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ABSTRACT

Despite the 4G LTE’s 10X capacity improvement over 3G, mo-
bile Web loading latency remains a major issue that hampers user
experience. The root cause lies in the inefficient transport-layer
that underutilizes LTE capacity, due to high channel dynamics,
wireless link losses, and insufficient application traffic to propel
the bandwidth probing. In this paper, we propose Cellular Link-
Aware Web loading (CLAW), which boosts mobile Web loading
using a physical-layer informed transport protocol. CLAW har-
nesses the limited PHY-layer statistics available on LTE phones to
quantitatively model the LTE channel resource utilization, which
is then translated into a transport window that best fits the band-
width. Consequently, CLAW can estimate and fully utilize the
available bandwidth almost within one RTT. In addition, CLAW
can precisely differentiate LTE wireless loss from congestion loss,
and identify the rare cases when the wireline backhaul becomes
the bottleneck. We have prototyped CLAW on commodity LTE
phones. Across a wide range of experimental settings, CLAW con-
sistently reduces Web loading latency by more than 30%, compared
to classical TCP variants and state-of-the-art congestion controls
for cellular networks.

1. INTRODUCTION

Web access has become a main portal of content consumption on
mobile devices, and user-perceived Web performance becomes a
vital metric for network services. In online shopping, for example,
merely 100ms increase in Web loading latency leads to 1% profit
loss [1]. Over the past years, wireless service providers have strived
to improve the cellular network performance to match the demand-
ing Web access. However, the mobile Web loading performance
does not match up to the infrastructure upgrade. Nation-wide 4G
vs. 3G speed tests in the US showed 10x throughput improve-
ment [2], but the typical Web latency only decreases by around
half [3]. Given the typical mobile Web size of below 1.5 MB, and
median 4G LTE throughput of 12 Mbps [2-4], one would expect
the Web loading latency to be well below 1 second. In reality, most
mobile webpages take 2 to 9 seconds to be loaded over LTE [3].

The disappointing mobile Web performance roots in the poor
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interaction between HTTP-the application-layer protocol for the
Web, and TCP-the underlying transport-layer protocol. It is well
established that TCP performs best when there is a steady stream
of data packets and returning ACKs to keep the network pipeline
full. This is because TCP implicitly uses the data packets to probe
the network, and it takes time to gradually ramp up the data load
towards the network’s available bandwidth. Since HTTP generates
short, bursty flows, TCP lacks time to converge, thus severely un-
derutilizing the network capacity. Such laggy responses are exac-
erbated in cellular networks with relatively long RTT and dynami-
cally changing bandwidth. In addition, existing TCP protocols use
packet delay or loss as congestion indicators to facilitate bandwidth
probing. However, the unstable RTT makes the delay metric unre-
liable and vulnerable to spurious timeout [3]. The loss metric, on
the other hand, tends to overreact to wireless link losses, and is
insensitive to real congestion because of the deep buffers at LTE
basestations [5-7].

Given the mismatch between TCP’s continuous packet flow re-
quirement and HTTP’s bursty traffic pattern, we propose to re-
place TCP’s probing mechanism with a direct estimate of band-
width from the LTE physical layer. This principle builds on several
observations: (i) The end-to-end path for most cellular connections
is bottlenecked by the last hop [8], particularly because content de-
livery networks (CDN) and Web caches shorten the wireline path.
Hence it suffices to track the cellular link bandwidth, and grace-
fully detect and handle the corner cases when the wireline back-
bone becomes the bottleneck. (ii) Since an LTE basestation (BS)
itself already enforces fair scheduling [9], the transport-layer proto-
col should focus on fully utilizing the available physical bandwidth.
(iii) LTE BS’s available frequency/time resources are shared among
clients. Thus, it is feasible for a client to estimate the resource uti-
lization within the shared medium from its PHY layer signaling
with the basestation.

We realize these principles through a novel system design called
Cellular Link-Aware Web loading (CLAW). CLAW accelerates mo-
bile Web loading using a bandwidth exploration mechanism fa-
cilitated by cellular link statistics available on commodity smart-
phones. It replaces TCP’s AIMD-style rate control with a PHY-
layer informed scheme that can estimate available bandwidth al-
most within one RTT, without relying on the application traffic pat-
tern. The key challenge here lies in the limited PHY information
available to clients. Ideally a client would need a global view of the
BS’s resource usage, so as to estimate the amount of resources and
hence bandwidth available to it. But the PHY signaling channel is
encrypted and each user equipment (UE) can only observe the re-
source allocated to itself [10,11]. Although the BS could separate a
dedicated control channel to broadcast the resource usage as public



information, this requires non-trivial update to the LTE MAC/PHY
stack and causes huge compatibility issue.

To overcome the constraints, we design a cellular load analyzer
incorporating a quantitative model that allows an LTE phone to ex-
trapolate cell-wide resource utilization, by leveraging public PHY
statistics of the downlink channel. Prior work in LTE resource anal-
ysis needs fine-grained per-subcarrier channel information [10,11],
which can be obtained only through a software-radio monitor. Even
if such information eventually becomes available, it entails non-
trivial signaling overhead when streamed in real-time from the LTE
modem and to user space. In contrast, our model enables accurate
cell load analysis even with abstracted diagnostic information (e.g.,
average signal power and modulation level), which is readily avail-
able on commodity LTE phones.

Given the estimation of available frequency/time on the PHY
layer, CLAW further translates it into usable bandwidth, and feeds
it back to facilitate rate control at the TCP sender (i.e., Web server).
Unlike prior LTE resource analyzers [10-12], CLAW can estimate
both cell-wide and individual client’s resource usage, enabling more
informed rate control under competing traffic. Moreover, a CLAW
client harnesses its link-layer retransmission and queue overflow
statistics to discriminate wireless loss from real congestion, pre-
venting unnecessary sender rate fallback.

In addition, CLAW incorporates a simple bottleneck detector,
which identifies the rare cases of wireline bottleneck, through a

consistency check between the PHY resource utilization and transport-

layer window evolution. The detection does not require any dedi-
cated probing traffic and can complete within a few RTTs. When
a wireline bottleneck occurs, CLAW falls back to an AIMD-style
bandwidth exploration, which resembles legacy TCP but still har-
nesses certain PHY information such as packet losses and usable
PHY resources.

We have implemented CLAW on an Android client that executes
the idle resource estimation and bottleneck identification, and an
HTTP server that replaces legacy TCP’s rate control with CLAW’s
cellular-informed rate control. We benchmark CLAW’s performance
against conventional TCP variants, along with two state-of-the-art
transport protocols, CQIC [12] and Verus [13], which are designed
for cellular networks. A thorough evaluation demonstrates that
CLAW can quickly track the available bandwidth resource, leading
to 27% to 66% latency reduction across a wide range of websites
and network conditions. We also observe that loss/delay based TCP
protocols often lead to large performance variation, and CLAW re-
duces the worst-case latency (which is likely to be the bottleneck
to user experience) by up to 73%.

To our knowledge, CLAW represents the first work to quanti-
tatively model the relation between LTE’s resource utilization and
the PHY-layer statistics on commodity cellphones. The model can
be adapted by a broader range of wireless protocols, including not
only web loading, but also video streaming [10], background traf-
fic scheduling [14], efc. CLAW is also the first to achieve zero-
overhead bottleneck detection and explicit loss differentiation over
LTE. The CLAW design relies on PHY information, but entails no
PHY-layer modification and is readily deployable on current LTE
devices.

2. BACKGROUND AND RELATED WORK

Web loading is a sophisticated procedure involving both net-
working and computation. In general, it begins by downloading
an HTML page which refers to the objects (e.g., images) within the
requested webpage, the browser then iteratively parses the HTML
file while downloading the referred objects. In parallel with the
downloading process, the client device progressively renders the re-

trieved objects on its display. Page loading time (PLT) is typically
used as the performance metric, which accounts for both object
downloading and processing time, and directly impacts end-user
experience. Optimizations for both the downloading and computa-
tion are vital to enhancing the mobile Web performance. This paper
focus on the networking part, we further discuss about this in §7.

