
POI360: Panoramic Mobile Video Telephony over LTE
Cellular Networks

Xiufeng Xie
University of Wisconsin-Madison

xiufeng@ece.wisc.edu

Xinyu Zhang
University of California San Diego

xyzhang@ucsd.edu

ABSTRACT
Panoramic or 360◦ video streaming has been supported by a
wide range of content providers and mobile devices. Yet ex-
isting work primarily focused on streaming on-demand 360◦
videos stored on servers. In this paper, we examine a more
challenging problem: Can we stream real-time interactive
360◦ videos across existing LTE cellular networks, so as to
trigger new applications such as ubiquitous 360◦ video chat
and panoramic outdoor experience sharing? To explore the
feasibility and challenges underlying this vision, we design
POI360, a portable interactive 360◦ video telephony system
that jointly investigates both panoramic video compression
and responsive video stream rate control. For the challenge
that the legacy spatial compression algorithms for 360◦ video
su�er from severe quality �uctuations as the user changes
her region-of-interest (ROI), we design an adaptive compres-
sion scheme, which dynamically adjusts the compression
strategy to stabilize the video quality within ROI under vari-
ous user input and network condition. In addition, to meet
the responsiveness requirement of panoramic video tele-
phony, we leverage the diagnostic statistics on commodity
phones to promptly detect cellular link congestion, hence
signi�cantly boosting the rate control responsiveness. Exten-
sive �eld tests for our real-time POI360 prototype validate
its e�ectiveness in enabling panoramic video telephony over
the highly dynamic cellular networks.

CCS CONCEPTS
• Networks → Cross-layer protocols;

KEYWORDS
360 degree video; LTE; cellular network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
CoNEXT ’17, Incheon, Republic of Korea
© 2017 ACM. 978-1-4503-5422-6/17/12. . . $15.00
DOI: 10.1145/3143361.3143381

360° live video streamControl

Virtual 360° cockpit

Out of Wi-Fi coverage

Cellular BS

Figure 1: Example application scenario for portable in-
teractive 360◦ video telephony over cellular networks.

1 INTRODUCTION
Panoramic videos, also known as 360◦ videos, is gaining
traction in the consumer electronics and mobile application
ecosystem. Many video content providers [9, 45] recently
started to stream 360◦ videos, which are usually captured
by omnidirectional cameras, and can be viewed by virtual
reality head-mounted-displays (VR HMDs), such as Oculus
Rift, Google Daydream, HTC VIVE, and Samsung GearVR.
Besides fetching 360◦ videos stored on a server, the emerging
mobile 360◦ stereoscopic cameras [22, 25, 29, 34], combined
with the mobile HMDs, can potentially enable a new wave
of interactive 360◦ video services that capture & stream 360◦
videos in real-time. Some examples include elevating current
2D video chat into 360◦ video chat, panoramic live broad-
casting for outdoor events, and �ying a drone remotely as
if sitting inside a virtual cockpit (Fig. 1). However, existing
works mainly investigate on-demand 360◦ video streaming
from contend providers, while the area of interactive 360◦
video telephony remains mostly unexplored.

In this paper, we present POI360, the �rst POrtable Interac-
tive 360◦ video telephony system running over existing LTE
cellular network. Two major challenges emerge in realizing
POI360: (i) Portability. To perform ubiquitous live streaming
even out of the Wi-Fi coverage, POI360 relies on the mobile
broadband. However, a 360◦ video contains views in every
direction and must entail high resolution for the near-eye dis-
play of HMD, which translates into a bitrate of tens of Mbps
and drastically overloads the LTE uplink (median bandwidth
around 2.2 Mbps [13]). (ii) Interactivity. POI360 confronts an
intrinsic con�ict between the strict latency requirement of
interactive video and the highly dynamic cellular network
condition. The situation is even more challenging when the

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Xiufeng Xie and Xinyu Zhang

heavy 360◦ video tra�c pushes the cellular link to its limit,
as a �uctuating link bandwidth can easily fall below the high
tra�c load. POI360’s rate control must detect this and reduce
the tra�c rate promptly to prevent video freezes.

