (reflected by infinity norm condition number C∞(H))
and channel quality (reflected by ‖H‖∞). Fig. 6(a) shows that
when H = [hT2 ,h

T
3 ]T , C∞(H) is always larger than all other

possible combinations. Meanwhile, Fig. 6(b) shows that both
Rx2 and Rx3 have lower channel magnitude than Rx1, which
results in low ‖H‖∞. This explains why {Rx2,Rx3} has the
worst performance and validates our analysis in Sec. III.
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C. Micro-benchmark Performance

1) Capacity gain from user selection: To validate that
OPUS’s orthogonality probing mechanism can identify the
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Fig. 7. Effectiveness of orthogonality probing during user selection.

user combination with high performance, we compare its PHY
capacity (no MAC overhead) with the benchmark schemes in
the same topology as Fig. 5(a). From the results in Fig. 7(a),
we see that OPUS outperforms all other user selection schemes.
It achieves 49.2% capacity gain over RUS, which selects users
randomly and may occasionally beamform to the suboptimal
user combination {Rx2,Rx3}. SUS also results in lower capac-
ity than OPUS, since it evaluates channel orthogonality/quality
in a suboptimal way. RBF can only beamform to randomly
generated directions. Since users can be very far away from its
randomly pointed beams, RBF leads to poor PHY capacity. As
shown in Fig. 7(b), OPUS outperforms SUS and RBF for the
PHY capacity of all users, but RUS has the best fairness among
them. Note that the fairness control component of OPUS is not
activated here, its effectiveness will be discussed later.

2) MAC-layer overhead of OPUS: In this micro-benchmark,
we compare the overhead of different user selection schemes.
To isolate PHY effects, the results are obtained from the
emulated MAC layer. In the emulation, we assume that all
users can overhear each other in the feedback contention, i.e.,
no hidden terminals. From Fig. 8(a), we can observe that: (i)
The extra overhead induced by OPUS (mainly from feedback
contention, cf. Fig. 2 and Fig. 1) is only a small increment to
the total CSI feedback overhead in 802.11ac (reflected in RUS).
Note that the CSI feedback from M selected users is a must
for MU-MIMO, no matter whether user selection is used. (ii)
OPUS’s overhead increases negligibly with user population K,
and thus it can be scalable. We have also observed that OPUS’s
feedback contention causes negligible collision — only around
1.1% with 20 users and 5.3% for up to 100 users. We omit the
detailed plots due to space constraint. (iii) RBF does not require
CSI feedback from users, thus has the smallest overhead, but
this comes at the cost of poor PHY capacity.
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Fig. 8. Overhead analysis and the effect of frame aggregation on throughput.

We now evaluate impact of frame aggregation, which is used
in 802.11ac to amortize the CSI overhead. From Fig. 8(b), we
can see the net throughput of all user selection schemes in-
creases with frame duration (up to the 5.5ms limit in 802.11ac),
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Fig. 9. Throughput with or without user number selection.

and OPUS maintains the highest throughput in all cases.
3) Effect of user number selection (UNS): Equ. (2) indicated

that if a user with bad orthogonality to selected users is included
to make up a user combination of size M , it will result in a large
condition number C∞ and ruin the performance of all selected
users. OPUS’s UNS mechanism avoids such pathological cases.
Fig. 9(a) shows results from a 2-antenna AP serving two users
with strongly correlated channels. MU-MIMO beamforming
to both users leads to poor performance. With UNS, the AP
judiciously beamforms to a single user, leading to more than
4× throughput gain. Similar observations can be made in the
experiments in Fig. 9(b), which contains a 4-antenna AP and 4
users, with Rx1 and Rx2 having strongly correlated channels.

4) Throughput fairness: In this micro-benchmark, we eval-
uate the fairness control component of OPUS. For each user
number, we test it under 10 different topologies and evaluate the
Jain’s index based on the average throughput. Due to limited
hardware in our testbed, trace-driven emulation based on real
channel traces from WARP is used when user number is larger
than 4. Accuracy of such emulation has been validated in our
recent work [3]. The results in Fig. 10 show that OPUS’s
fairness control mechanism effectively maintains Jain’s Index
to close to 1. Meanwhile, the mechanism causes almost no
throughput loss compared to OPUS without fairness control
(i.e., randomly selecting the “core” user). This is because the
fairness control does not incur MAC-layer overhead.
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Fig. 10. Effectiveness of fairness control and its impact on throughput.

5) MU-MIMO user selection with mobility: Mobility affects
the channel coherence time, which in turn dictates the CSI
feedback period and overhead. We test such effects in the 3-
node benchmark topology (Fig. 5(a)), but with Rx3 moving
at walking speed. The results in Fig. 11(a) show that the
PHY capacity of OPUS drops with increasing user selection
and CSI feedback interval (in terms of the number of packet
transmissions L within the feedback period). This roots in
the staleness of CSI over time, and affects all MU-MIMO
transmission schemes. The MAC-layer throughput first goes
up because the average per-frame overhead decreases with

increasing L. However, it starts to drop when L ≥ 8 because
the PHY capacity drops too much with outdated CSI.
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Fig. 11. PHY-layer capacity and network-level throughput under mobility.