HTTP has been the de facto vehicle protocol to deliver Web con-
tent, accounting for more than 82% of the traffic that ends at mobile
devices [15]. Many of today’s Web services adopt HTTP 1.1, which
use short-lived TCP connections to deliver objects, one connection
per object. This inevitably incurs long latency as modern Web sites
contain tens to hundred level objects. The HTTP/2, inspired by
Google’s SPDY [3] and ratified by the IETF in 2015 [16], opti-
mized the data transfer paradigms, allowing multiple outstanding
object requests through one TCP connection. To date, HTTP/2 has
been supported by all main-stream mobile browsers and content
providers. However, recent measurement studies revealed disap-
pointing HTTP/2 performance in cellular networks [3], due to poor
interaction between TCP, HTTP and the radio link layer. In partic-
ular, TCP cannot track the high RTT variations and often treats an
RTT surge as timeout, which in turn leads to spurious retransmis-
sions and extended Web loading time.

Parallel to the protocol evolution, Web caching has been widely
deployed through CDNs at the network edge. Browsers and inter-
mediate DNS servers employ caching/prefetching to reduce DNS
lookup latency, with up to 80% hit rate [17]. In addition, LTE cel-
lular networks have widely adopted middleboxes that take over the
TCP establishment and termination to reduce TCP’s handshake la-
tency [6]. All of these optimizations amortize the HTTP initializa-
tion latency and signifies the importance of reducing actual down-
loading time.

Our CLAW design builds on prior measurement insights which
revealed that mobile Webs’ performance bottleneck lies in the long
RTT [18]. Since cellular networks’ long RTT roots in the legacy in-
frastructure [19], the key to accelerating Web download is to reduce
the number of RTTs needed to retrieve the objects.

The key to cutting the Web loading round-trips lies in the under-
lying transport layer, e.g., HTTP/2 adopts the innovation to reuse
a conventional TCP connection. However, conventional TCP pro-
tocols treat the network path as a black box, and attempt to infer
network congestion from end-to-end metrics like delay and loss,
which have to be generated through trial-and-error probing across
many round-trips and hence lack responsiveness. In effect, most
Web loading sessions are short and finish well before TCP con-
verges to the network bandwidth [20]. Explicit congestion control
protocols [21,22] advocate more informed rate adaptation based
on router’s feedback. But the deployment is rare to date, as they
require new router hardware and sophisticated queue management.
CLAW can be considered as providing a better-informed explicit
congestion feedback that quantitatively characterizes how much
more traffic load can be added before it congests the network. Yet
it is much easier to deploy, as it harnesses the cellular bottleneck,
and only requires the client to act as a single-point rate estimator.

Recently, the new challenges in cellular networks like buffer
bloat [7] and high link dynamics triggered a revisit of the trans-
port protocol design. Sprout [5] uses a stochastic model estimated
from throughput probing to forecast network bandwidth. Verus
[13] adapts the sending rate following a delay-to-bandwidth map-
ping learned from a training phase. PCC [23] directly tests a wide
range of sending rates and then picks the rate with the best mea-
sured performance. Although these model-driven protocols showed
high throughput for bulk data transfer, they are unsuitable for mo-



bile Web applications, because the short HTTP flows preclude build-
ing/updating/reusing an empirical model.

A vast body of research has touched upon cross-layer transport
protocols for wireless networks [24, 25], but most built on abstract
models. Recently, CQIC [12] built a transport protocol atop UDP,
which adapts rate by estimating link capacity in HSPA+ cellular
networks. However, a CQIC client cannot perform bandwidth ex-
ploration — it essentially estimates the bit-rate supported by the
fraction of channel time it is currently allocated, but is blind to
the idle time/frequency resources that it can further explore, which
results in an over-conservative bandwidth estimation. LoadSense
[14] takes PHY layer metrics at coarse time granularity (5 per sec-
ond) as input, and empirically classify the cell load as a binary
“busy” or “idle” using a support vector machine. It then sneaks
traffic into the idle period to improve energy efficiency. CLAW,
on the other hand, models the cell load quantitatively and at mil-
lisecond resolution. piStream [10] uses a software-radio board to
monitor the LTE BS’s resource usage which in turn guides video
applications’ rate adaptation. In contrast, CLAW works for com-
modity LTE phones, and develops a new model to estimate the re-
source usage based on the limited PHY information available on
LTE phones’ diagnostic interface. Eventually, the per-subcarrier
channel information needed in the piStream model may become
available just as in certain WiFi chipset, but streaming such infor-
mation from the LTE modem to the user space at the granularity of
LTE frames still entails non-trivial overhead. Moreover, piStream
cannot discriminate a client’s own resource usage from competing
users, leaving fairness an open issue (Sec. 4.3.1).

Cellular last-mile typically bottlenecks the end-to-end connec-
tion. However, in some corner cases, the bottleneck may appear
in the wireline path and the server can adapt correspondingly for
performance optimization [26]. State-of-the-art bottleneck identifi-
cation schemes like Qprobe [27] require massive dedicated probing
packets, which makes them infeasible in short-flow applications as
the probing traffic itself overshadows data transmissions. In con-
trast, CLAW employs a bottleneck detector facilitated by the aware-
ness of cellular network load, which bears zero overhead, can run in
parallel with Web data transfer and discriminate between wireline
and cellular bottlenecks in real time.

3. CHALLENGES FOR WEB OVER LTE

In this section, we present the root causes to the unsatisfactory
mobile Web performance in LTE networks, and highlight the chal-
lenges in resolving these issues.

The large and unstable RTTs mislead TCP adaptation. Al-
though LTE adopts a more flattened network architecture and re-
duced the number of gateways compared with 3G, its 70ms average
TCP handshake RTT remains much longer than wireline networks
and even WiFi [2], and the RTT over LTE quickly inflates with the
number of bytes in flight (it easily exceeds 100ms with only 100KB
data in flight). In addition, LTE links often experience large RTT
variation due to link-layer packet retransmission/reordering, chan-
nel quality change, and traffic dynamics of competing LTE clients.
The RTT’s standard deviation is typically 3 x to 4 x of the mean for
static LTE nodes, and even larger for mobile ones [19]. Such large
RTT variations lead to the poor performance of conventional TCP
during mobile Web loading (Sec. 6), which falsely treats a tempo-
rary RTT surge as packet timeout caused by network congestion.

Fig. 1 shows one case study, where we load the same static web-
page 50 times on an LTE phone (detailed page hosting setup is
in Sec. 6). The loading events scatter sparsely across the day to
include various network conditions. The server uses the default
TCP Cubic, and each page loading involves around 2700 packet
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Figure 1: Page loading latency over LTE is affected by both
RTT and packet losses.

transfers. From the results, we observe that packet losses are rare
over LTE networks. However, even a small number of lost packets
can significantly slow down the Web loading, which is consistent
with existing observations [1]. Furthermore, under few or no packet
losses, sometimes the Web latency still surges due to TCP’s afore-
mentioned sensitivity to RTT variations: a temporary RTT surge
misleads the server to assume a network congestion/timeout and
exit TCP slow start early, even when its current sending rate is still
far below the optimum. To minimize such negative effects caused
by cellular RTTs, an efficient transport protocol should be able to
quickly converge to the network bandwidth, with least number of
round-trip probes. Quick convergence also enables accurate adap-
tation to LTE channel dynamics, preventing bandwidth underuti-
lization (due to underestimation) and self-inflicted congestion (due
to bandwidth overestimation).

TCP overreacts to LTE link losses. Although LTE’s link-level
retransmission improves reliability, packet losses are still unavoid-
able, and even a few losses across an entire Web loading session can
substantially increase latency [28]. This is because TCP protocols
typically treat packet loss as a congestion indicator, and multiplica-
tively reduce the sending rate even when the loss is caused by fluc-
tuations of wireless link quality rather than a network congestion,
resulting in poor bandwidth utilization and hence slower flows. As
shown in Fig. 1, across the experiments, we observed very low
packet loss rate, less than 1% even in the worst case. But we found
even a few more packet losses lead to explosive growth of latency,
which echoes the large-scale measurements in [28]. Moreover, due
to unpredictable wireless losses, the Web latency becomes very un-
stable across runs. The worst-case latency can be extremely high
and ruin the user experience, as the users are sensitive to perfor-
mance degradations.