To meet these challenges, POI360 design achieves both
e�cient compression to curtail the overwhelming bitrate
of 360◦ video stream, and responsive rate control to facili-
tate smooth real-time video telephony. (i) Although existing
works on 360◦ video compression [11, 24, 30, 33] can reduce
the tra�c load by prioritizing the encoding quality of the
region-of-interest (ROI) in a 360◦ video frame, the highly
dynamic cellular network latency may easily fail such ROI-
based compression, as the sender’s ROI knowledge may lag
behind the remote user’s actual ROI, causing mismatches
between the sender-allocated encoding quality and user-
perceived display quality, and thus severe quality �uctua-
tions (§3). POI360 answers this challenge with an adaptive
spatial compression algorithm – It dynamically tunes the en-
coding quality distribution across the 360◦ panorama based
on the ROI update responsiveness, thus guarantees a stable
user-perceived quality even during user ROI change. (ii) To
boost the responsiveness of rate control, since cellular uplink
is the typical network bottleneck for interactive video (§3),
POI360 monitors the cellular device’s uplink �rmware bu�er
occupancy to instantaneously detect any uplink congestion.
Upon congestion, POI360 degrades its uploading bitrate to
the windowed-sum of cellular uplink transport block size
(TBS), which is the guaranteed bandwidth.

We have implemented a POI360 prototype over commer-
cial LTE networks. Targeting VR HMD using smartphone as
screen, POI360 runs in mobile browsers, and our implementa-
tion integrates WebRTC [18] which serves as the back-end of
most interactive video services [40], and WebGL, which con-
verts the 360◦ video stream to the HMD-compatible stereo-
scopic view in the browser. We implement POI360’s cellular-
link-informed rate control in the WebRTC module of the
Chromium browser. The required cellular physical-layer
statistics, including the �rmware bu�er level and TBS, are
read from the diagnostic interface on commodity phones.
Therefore, POI360 requires no hardware modi�cation and is
readily deployable. Our run-time experiments demonstrate
that POI360’s adaptive spatial compression algorithm sig-
ni�cantly outperforms existing benchmark algorithms, and
POI360’s rate control is much more responsive than conven-
tional solutions that rely on end-to-end delay/loss metrics.
We have also conducted �eld tests under various locations
and mobility levels, which con�rm POI360’s e�ectiveness in
enabling real-time interactive 360◦ video services over LTE.

The contributions of POI360 are summarized as follows:
(i) To the best of our knowledge, POI360 is the �rst portable

interactive 360◦ video telephony system customized for ex-
isting LTE cellular network infrastructure.

tCompression

tViewer

Frame interval

Frame latency

Streaming

Raw frames

ROI

Region-Of-Interest (ROI)

Sender

High quality
Low quality

Figure 2: ROI-based compression for 360◦ video.

(ii) POI360 features a novel adaptive spatial compression
scheme for 360◦ video, which dynamically tunes the compres-
sion strategy to �t the varying cellular network conditions.
(iii) POI360’s awareness of cellular link statistics enables

prompt adaptation to facilitate smooth 360◦ video telephony.

2 BACKGROUND FOR 360◦ VIDEO
360◦ videos are typically shot using an array of cameras [32]
whose �eld-of-view (FoV) together covers 360◦. The video
frames captured from each camera at the same moment are
stitched and then projected onto a sphere, which is further
mapped to a planar format as one 360◦ video frame. This
is known as equirectangular projection and the world map
is a classical example. To further compress the video data,
alternative conversion schemes instead project the sphere
into a cube [8] or pyramid [10]. Nonetheless, the bitrate of
a 360◦ video (e.g., tens of Mbps for 4K video [11]) typically
exceeds the bandwidth of wireless links [15].