Fig. 11(b) depicts the capacity of all schemes under this
mobile scenario. OPUS still achieves the best sum-rate and
fairness. SUS’s capacity is only slightly lower than OPUS.
However, this comes at the cost of fairness: SUS tends to pri-
oritize the user group {Rx1,Rx2} and causes low performance
for the mobile node Rx3.

D. Network-scale scalability test for practical number of users

We now test OPUS’s network-level performance under prac-
tical number of users based on trace-driven emulation. The test
topology for channel trace collection is shown in Fig. 13(a). We
run each emulation under given user population for 30 minutes
and record the resulting throughput of each user.
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Fig. 12. Throughput comparison under practical user population.
Fig. 12 plots the CDFs of network throughput, where we

can observe that: (i) OPUS always outperforms all other user
selection schemes in both throughput and fairness (reflected
in a steeper CDF). With 20 users, it achieves 1.4× average
throughput gain over SUS and 5.1× over RUS/RBF. (ii) Ran-
dom User Selection (RUS) naturally have comparable fairness,
but much lower throughput than OPUS. (iii) SUS causes very
low fairness and delivers high throughput only for few users.
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Fig. 13. The test topology and throughput comparison in scalability test.

To demonstrate the scalability of OPUS, we run trace-driven
emulation by varying user population K from 20 to 100. The
traces are generated by distorting a baseline 20-user trace
with random complex multipliers. The resulting throughput
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in Fig. 13(b) shows that OPUS significantly outperforms all
other schemes under all network sizes. Moreover, its throughput
performance is affected negligibly by increasing user number.

VI. RELATED WORK

Existing MU-MIMO based network standards, including
802.11ac, WiMax and LTE, can run MU-MIMO only for a
given set of users. They leave user selection as a vendor-
specific operation. Substantial theoretical work has modeled
the impacts of user selection on MU-MIMO downlink capacity
and devised approximation algorithms to optimal user selection
[2], [18]. For tractability, these works adopt simplified channel
models, and assume CSI of all users is available as input.
Low overhead user selection algorithms have been proposed
[8] which use the statistical features instead of full CSI. But
practical wireless channels are hard to be characterized by a
stationary model, especially in indoor multipath environment
and for mobile users. The work in [19] reduces the overhead
by selecting users incrementally. However, it requires the AP
to broadcast the CSI of all selected users before adding one
user, which introduces more overhead in the downlink.

The majority of work in reducing CSI feedback overhead
focused on designing compression algorithms and modeling
their impact on MU-MIMO downlink capacity [3]. However,
such mechanisms do not fundamentally solve the scalability
problem, and incur non-trivial overhead as the user population
grows. Implicit feedback can substantially reduce CSI overhead
by leveraging channel reciprocity [20], but it still requires each
user to send a packet, based on which the AP can infer the
downlink channel state. It can be integrated into OPUS and
replace the explicit CSI feedback from each client.

Experimental studies of MU-MIMO emerged only recently.
Feasibility of MU-MIMO was validated in [12] through a
software radio prototype. The NEMOx system [21] runs a MU-
MIMO communications algorithm, and an incremental user
selection mechanism that uses time-averaged CSI as input,
which only fits relatively static network environment.

The principle of user selection is also reflected in oppor-
tunistic scheduling for cellular and ad-hoc networks (see e.g.,
[22]). Such protocols select one link at a time — the one with
highest channel quality, subject to certain fairness constraint.
But MU-MIMO transmission involves a group of users whose
rates are coupled through their channel orthogonality. Hence its
user selection problem calls for brand new design choices.

OPUS’s feedback contention mechanism inherits the princi-
ples of binary-countdown MAC protocols [16]. These protocols
promote random access to ensure roughly equal access oppor-
tunity among contenders. In contrast, OPUS leverages binary-
countdown to design a decentralized protocol that singles out
a user with the highest preference metric.

VII. CONCLUSION

In this paper, we have introduced OPUS, a scalable user se-
lection scheme for MU-MIMO networks. OPUS adopts a novel
orthogonality probing mechanism that enables effective user se-
lection at low overhead, regardless of the number of users in the

network. It further incorporates a feedback contention protocol
and a user number selection mechanism, which facilitate the
orthogonality probing and aim to optimize network throughput
with bounded overhead. We have prototyped OPUS along with
three other state-of-the-art user selection schemes. In a typical
medium-sized 802.11ac WLAN, OPUS can achieve a multi-
fold throughput gain over other schemes while maintaining
fairness. More importantly, it maintains high performance even
when the user population rises to hundred-scale.
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