The short mobile Web flows hinders the sending rate from
quick convergence to the network bandwidth. TCP’s bandwidth
exploration is propelled by application traffic. Its congestion win-
dow size accumulates as more packets are acknowledged over pre-
vious round-trip transmissions. This property fares poorly with
HTTP that creates sparsely distributed packet bursts — measure-
ments studies showed that 90% of Web flows finish within TCP’s
slow start phase [20], i.e., well before it converges to network band-
width.

To showcase the problem, we load a static HTTP/2 webpage on
an LTE phone for 5 times consecutively with small time interval.
Fig. 2 plots the loading time and evolution of TCP congestion win-
dow (cwnd) size. In the 1st trial, due to the slow start mechanism,
TCP aggressively increases the cwnd by one upon receiving each
ACK (acknowledgement) packet. The cwnd ideally doubles per
RTT if it were for bulk transfer, but in fact accumulates slowly due
to lack of sufficient HTTP data to fill in the window. In the fol-
lowing trials, since HTTP/2 reuses the TCP connection, the cwnd
gradually accumulates and the 5Sth trial’s latency almost reduces to
1/3 of the 1st one. Obviously, TCP fails to fully explore the avail-
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able bandwidth as mobile Web traffic lacks sufficient data to drive
TCP’s self-clocked rate adaptation. Thus, an efficient rate control
algorithm for mobile Web should be able to estimate the network
bandwidth regardless of the source bit-rate.

4. CLAW DESIGN

We propose Cellular-Link-Aware Web-loading (CLAW), which
harnesses LTE’s PHY-layer statistics, including signal energy, packet
loss and modulation schemes, to accelerate the network bandwidth
exploration for mobile Web traffic. CLAW aims to approach a de-
sign ideal that makes TCP converge to network bandwidth within
one RTT. Below we outline CLAW'’s operations and components
that work towards the design goal. CLAW consists of three mech-
anisms running on the HTTP client (i.e., LTE phone) and server
(Fig. 3). The CLAW client runs a cellular load analyzer that mod-
els the cell-wide downlink traffic load on BS and estimates avail-
able resources, based on the real-time PHY statistics locally avail-
able from the phone’s diagnostic interface. The client then per-
forms cellular-informed rate control to map available resources
into additional traffic that can be carried over the network path, and
accordingly optimizes the congestion window size to be fed back
to the CLAW server. Meanwhile, the client employs a cellular bot-
tleneck identifier to detect and adapt to the rare cases with wireline
rather than LTE link being the network bottleneck. In what follows,
we introduce CLAW’s design components in detail.

4.1 A Primer on LTE Resource Structure

LTE BS allocates radio resources to clients in the unit of time
and frequency blocks (Fig. 4). In time domain, the channel is di-
vided into frames of 10ms length, each comprising 10 subframes
of 1ms length. A subframe can be further divided into two 0.5ms
slots. In frequency domain, LTE further uses the OFDM modu-
lation to divide an entire spectrum band (SMHz or 10MHz) into
small units. Resource Element (RE) is the smallest resource unit,
which spans one OFDM symbol (66.7s) in time and one OFDM
subcarrier (15kHz) in frequency. Resource Block (RB) is the small-
est allocatable resource unit. Typically, each RB contains 7 x 12
REs as it spans across 7 time-domain symbols (total 0.5ms, or one
slot) and 12 frequency-domain subcarriers (total 180kHz).
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Figure 4: LTE downlink resource structure.

LTE clients can access the following cellular link statistics which
characterize the quality of PHY resources:

Receive Strength Signal Indicator (RSSI): the total received power
across the entire downlink frequency band, which is measured from
the OFDM symbols carrying reference signals (symbol 0 & 4 as
shown in Fig. 4).

Reference Signal Received Power (RSRP): average per-RE re-
ceived power on the REs carrying reference signals, i.e., the sum
power of all reference REs divided by the number of reference REs.

Reference Signal Received Quality (RSRQ): the ratio between
RSRP and RSS], i.e.,

Q= NpP/I (1)

where @), P and I denote RSRQ, RSRP, and RSSI, respectively.
Nyp is the number of RBs across the downlink spectrum band,
specified to N, = 25 and 50, for 5MHz and 10MHz downlink
band, respectively [29].

Modulation and Coding Scheme (MCS): an index to the com-
bination of modulation type, coding rate and number of spatial
streams (for MIMO transmission), which can be translated into bit-
rate through a look-up table.

In addition, each client can read the BS’s configuration param-
eters, such as frequency bandwidth and the number of antennas
Nant, from a shared control channel.

4.2 Cellular Load Analyzer

Instead of relying on the irresponsive network congestion indi-
cators like packet delay/loss to probe the network capacity, CLAW
can quantitatively assess the gap between current traffic rate and
the network capacity based on the cell load, i.e., the volume of al-
located radio resources (time/frequency) on the downlink channel.
It then translates the load estimation into a proper sending rate for
the server that fully utilizes the network resource without causing
congestion.

Ideally, the BS knows the cell load and can pass such information
to all clients. But such a new signaling channel requires modifica-
tions to the LTE MAC/PHY standard. Alternatively, cell load infor-
mation may be obtained if a client can decode the BS’s downlink
control channel which specifies the resource allocation. But the BS
logically isolates the control channel among different clients [11],
so that the standard LTE clients are blind to each other’s resource
usage. More specifically, on commodity smartphones, although
the diagnostic interface can expose the per-subframe resource allo-
cation statistics to the user space, it only shows the resource allo-
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cated to the phone itself, while the cell-wide resource utilization in-
formation remains unavailable. Substantial hardware modifications
or external sniffers [10,30] are needed to enable an LTE client to de-
code the downlink control channel dedicated for other clients. The
aim of CLAW’s cellular load monitor is to make precise cell load
estimation by harnessing the PHY metrics available on unmodified
commodity phones.

Quantitative cell load estimation based on RSRQ. The RSRQ
metric is originally provided to LTE clients to assist local deci-
sions like handoff and bit-rate adaptation. By digging deep into
the LTE resource structure, CLAW repurposes RSRQ and quan-
titatively maps it to the cell load, i.e., a BS’ cell-wide downlink
resource allocation. In what follows, we describe the analytical
model for the mapping.

(i) When the downlink channel is idle, the client only receives
reference signals, and thus the total received power over one RB is
Nyey P, where N,y is the number of REs occupied by reference
signals in one RB, and P is the RSRP. Meanwhile, the RSSI is
measured within the OFDM symbols carrying reference signals.
Since the OFDM symbols span the entire bandwidth or N, RBs,
the resulting RSSI is:

Ligqie = NyyNyey P 2

Per LTE specification, N,..y = 2 and 4, for Ngn: = 1 and 2,
respectively, where N,,: denotes the number of antennas on the
BS. Combining Eq. (1) and (2), the corresponding RSRQ equals
1/Nyey, i.e., 1/2 and 1/4 (or -3 dB and -6 dB), respectively.

(ii) Now we analyze a saturated downlink channel with full re-
source utilization. The reference signals from different BS anten-
nas do not overlap [29], so the received power of an RE carrying
reference signal still equals P, whereas the power on an RE car-
rying data becomes Ngy:P. As one RB spans across NIt =12
REs, the power of one RB equals Nyt P+ (NT2, . — Nyes)Nant P,
and the RSSI over the fully occupied bandwidth is:

Ituit = Noy(Nres + (Ni2oe — Nyeg)Nant) - P 3)

From Eq. (1) and (3), we infer that on a saturated LTE channel,
RSRQ= 1/12 ~ —11dB and RSRQ= 1/20 ~ —13dB for BS
with Ngn: = 1 and 2, respectively.