To alleviate the bandwidth crunch, the region-of-interest
(ROI) streaming has been proposed [6, 24, 33, 35, 39]. Human
eyes have limited FoV, and the vision resolution is high at
the central visual �eld (fovea) but drops almost quadratically
with distance from the center. Accordingly, the resolution
of regions near the visual periphery or even out of FoV can
be compressed more aggressively. As shown in Fig. 2, by
estimating the viewer’s foveation using head-orientation
sensors inside a VR HMD, the video sever can selectively
compress the video quality—the ROI will be delivered with
high resolution while the remaining regions will have lower
quality. Such ROI streaming mechanisms can bring the band-
width cost to a level that can be supported even in cellular
networks [30]. Besides orientation sensors, alternative ap-
proaches can further narrow down the ROI, e.g., using an
eye-tracking camera to track the viewer’s focus [35], using se-
mantic analysis of the video frame content or crowd-sourced
viewing statistics [11, 28, 30]. Although this work focuses on
the head-orientation-based ROI compression, our solution
can be potentially applied to such systems.

POI360 CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

High	
quality

Low
quality

Low
quality

Sender

Viewer

Frame

High	
quality

Low
quality

Low
quality

Viewer

Sender

Frame
Viewer

changes ROI

New ROI

Figure 3: Problem for ROI-based compression: viewer
ROI change causes user-perceived quality �uctuation.

Conservative
compression

Aggressive
compression

Video quality

Spatial position in frame

Smooth quality drop
Sharp quality drop

ROI change

ROI center

ROI change

Figure 4: Trade-o� between compression ratio and
user-perceived quality stability during ROI update.
3 CHALLENGES & SOLUTION SPACE
In this section, we investigate the challenges for realizing
portable interactive panoramic video telephony over cellular
networks, and explore the corresponding solution spaces.

3.1 ROI Quality Fluctuation.
Challenge I. When running over highly dynamic cellular
networks with much longer and unstabler latency than the
wireline access networks [46], ROI-based spatial compres-
sion causes frequent user-perceived video quality �uctua-
tions for the ROI region as the user view changes. As shown
in Fig. 3, due to the network latency of ROI feedback, the
panoramic video sender and viewer may have inconsistent
knowledge of the viewer’s current ROI, thus there can be
a temporary mismatch between the sender-allocated qual-
ity and user-perceived quality for the ROI region whenever
the user view changes, causing quality �uctuations and user
sickness. In §6, we further verify this phenomenon through
real-time experiments (Fig. 12b). We note that motion-based
ROI prediction [2, 21] cannot fully solve this problem as its
prediction horizon is still shorter than the end-to-end latency
of mobile interactive video sessions (§8).

Solution space I. To mitigate the quality �uctuation, we
need to address the trade-o� between the compression ag-
gressiveness and the stability of ROI quality. An aggressive
compression mode can focus the quality on a small ROI
while minimizing the non-ROI bitrate. But it is sensitive
to the ROI changes as the user’s FoV can easily enter the
non-ROI region. So it applies only to networks with small

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25S
u
m

 U
L
 T

B
S

/s
 (

M
b
p
s
)

Firmware Buffer Status (KByte)

Figure 5: The relation be-
tween �rmware bu�er oc-
cupancy and TBS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Firmware Buffer Level (KByte)

Figure 6: Uplink �rmware
bu�er level under We-
bRTC rate control.

feedback latency. On the other hand, a conservative compres-
sion mode that distributes the quality more evenly across
spatial regions is suitable for high-latency networks in order
to keep stable video quality in ROI region even under laggy
ROI feedback, but has to sacri�ce the quality itself to �t the
entire frame within limited network bandwidth. To make
the situation worse, cellular networks latency is also highly
dynamic due to the varying wireless environment, causing
unstable responsiveness of the end-to-end ROI update.

To resolve these issues, instead of sticking to a �xed com-
pression mode, we can dynamically switch across di�erent
modes based on the responsiveness of ROI update, as shown
in Fig. 4. In this way, we can aggressively reduce the tra�c
load when current network condition allows the sender to
responsively update its ROI knowledge, and conservatively
compress the stream to maintain a stable video quality when
the end-to-end ROI update becomes sluggish.