(iii) For a downlink channel with intermediate traffic load, con-
sider a subframe k£ with A, out of the total N,, RBs allocated, the
corresponding RSSI consists of the power over the Ay occupied
RBs and (N, — Ay) idle RBs:

Iy = Aplun + (Neb — Ak) Lige (€]
Combining with Eq. (1), we have the RSRQ:

B Noy P
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Figure 6: CLAW models LTE downlink resource allocation us-
ing a phone’s locally sensed RSRQ metric. This figure com-
pares the model with measurement (error bars show std.).

Given I;qie from Eq. (2) and I,;; from Eq. (3), we can derive the
relation between QQk, the RSRQ, and k, the number of allocated
RBs in this subframe:

Qk !

- Ak’(NTb Nref)Nant/Nrb+Nref

subc

(©)

To validate this model, we record the number of allocated RBs for
each subframe with an RSRQ measurement when performing web
loading over LTE. Our result combines records from multiple BSs
in our area, all of which have 10MHz bandwidth (/V,, = 50) and 2
antennas. Fig. 6 plots the average RSRQ value for each subframe-
level RB allocation number. We can observe that the measurement
results match the theoretical computation well. As a result, the frac-
tion of allocated RBs in a time window, or cell load, can be reliably
estimated based on the LTE-frame level RSRQ measurements fol-
lowing Eq. (6), which is the foundation of CLAW design.
Estimating available resources for a client. Following the model

in Eq. (6), CLAW computes the instantaneous resource utilization,
i.e., fraction of allocated RBs in a subframe, as:

Q]ZlfNref
— Ay/N,y = 7
e = AN = N N Nam @

In practice, CLAW reads Qx, Nan+ from the phone’s diagnostic
interface, and all other parameters in Eq. (7) can be derived from
the LTE standard, following our foregoing analysis.

To combat the burstiness in network traffic and the model vari-
ance shown in Fig. 6, CLAW accesses the current cell load L by av-
eraging r across all K samples of RSRQ collected during a sliding
time window of length T":

L= m)/K (8)

k=1

An interesting fact is that if we set the window size 1" as the round-
trip time (RTT), the traffic capacity of the currently unused radio
resources in this window is exactly the gap between current TCP
congestion window and its target value — the bandwidth-delay
product. Therefore, CLAW uses RTT as its time window size 7'

Given the cell load L, a CLAW client can gauge the number of
RBs allocated to all clients within this time window T’, as N, =
N¢L, where N; denotes the total number of RBs within 7. N,
can be easily obtained following the LTE specification: Since each
subframe lasts for 1ms, the number of subframes in a time window
equals its length 7" in milliseconds. Also, one subframe consists
of two time slots, each containing N, RBs, so the total number of
RBs within 7" equals N; = 2N,,T". Then the client can obtain Ny,
the number of idle RBs within T':

Ny =N, — N, =2N,,T(1 — L) ©)



Algorithm 1 Cellular-Informed Rate Control.

Input: MCS — Average MCS in sliding time window
N, — Sum number of RBs allocated to all clients
N — Total amount of RBs in the sliding time window
Ny — The number of RBs available to this CLAW client
P — Bottleneck location (0 is cellular bottleneck)
Output: cwnd — to be used by server

: /*CLAW Client*/

: Slide forward RTT-sized time window by one subframe

- Estimate BDP B based on MCS and N ¢ following Eq. (12)

The optimal congestion window Weiq. = B

: Feedback W¢;q., to the CLAW server

: Repeat the steps above

: /*CLAW Server*/

: On receiving a new Wejguw

. if (P == 0) then /*Cellular bottleneck*/

10: if No/N; < 1 then

11: /*Cellular-Informed BW Exploration*/

12: cwnd = Weigw

13: else/*On saturated channel, act as aggressive as Cubic*/

14: cwnd = maz(Weubic, Weiaw)

15: else /*Wireline bottleneck™®/
16: cwnd = Weupic

Denote the number of RBs allocated to the client itself as Sy, which
can be read from the phone’s diagnostic interface for every sched-
uled LTE subframe. At the end of a time window T, the client
obtains N, the sum number of RBs allocated to itself within 7"

T
N.=3 8 (10)
k=1

Finally, CLAW estimates Ny, the number of available RBs in
this time window 7, which consists of its currently consumed RBs
and additional idle RBs it can leverage:

Nf =N, + N (1n

4.3 Cellular-Informed Rate Control

Given the estimation of currently available radio resources, CLAW
performs cellular-informed rate control to shape the traffic bit-rate
to the optimum by adapting the transport-layer congestion window
(cwnd) size. Algorithm 1 outlines our design and we provide more
details in what follows.

4.3.1 Cellular-Informed Bandwidth Exploration

Quick bandwidth convergence facilitated by cellular link statis-

tics. During bandwidth exploration stage, CLAW boosts the server’s
sending rate to network capacity based on available radio resources.
After estimating the volume of available RBs (/Vy) in current RTT-
sized time window T3, the CLAW client translates Ny into the
congestion window size matching the potential network capacity.
Specifically, from the phone’s diagnostic port, the CLAW client
reads the Modulation and Coding Scheme (MCS) for every allo-
cated LTE subframe. It then estimates the cellular link capacity B
that can be supported by the Ny RBs under average MCS in current
time window:

B = T,F(N;/T;, MCS) (12)

where the mapping rule F'(-) is specified in the LTE standard [31,
Table 7.1.7.1 and 7.1.7.2], which maps the MCS and the number
of RBs per subframe (N /T;) to the Transport Block Size, i.e., the
number of bytes that can be carried over a subframe. This size
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Figure 7: A running instance of the cellular-informed hybrid
bandwidth exploration over an LTE channel saturated by ex-
isting users.

F(N;/T;,MCS) is further multiplied by T}, the number of sub-
frames in a time window, to obtain the potential capacity B. Since
CLAW uses RTT as the time window length (§4.2), B essentially
equals the bandwidth-delay-product, i.e., the ideal congestion win-
dow size W q. that best fits current network condition. Weig., is
updated every time the sliding time window 7' moves forward, it
is then fed back to the server, which sets We;q., as the congestion
window (cwnd).

CLAW?’s cellular-informed bandwidth exploration design essen-
tially addresses the conflict between the sparse Web traffic and
the data-driven network capacity probing mechanism discussed in
§3. Even with a small volume of traffic, CLAW can still instanta-
neously converge to the available LTE bandwidth in one RTT.

Hybrid bandwidth exploration mode. Note that a fully uti-
lized LTE downlink channel does not necessarily imply the client
has converged to its fair-share bandwidth. For instance, when the
cellular downlink is saturated and all PHY resources are fully ex-
ploited, a new CLAW user that just joined the cell will keep esti-
mating Weiq., = 0, thus failing to explore the network bandwidth.
To handle such situations, CLAW employs a hybrid bandwidth ex-
ploration mechanism, in which the sender maintains another win-
dow size Weypic following the legacy TCP Cubic algorithm, and
finally selects the larger one between W4 and Weysic as the ac-
tual cwnd. To avoid the false alarm of channel saturation caused
by the traffic burstiness, we allow CLAW to switch to TCP Cubic
only after it keeps detecting no idle resources for two consecutive
RTTs, and then compensate it for the window size it could have
increased in these two RTTs when it performs the mode switch-
ing. This hybrid bandwidth exploration design ensures that even
over a saturated cellular link, the newly joined CLAW clients can
still compete for the bandwidth as aggressively as the legacy TCP
flows.

To demonstrate its effectiveness, we showcase a running instance
of the hybrid bandwidth exploration in Fig. 7. We plot the server’s
cwnd and mark the sending time of each outgoing packet during
a Web loading session over a saturated LTE channel. We see that
the CLAW sending rate freezes in the beginning since there are no
idle resource to explore. But after the 2-RTT inertia, mode switch-
ing is triggered: it first has a steep cwnd increase which follows
the aforementioned window size compensation, and then ramps up
with TCP Cubic’s slow start operations.

Multi-user fairness. CLAW'’s cellular load awareness enables
a client to detect the activities of competing downlink clients in
the same cell, which allows it to explicitly achieve multi-user fair-
ness. In contrast, conventional TCP is blind to competing clients
and can slowly approach fair-share only for long-lived flows based
on probing-and-trial. Specifically, CLAW design ensures fairness
no matter when coexisting with conventional TCP flows or other
CLAW flows: (i) When the LTE downlink channel is partially uti-



lized by existing TCP Cubic or CLAW clients, a CLAW flow only
takes its currently allocated resources plus idle resources. It does
not attempt to preempt the resources currently occupied by other
clients. (ii) Under a saturated LTE channel, CLAW’s hybrid band-
width exploration mode (Sec. 4.3.1) ensures it to be as fair as legacy
TCP Cubic when competing for its fair share of bandwidth. (iii)
When existing CLAW flows have fully exploited the downlink re-
sources and other TCP Cubic/CLAW clients join later, the LTE
BS will allocate less resources to existing flows based on its built-
in fairness scheduling algorithm (proportional fairness for typical
BS), thus an existing CLAW flow can promptly scale down its traf-
fic rate following the reduced W4, after detecting less fraction
of resources allocated to itself, so as to prevent a potential net-
work congestion. Then it falls back to TCP Cubic to guarantee
the fairness afterwards. As a result, CLAW achieves better fair-
ness than conventional TCP since its resource awareness enables
its rate adaptation to explicitly follow the BS’s resource scheduling.

4.3.2 Discriminating Link Loss from Congestion

Packet losses over cellular links, though infrequent, can severely
disturb conventional TCP’s congestion estimation, and lead to slow
and unstable Web loading (§3). CLAW overcomes this fundamen-
tal limitation by discriminating the wireless loss and congestion
loss using cellular link statistics available on commodity phones.
LTE’s RLC (Radio Link Control) layer handles the packet retrans-
mission process on the downlink channel. The RLC layer statistics
are available through the phone’s diagnostic port, which include
the number of packet losses, number of retransmitted packets and
an overflow indicator for the RLC-layer packet queue. The CLAW
client reports the RLC-layer loss events to the server, which then
compare this information with the transport-layer packet losses.
For instance, if a transport-layer loss happens along with RLC-
layer losses caused by poor channel quality, the server notices it is
not a congestion loss, and thus refrains from reducing the sending
rate (congestion window). In contrast, the server will slow down
immediately if the reported reason of packet loss is the buffer over-
flow at the LTE BS.

To facilitate the loss information feedback, CLAW marks the re-
served bits in the header of the TCP ACK packets to represent dif-
ferent type of RLC loss events, so that the server can distinguish the
wireless loss and congestion loss by reading these marks in the du-
plicate ACKs triggered by losses. §5 introduces how we implement
this ACK flagging in the Android OS.

4.4 Network Bottleneck Detector

CLAW’s cellular-informed rate control mechanism essentially
boosts the traffic bit-rate to fit the client’s share of cellular network
capacity. However, in some corner cases, the network bottleneck
may appear at the wireline path rather than the cellular link, and
sending the traffic at the cellular capacity will lead to congestion
at the bottleneck. To achieve a robust design, CLAW needs to de-
tect and adapt to the rare scenarios where wireline bottlenecks the
network.

Online bottleneck detection. CLAW’s network bottleneck de-
tector builds on a simple principle originating from its bandwidth
exploration mechanism — If CLAW boosts the sending rate to har-
ness currently unallocated resources, but the client’s resource usage
does not increase correspondingly, then there should be a bottle-
neck along the wireline path between the server and the BS.

To demonstrate the feasibility of this principle, we record the
LTE resource allocation when loading the same Website, across
a wireline bottleneck and cellular bottleneck, respectively (detailed
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allocation pattern during bandwidth exploration.
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implementation in § 6.1). The results in Fig. 8 contrast the resource
allocation patterns in the two cases, which show clear distinction.

Following this principle, the workflow of the network bottleneck
detector design is outlined in Fig. 9. It runs in parallel with the
cellular-informed rate control, at a time granularity of RTT level.
Specifically, our design compares the volume of resources (/Vy)
available to a client, and its consequently allocated amount of re-
sources (U) after one RTT. If U < J Ny, the detector declares a
wireline bottleneck, otherwise a cellular bottleneck. The multi-
plicative factor 0< § <1 controls the safe margin to accommodate
for the RTT variations that can occasionally make U less than ex-
pected due to some delayed packets. We empirically set § to 0.8.
To further combat the network variations, the bottleneck is asserted
only after consistent observations over a sliding window of 3 RTTs.

We emphasize that the bottleneck detector should be used as a
sanity check. In most common cases, the wireless and wireline
bottlenecks should have a non-trivial gap, even under channel vari-
ations, cross traffic disturbances, etc. So even a coarse check suf-
fices. If these two happen alternately and inconsistently for a client,
then they may be comparable and CLAW should degrade to the
conventional TCP to avoid unnecessary oscillation.

Adapting to wireline bottleneck. After detecting a wireline
bottleneck, CLAW falls back to TCP-style rate control. However,
we emphasize that this fallback mode is still superior over conven-
tional TCP, as it can still use cellular link statistics to discriminate
wireless losses from congestion losses. Since the capability to dis-
criminate between wireline and cellular bottlenecks is essentially
a byproduct of the cellular-informed rate control and incurs zero
overhead, CLAW client can run it in the background in parallel
with web loading. Since it takes 3 RTTs to detect a wireline bot-
tleneck, to avoid this latency, the client can also cache the decision
based on server’s IP address and reuse it for later sessions.

5. CLAW IMPLEMENTATION

Client side. Our implementation reads the logs containing the
cellular link statistics from the diagnostic interface available on
most cellphone models with Qualcomm chipsets. In Android sys-
tem, the logs are passed to user space through /dev/diag, fol-
lowing the implementation of Mobilelnsight [32]. From such logs,
we decode the RSRQ, MCS, PHY resource (RB) allocation, sub-
frame index, and other statistics in real time with LTE subframe



(1ms) granularity. The output logs of the Qualcomm chipsets re-
arrange the cellular link statistics into obscure formats that can be
decoded only by Qualcomm’s QCAT, a proprietary software tool
that parses the logs offline. To automate the real-time decoding, we
reverse-engineer the log format by matching the raw HEX payload
and QCAT’s decoding results. We timestamp each decoded cellular
link statistics based on which subframe it comes from, e.g., the 7th
subframe within the frame with System Frame Number (SFN) 100
has timestamp 107 (the elapsed milliseconds since the SFN count-
ing started). Since the SFN cycles between 0 to 1023, we unwrap
this value to avoid ambiguity. The decoded cellular link statistics
are then fed to CLAW’s cellular load analyzer implemented in the
client’s user space to facilitate the estimation of available resources
following our model in § 4.2, and the estimation of the optimal con-
gestion window size best fitting current network capacity following
the algorithm in § 4.3.

In addition, the HTTP traffic pattern occasionally causes long
idle durations, e.g., when waiting for the response of HTTP GET, in
which no downlink LTE traffic arrives. In such circumstances, the
phone’s radio enters the idle state and measures the downlink chan-
nel infrequently to save energy (only 5 RSRQ measurements per
second), and hence is largely blind to the background traffic. Fortu-
nately, since there is no traffic at all, the CLAW flow does not need
to update the TCP congestion window. Therefore, the CLAW algo-
rithm is frozen in such idle durations and takes effect only when a
TCP connection is activated. In contrast, LoadSense [14] attempts
to estimate the background traffic load before the client cuts into
the cellular channel, where the radio is still in idle state and listens
to the channel infrequently for every 200ms. Hence LoadSense can
only get a rough correlation between the RSRQ and cell load, and a
binary cell load estimation of “idle” or “busy”. As a result, the on-
the-fly operation of CLAW guarantees its more accurate cell load
estimation over existing works.