3.2 Video Rate Control Responsiveness
Challenge II. The rate control algorithms must responsively
adapt the panoramic video encoding bitrate based on net-
work conditions, to avoid congestion and video freeze. How-
ever, existing video bitrate adaptation algorithms for interac-
tive videos commonly adopt end-to-end network condition
estimation (§2).Such strategies fail to meet the responsive-
ness requirement of interactive panoramic video, especially
over highly dynamic cellular networks (experimental evi-
dences will be shown in §6).

Solution space II. For panoramic video telephony, cel-
lular uplink is typically the network bottleneck, but needs
to sustain the same tra�c load as the downlink or wireline
segments. Therefore, the sender can bypass the sluggish end-
to-end metrics, and directly execute congestion detection
and bandwidth estimation for the cellular uplink alone.

3.3 Uplink Bandwidth Underutilization.
Challenge III. Due to the use of proportional fair schedul-
ing in LTE networks [44], the user device’s uplink �rmware
bu�er has an unique feature – its service rate depends on its
own bu�er occupancy. Fig. 5 showcases this e�ect, where
we measure the bu�er size and uplink throughput Rphy (indi-
cated by the TBS) on an LTE smartphone. With small bu�er

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Xiufeng Xie and Xinyu Zhang

Firmware	Buffer	
Aware	Rate	Control

Firmware	
Buffer

Buffer level

360° Cam

Encoded stream

RTP packets

Cellular uplink

ROI

Congestion indicator

Sender

Adaptive	Spatial	
Compression

Compressed frames

WebRTC

Viewer

Figure 7: POI360 system architecture.
size, the Rphy increases almost linearly with the bu�er size,
and saturates when reaching the uplink bandwidth. Unaware
of this e�ect, generic video rate control frames, like WebRTC,
simply set the RTP sending rate Rr tp to match the video bit-
rate Rv . However, a temporary uplink bandwidth surge can
drain the bu�er quickly, and the RTP sender may leave the
bu�er empty as it needs to follow the Rv cap, even if there
exists pending tra�c at the video application layer. As an
evidence, Fig. 6 plots the CDF of uplink bu�er level when
streaming a 4K panoramic video through an LTE phone
(more details about the setup are in §5). We see that the up-
link bu�er becomes empty for 40% of the time, even though
the tra�c always exceeds the available bandwidth.

Solution space III.The knowledge of the uplink �rmware
bu�er level opens a new opportunity to address this chal-
lenge. In particular, the sender can push the �rmware bu�er
level to a “sweet” region which is far from congestion but
still high enough to harness the bandwidth provisioned by
the basestation’s uplink scheduling. As the video encoding
bitrate Rv should not be changed too fast to avoid quality
�uctuations that may degrade user experience, we keep up-
dating the RTP sending rate Rr tp based on the instantaneous
bu�er level to keep it in the “sweet” region.

4 POI360 SYSTEM DESIGN
In this section, we present our POI360 system design to ex-
ploit the solution space discussed in §3. As outlined in Fig. 7,
the POI360 sender �rst applies adaptive spatial compression
to perform ROI-based spatial compression to the input 360◦
video stream while adapting the compression mode based
on current network condition, the ROI-compressed stream
is then encoded by the legacy WebRTC framework[18] (by
default the VP8 encoder) which performs temporal compres-
sion to the frames. The sender then uses �rmware bu�er
aware rate control to e�ciently deliver the encoded stream to
the remote viewer wearing a VR HMD. Packet losses and re-
bu�ering during streaming are handled by WebRTC’s builtin

ROI center

Raw 360° frame

Compressed frame

Compress
(Sender)

Unfold
(Client)

Tile size
(quality)

Spatial position

Compression mode

x

y

Figure 8: POI360 video
compression model.