For prototyping purpose, our current CLAW client implementa-
tion uses a UDP path to carry the optimal congestion window size
for every 100 ms from the client to the server. Our future imple-
mentation will substitute this out-of-band feedback with an in-band
signaling using the TCP Option field which can be more respon-
sive. In addition, the client should also feedback the cellular-related
packet loss events caused by BS buffer overflow or poor wire-
less channel (Sec. 4.3). To precisely synchronize the RLC-layer
loss events reported by the diagnostic interface and the correspond-
ing TCP packet loss, CLAW piggybacks the feedback in the TCP
header like ECN-based TCP variants. To keep compatibility with
current packet format, we use two of the 6 reserved bits in the TCP
ACK’s packet header (th—>res1), one as the flag for the wireless
channel loss, the other for the BS buffer overflow.  To imple-
ment such a feedback channel in the TCP packet header, we mod-
ified tcp_input.c of the Android kernel to mark the wireless
loss and buffer overflow notification bits, and t cp_output . c of
the server kernel to extract these bits. We also add a customized
sysctl variable to the Android kernel so that the CLAW applica-
tion running in the user space can pass the identified loss & over-
flow events to the kernel.

Server side. We setup our test websites using an Apache
HTTP/2 server [33] on an Amazon EC2 instance which also acts as
the CLAW sender. At the server side, we tune the Linux TCP buffer
size to guarantee the performance over high-speed networks like
LTE. Besides, we set net .ipv4.tcp_no_metrics_save to
1 to ensure each Web loading test will not be affected by previous
tests. To guarantee the performance of HTTP/2 which reuses TCP
connection, net.ipv4d.tcp_slow_start_after_idle is
set to 0 as suggested in the HTTP/2 Wiki [34]. Upon receiv-

ing feedback containing the client’s estimated cwnd size, the
server passes it to CLAW’s cellular informed rate control algo-
rithm (Sec. 4.3), which runs in the user space and writes its cwnd
size decision to the kernel via a customized sysctl interface.
The new window takes effect by superseding the legacy TCP win-
dow just before the cwnd value is used for rate throttling within
the packet transmission function tcp_write_xmit (). Such
simple retrofitting allows flexible fallback to legacy TCP when
CLAW identifies a wireline bottleneck (Sec. 4.4). For evalu-
ation purpose, our modified server kernel also logs the packet
losses, retransmissions, ACKs and behaviors of CLAW in real
time. Since running CLAW implementation may change the TCP
state parameters and HTTP/2 reuses TCP connection, to mini-
mize the impact of the previous test to current Web loading, we
reinitialize the TCP congest control state parameters by calling
tcp_init_congestion_control (sk) in the TCP output
engine at the end of each CLAW test. Overall, the majority of
CLAW implementation lies in the client’s user-space, and it only
involves 41 lines of kernel patch at the server side.

6. EVALUATION

Experiment setup. We benchmark CLAW’s performance against
both classic TCP variants and state-of-the-art congestion control
schemes for cellular networks, including CQIC [12] and Verus [13]
which showed superior performance over alternatives (e.g., Sprout
[5]). Following [12], the CQIC implementation takes the LTE TBS
(Sec. 4.3) controlled by the BS’s MCS adaptation and resource
allocation as the PHY capacity estimation. This essentially up-
grades the original CQIC from HSPA+ to LTE [12]. We imple-
ment Verus in the server’s Linux kernel following the source code
(UDP-based) [35]. The original Verus updates cwnd every Ss,
longer than a typical Web session. We thus reduce the time gran-
ularity to 500ms. Verus’s bandwidth-delay profile is built during
the slow start phase as suggested in [13]. For fair comparison, the
tests with different schemes are conducted back-to-back to ensure
similar channel conditions, and we employ the kernel’s sysctl
interface to enable fast and flexible switch between the algorithms.

Webpages and PLT measurement. We download and host a
list of the Alexa top sites on an Amazon EC2 server that runs the
HTTP/2 and CLAW’s sender implementation. Following [4], the
server hosts all Web objects of a website, including the dynamic
objects generated by JavaScript, to avoid the clash between domain
sharding and HTTP/2. More details about the sites we used can
be found in §6.2.1. Our evaluation uses page loading time (PLT)
as the primary performance metric, which directly impacts end-
user experience. We use Chrome Developer Tools [36] which are
widely adopted in Web loading related studies [37-39] to measure
the PLT of a webpage over Android phones. The phones run the
Chrome browser, with cache disabled to isolate individual Web
loading tests.

Configurations for the phone. The smartphones used in our im-
plementation are rooted so that the application layer can access and
read from the diagnosis interface. We emphasize that no hardware
modification is required, which is a big advantage over software-
radio based cross-layer solutions like piStream [10]. Sometimes the
phone may switch between LTE and HSPA when both networks are
available, especially in the mobility experiments. Since the CLAW
design is customized for LTE, we select "LTE Only" as the pre-
ferred network type inside the diagnostic and general setting mode
of Android system to prevent unexpected network switching.

6.1 Micro-benchmarks of the CLAW design

Validating the cellular load analyzer. We first evaluate the ac-
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Figure 10: A microscopic demonstration of how CLAW’s cell
load analyzer can reliably track the cell load.

curacy of the cellular load analyzer and its real-time cell load track-
ing capability. We generate an iperf TCP traffic stream with bit-
rate increasing linearly by 0.5 Mbps per second, between the server
and LTE phone. The experiment runs in late night isolate the inter-
ference from background traffic. Figure 10 plots the raw cell load
(frame-level granularity) as scattered points, the smoothed cell load
curve using a 200ms (approximately RTT sized) sliding window
following Eq. (8), and the network layer traffic pattern measured
at the phone using t cpdump. The results show that the raw cell
load vary drastically over time, with a polarized resource allocation
pattern — the BS either allocates most RBs in a subframe or leave it
empty, implying that it enforces frame aggregation. After smooth-
ing, we can observe a high consistency between the PHY-layer cell
load estimated following §4.2 and the corresponding network layer
traffic intensity, which verifies the accuracy of the cellular load an-
alyzer design. In addition, this result demonstrates the feasibility
of tracking cell load in real time using the phone’s diagnostic inter-
face.

Validating the cellular-informed rate control. To demonstrate
the effectiveness of Cellular-Informed Rate Control in CLAW de-
sign, we load the same webpage using CLAW and TCP Cubic, the
most widely deployed TCP variant. For fair comparison, we run
the two experiments consecutively over the same idle LTE channel.

Fig. 11a plots the sender’s cwnd over time. We see that CLAW
explores the network bandwidth much faster than TCP Cubic. Once
the data transfer starts, it first quickly maps the PHY resource to a
close-to-optimum cwnd', and then keeps adapting the cwnd based
on channel quality. Its downloading finishes early at 1.7s due to ef-
fective utilization of the bandwidth. In contrast, TCP Cubic can
only gradually explore the bandwidth first via slow start, and then
overshoots the bandwidth and jams the LTE downlink, because its
congestion indicator, packet loss, is always masked by the large
LTE buffer [40]. With queue building up at the BS, the RTT surges
up and eventually exceeds RTO (Retransmission Timeout), which
in turn causes multiplicative rate decrease. Such trial-based prob-
ing operations lead to long PLT (2.6s). Fig. 11a also plots one ad-
ditional experiment that shows a case when Cubic’s slow start fails
due to RTT variation (§ 3), which causes early termination of slow
start and hence even longer PLT (3.2s).

Fig. 11b further compares the corresponding resource utilization
reported from the client. We can observe that the BS’s PHY re-
source allocation follows the sender’s traffic intensity, and CLAW
exploits LTE resources much more efficiently than TCP Cubic.

To inspect CLAW’s bandwidth utilization in comparison with
other Linux TCP variants, we create a bare-bones HTML page with

!The sender side cwnd surge happens at around t=500ms, which
exceeds one RTT. This issue is caused by the overhead to read the
diagnostic interface, and process & feedback the computed cwnd
in the application layer. A more refined implementation can further
reduce such overhead and improve the responsiveness.
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Figure 11: (a) CLAW server explores the network bandwidth
faster than TCP Cubic (b) CLAW client is thus allocated more
LTE PHY resources than TCP Cubic.
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Figure 12: Web loading la- Figure 13: Packet latency
tency for a bare-bone Web (RTT) during loading Web
page with a 2MB image. page with a 2MB image

a single 2MB image, and load the page 20 consecutive times using
each algorithm. Fig. 12 plots the average PLT and its standard de-
viation across 20 trials. CLAW obviously outperforms all the TCP
variants and, compared to the runner-up algorithm TCP Cubic, it
reduces the average PLT by 3.44s (56%). Remarkably, it also sig-
nificantly reduces the PLT variance, reducing the worst case PLT
by 9.92s (73%) compared with Cubic.

Fig. 13 further shows a microscopic inspection for the packet-
level RTT of CLAW, along with the loss-based (Cubic) delay-based
(Vegas) TCP. Since Vegas throttles rate on high RTT, it shows 48ms
(15%) smaller mean RTT than CLAW, whereas interestingly its
PLT is 2.2 longer! This is because Vegas often overreacts to delay
spikes, resulting in extremely small queues and leaving the LTE BS
barely anything to send. On the other hand, the BS’s deep buffer
makes Cubic insensitive to queue build up, misleading it to send
at a high rate which causes self-inflicted congestion [5] and hence
large RTT.

Effectiveness of CLAW’s bottleneck detector. Since wireline
bottleneck rarely occurs, to evaluate the bottleneck detector, we
manually throttle the Web server’s network interface at 30 Kbps
using the Dummynet kernel module [41]. We run the same bare-
bones page downloading experiment as above. Fig. 14 shows that,
without the bottleneck detector, CLAW’s performance becomes com-
parable to Cubic, because attempts to leverage the idle resources on
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Figure 16: CLAW over different websites (number in circle is
the percentage of latency reduction over Cubic).

the LTE channel when its sending rate already exceeds the wireline
bottleneck capacity, which causes high RTT, packet loss or retrans-
mission timeout. In contrast, we can see 2.3s (20%) latency re-
duction after turning on CLAW’s bottleneck detector and fallback
mechanism, which is also slightly better than the TCP Cubic per-
formance since CLAW’s fallback mode can still distinguish wire-
less losses. This experiment verifies that the bottleneck detector
can effectively guarantee CLAW’s performance in the rare case of
wireline bottleneck.

6.2 System Level Test

In this section, we perform a system level test that compares
CLAW’s PLT against other transport protocols, across various Web-
sites and network conditions. To control the experiment environ-
ment, unless otherwise stated, all tests load identical webpages on
the same remote server. Each test loads the page for 20 times con-
secutively. The interval between adjacent tests is around 10s, long
enough to ensure isolation and prevent HTTP/2 from reusing the
previous cwnd.

6.2.1 CLAW with Different Websites

We conduct experiments with popular webpages selected from
the top 200 Alexa list [42]. Fig. 15 plots the CDFs for both the
page size and number of objects.

What kind of Webpages benefit the most from CLAW? We
first evaluate CLAW’s performance on 20 selected webpages that
cover a wide spectrum of size and object number. To rule out the
influence of other factors, we experiment on the idle LTE channel
during late night at a static location, with other settings following
the default configuration discussed at the beginning of this section.
The scatter plot in Fig. 16 shows CLAW’s PLT reduction w.r.t. TCP
Cubic (in percentage) of each tested Website. Note that it is un-
likely to have a page with small size but large number of objects,
thus the upper-left corner of Fig. 16 remains blank.

We can observe that (i) CLAW reduces PLT by 27% to 48%
compared with Cubic. (ii) CLAW’s performance gain increases
with larger page size or larger number of objects. Since CLAW
accelerates page loading by faster downloading, it can save more
time if the content downloading time accounts for more across the
entire page loading process (Sec. 2). In addition, with more data
packets, conventional TCP is more likely to experience at least one
outage event, e.g., overreacting to loss/RTT (§ 3), which causes
extended PLT.

PLT under different transport protocols. We further compare
CLAW and other benchmark protocols over 5 randomly selected
popular webpages. From the results in Fig. 17, we can observe
that (i) CLAW achieves the minimum latency and CQIC is always
the runner-up. CQIC has around 50% higher PLT than CLAW
because CQIC restricts itself to the currently allocated PHY re-
source, whereas CLAW effectively estimates the BS’s remaining
resources that it can exploit. (i7) Among the two delay-based con-
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Figure 17: PLT under different transport protocols.

gestion controls, Verus’s PLT is even worse than TCP Vegas, be-
cause it is designed for long-lived flows, and cannot reliably learn
the bandwidth-delay profile within the short HTTP flow.

6.2.2 CLAW under various network conditions

In the following set of experiments, we evaluate the impact of
various network conditions to the page loading performance of CLAW
and benchmark protocols. To isolate the influence of webpage
size and object number, we test the same typical LinkdIn profile
webpage (that people may need to frequently check over mobile
phones) across the following experiment sets.

Under different LTE cell loads. To evaluate the impact of cell
loads, we run the Web loading test at different time of the day —
noon for a congested LTE cell, and late night for an idle cell. We
used CLAW’s cellular load analyzer to inspect the cell load before
the tests and found that the background cell load is around 70%
during the noon and close to 0% during late night.

From the results in Fig. 18a, we make the following observa-
tions: (i) CLAW achieves the lowest PLT under different cell loads.
For the idle channel, it reduces the latency by 5.06s (66%) against
TCP Cubic and 1.63s (38%) against the performance runner-up,
CQIC, while on the busy channel the reduction becomes 6.63s (59%)
and 4.87s (51%), respectively. (ii) A CQIC client can only estimate
the cellular link capacity supported by the fraction of resources al-
located to itself [12], because it is unable to sense and harness the
unallocated radio resources. This unfairly penalizes itself under a
busy channel, leading to a sharp latency growth of 5.21s (55%)
compared with the idle case. (iii) The delay-based TCP Vegas per-
forms poorly over busy channel (mean PLT 8.04s), due to its well-
known conservative rate control when coexisting with loss-based
protocols [43]. Verus suffers from a similar problem, worsen by its
inability to acquire a reliable bandwidth-delay profile.

Under different LTE channel qualities. We evaluate how the
LTE channel quality affects the PLT by running tests at places with
high (12dB SINR) and low (5dB SINR) channel quality reported
by the phone. The results in Fig. 18b show that the PLT increases
under lower channel quality for all schemes since the throughput
unavoidably degrades and translates into longer downloading time.
Yet, CLAW always achieves the lowest latency: it reduces the la-
tency by 2.2s (44%) against the widely-deployed TCP Cubic and
1.04s (27%) against the performance runner-up, CQIC. Similar to
CLAW, CQIC can also adjust the downstream rate following the
channel quality, but it is incapable of exploiting unallocated idle
resources (Sec. 2) and hence its performance always falls behind
CLAW. Besides, lower channel quality tends to increase packet
loss, but CLAW’s PLT only increases by 0.76s, smaller than all
other schemes, due to its capability of explicit loss differentiation
(8§4.3.2).

Under different outdoor mobility scenarios. We further run
the tests in a moving vehicle under three outdoor mobility scenar-
ios: (i) slow driving with around 10 mph within a university cam-
pus, (ii) city driving with around 20 mph in an urban area and (iii)
fast driving with around 50 mph in a suburban highway. We care-
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Figure 18: CLAW outperforms benchmark schemes under var-
ious scenarios.

fully choose the spots on the route to perform Web loading so that
the cross-cell handoff does not happen during a web loading.

From the results (Fig. 18c), we can observe that CLAW again
achieves the lowest PLT across all the mobility scenarios. This
proves that CLAW’s cellular congestion monitor and rate controller
perform consistently well even under very high channel dynamics.
It may be counter-intuitive that the PLT decreases with the mobil-
ity level. We found the reason lies in the channel quality: the slow
driving mode crosses routes between tall buildings which severely
blocks the LTE signal; city driving partially suffers from similar
effect; the highway driving occurs in relatively empty space with
plenty of line-of-sights between the client and BS, resulting in ex-
tremely high link quality — our congestion monitor shows the corre-
sponding TBS size is almost 3 x higher than the slow driving case.

Over different cellular operators. As a cross-validation, we
run CLAW on the same phone supporting two operators possibly
with different resource allocation policies. Fig. 18d shows that,
despite the different average PLT due to different channel condi-
tions, CLAW shows similar fraction of PLT reduction across the
two operators, compared with alternative schemes. In particular,
compared to TCP Cubic, CLAW reduces the page loading time by
1.6s (36%) for Operator A and 1.0s (35%) for Operator B. We
also observe that Operator B provides better performance for all
algorithms under the same channel quality, which owes to Opera-
tor B’s BS scheduling algorithm that schedules the LTE client with
shorter interval to propel the TCP self-clock. Regardless of the
BSs used by different operators, CLAW achieves consistent per-
formance gain over TCP Cubic since the BS’s scheduling strategy
equally impacts them. Due to lack of phone hardware, we are
unable to test a wider range of operators. But we believe the exper-
iment hints to the fact that the CLAW’s design is not limited to a
certain cellular operator.

Over different LTE hardware. To demonstrate that CLAW can
always accelerate Web loading regardless of the peak LTE data rate

w= CLAW
~ =1 Cubic

-e- CLAW Fairness
-+ Cubic Fairness

15 20 25 30 35 40 45
Number of Users

Figure 19: Scalability test.

Content Download Time (s)

2 2 2

06 06 06

E5 } E5 } E>5

‘54 54 1 54

23 23 23 b 1

2 g g

52 52 g2

o @ @

20 —cubi 9 20 : 20

S ubic 1 Cubic 2 I CLAW Cubic I CLAW 1 CLAW 2

(a) Two Cubic user (b)
load concurrently. load concurrently.

CLAW&Cubic (c) Two CLAW user
load concurrently.

Figure 20: TCP coexistence and multi-user scenarios.

and processing power supported by the hardware, we cross-validate
CLAW over two mainstream phone models: Nexus 5 with cate-
gory [44] 4 LTE and Nexus 5X with category 9 LTE chipset, sup-
porting 150 Mbps [45] and 450 Mbps peak downlink rate [46], re-
spectively. The newer Nexus 5X is also equipped with more power-
ful hardware, e.g., CPU, that accelerates the network stack and OS
services. From Fig. 18e, we observe that the latter can significant
accelerate page loading, due to higher PHY bit-rate and more pow-
erful hardware. CLAW again shows consistent performance gain
over both phone models. Interestingly, CLAW'’s latency reduction
over TCP Cubic is around 35% for both Nexus 5 and Nexus 5X.
In fact, although the low-end phones like Nexus 5 may lack proe-
cessing power hence suffer from higher computational time, they
typically have LTE hardware with lower category number or data
rate. Therefore, reducing the network latency is still crucial for
mobile Web acceleration.

With HTTP/1.1 and HTTP/2. Although CLAW is designed
with HTTP/2 in mind, we have conducted experiments to verify its
backward compatibility with HTTP/1.1. The same server is used
to test different HTTP versions to isolate the influence of server
hardware and the network path to the server. We switch the server
between different HTTP versions by enabling/disabling the ht t p2
module of the Apache server. The results in Fig. 18f show worse
performance for all tested algorithms when degrading the server
from HTTP/2 to HTTP/1.1. In addition, compared to TCP Cubic,
CLAW reduces the page loading time by 3.05s (46%) over HTTP/2
and a smaller 1.28s 18% over HTTP/1.1. This is because even
though the network bandwidth explored by CLAW allows the Web
contents to be downloaded all at once, without the multiplexing
feature of HTTP/2, CLAW can only download the Web contents
sequentially under HTTP/1.1, which raises the latency and reduces
CLAW'’s performance gain.

6.2.3 TCP friendliness and multi-user cases

We conduct a microscopic examination of CLAW’s TCP friend-
liness, by concurrently tapping the reload buttons of the same web-
page on two phones of the same model, so as to create the worse-
case traffic overlapping. We evaluate 3 configures with different
combinations as shown in Fig. 20. By comparing Fig. 20a and
Fig. 20b, we see that CLAW is as fair as TCP Cubic itself: when
coexisting with CLAW, TCP Cubic achieves similar level of la-
tency compared to when coexisting with another TCP Cubic flow.



Note that in the CLAW-Cubic coexisting scenarios, CLAW will
not sacrifice its own performance for Cubic, rendering similar per-
formance to the CLAW-CLAW coexisting scenarios in Fig. 20c,
which owes to CLAW’s gentle aggression — it exploits the idle re-
sources without touching the resource occupied by other users, un-
til the idle resources are drained off (§4.3).

Due to lack of LTE phones, we were unable to test a large num-
ber of CLAW users concurrently. Instead, we develop a simulator
to simulate a network with LTE bottleneck. The BS uses a simple
round-robin scheduler, and the PHY parameters, RTT, loss rate, are
configured to be consistent with our empirical measurements. We
implement and run CLAW and Cubic separately. Each of our ex-
periments lasts for 30s with up to 45 users, wherein each user starts
a 750KB page loading at a random time. The result (Fig. 19) shows
that, the CLAW users consistently outperform Cubic even under a
heavily loaded network. As the network saturates, CLAW’s benefit
diminishes as it has less idle resource to explore and falls back to
the hybrid bandwidth exploration most of the time. Consistent with
our reasoning in Sec. 4.3.1, CLAW shows a higher level of fairness
(in Jain’s index) than Cubic.

7. DISCUSSION

Comparison with BS-based solutions. CLAW works with com-
modity phones and existing LTE infrastructure, which makes it
readily deployable. In contrast, redesigning the BS to explicitly
convey bandwidth information, as suggested in [47], requires fun-
damental modifications to the LTE infrastructure, phone hardware
and MAC/PHY standard. Furthermore, such solutions require close
cooperation between content providers and the cellular operators,
whereas a software-based solution like CLAW is more feasible for
the vast majority of Web services like online retailers.

CLAW’s design is also transferable to future-generation cellular
networks, as long as the clients can collect certain PHY statistics
as CLAW does for 4G LTE networks. Furthermore, future cellular
networks may deploy more TCP proxies and caching servers to
optimize the Web latency. CLAW could be the perfect match for
these servers as the cellular link is almost surely the bottleneck in
such scenarios.

Computational latency vs. networking latency. Recent re-
search [48, 49] reveals that the computational time also plays an
important role in the Web loading latency. However, even under
the extreme cases with a tiny RTT of 5ms, the content download-
ing time still accounts for more than 40% of the total latency [49],
and starts to dominate under higher RTT of 150ms. We empha-
size that the RTT quickly inflates during data transfer due to net-
work queuing [2, 5,7, 13], and can easily exceed 150ms with only
200KB data in flight [2], which further justifies CLAW’s strategy
of accelerating the bandwidth convergence with fewer round-trips.

Generations of smartphones have been embracing escalating CPU
power to minimize the computational latency, which always out-
paces the network upgrades. In addition, to catch up with the rapid
growth of phone screen size/resolution, the Web content sizes will
scale accordingly to offer better user experience, which further el-
evates the networking latency. We believe that CLAW’s data trans-
port protocol can better prepare the mobile networks for future de-
mands. It can certainly be combined with page optimization [50]
and better object fetching strategies [37] to further cut the PLT.

Remarkably, with shorter PLT, a CLAW user’s radio interface
stays in the energy-hungry active state for shorter duration, which
directly translates into energy saving. We also plan to explore this
benefit in our future work.

8. CONCLUSION

In this paper, we have presented the design, implementation and
evaluation of CLAW, which accelerates mobile Web loading through
a physical-layer informed transport protocol. CLAW extracts the
LTE cell load, packet loss and bit-rate information based on the
PHY statistics available locally on a smartphone. By exposing
such fine-grained information, CLAW unleashes the transport-layer
from data-driven bandwidth probing, and enables judicious rate
control under channel dynamics and losses. CLAW improves mo-
bile Web performance remarkably, in terms of both average latency
and stability. We believe its PHY-informed design can benefit a
broader range of mobile protocols and applications.
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