Packet	Pacer

Video bitrate

RTP bitrate

PHY throughput

Cellular	
Firmware	Buffer

Application
layer

Transport
layer

Physical
layer

Panoramic	
Video	Encoding

Figure 9: POI360 rate con-
trol model.

mechanisms[14]. In what follows, we introduce POI360’s
system model (§4.1), and then describe its two major design
modules (§4.2 and §4.3) in more detail.

4.1 System Model
360◦ frame compression. As illustrated in Fig. 8, POI360
compresses 360◦ video stream at the video frame level. Each
raw 360◦ video frame is �rst spatially segmented into small
tiles, which are then compressed separately based on their rel-
ative position w.r.t. the user’s current ROI center. Finally, all
tiles of a video frame are stitched together and sent through
the cellular uplink. Based on Fig. 8, we de�ne several com-
pression parameters to be used across the paper. Let i denote
a tile’s position in the x-axis while j denote its position in
the y-axis in a 360◦ video frame. The center of the user’s
current ROI is a tile whose position is denoted as r = (i∗, j∗).
We de�ne compression level li j as the ratio of tile size before
and after compression, and compression matrix L is the ma-
trix of compression level li j for all tiles. We further de�ne
compression mode F as the mapping that determines the
compression level li j of each tile based on the distance be-
tween its position (i, j) and the current ROI center r = (i∗, j∗),
i.e., li j = F (i − i∗, j − j∗). The basic principle behind POI360’s
compression mechanism is to use higher compression level
for the tiles further away from the ROI center r , and the cen-
ter itself should always have the lowest compression level
lmin . In our current POI360 prototype, we implement the
compression by scaling down the width and length of each
tile based on its distance to the ROI center, i.e., the compres-
sion ratio for the tile width is Ci−i∗ and similarly C j−j∗ for
the tile height, where C > 1 is a constant value controlling
the compression aggressiveness for this compression mode.
As a result, the compression mode is essentially de�ned as:

li j = F (i − i
∗, j − j∗) = C(i−i

∗)+(j−j∗) (1)
Under a certain compression mode, when the ROI center

shifts with the user’s head position, the compression matrix
will be updated following Eq. (1), which is essentially a cyclic
shift based on the shift of ROI center.

POI360 CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

360◦ video stream rate control. As shown in Fig. 9,
POI360 uses a cross-layer rate control model at the video
sender, which contains two important bu�ers: the video
bu�er in the application layer, and the �rmware bu�er in
the LTE PHY layer. Below are the crucial model parameters:
360◦ video encoding bitrate (Rv) determines the bitrate of

the compressed video source, i.e., tra�c injection rate (video
quality) into the video bu�er.
RTP sending rate (Rr tp) in the transport layer parameter

controlling the outgoing tra�c of the video bu�er and the
input tra�c into the cellular �rmware bu�er.

PHY-layer throughput (Rphy) determines the outgoing traf-
�c of the cellular �rmware bu�er. Rphy is controlled by the
BS’s uplink scheduling policy. However, as will be clari�ed
soon, POI360 can indirectly a�ect Rphy by controlling Rr tp .

From the diagnostic interface on commodity smartphones,
we can extract the LTE physical-layer statistics including the
uplink �rmware bu�er level (B) and uplink transport block
size or TBS (Ptbs), for every LTE uplink subframe [23].

4.2 Adaptive Spatial Compression
POI360’s adaptive compression module aim to tame the
360◦ video quality �uctuations caused by ROI changes. As
discussed in §4.1, for ROI-based compression, the sender
needs to keep updating the compression matrix L(t) based
on rs (t) = (i

∗
s , j
∗
s), its current knowledge of the client-side

ROI. Due to the end-to-end feedback latency df , the sender’s
knowledge of the viewer’s ROI position rs (t) lags behind the
actual value rc (t), i.e., rs (t) = rc (t −df). As a result, when the
viewer shifts her ROI to rs (t) at time t , the sender will keep
using the previous ROI rc (t −df) to compress the 360◦ video
stream until t +df . In this duration, the user view has shifted
to the new region, while the sender has not updated the
compression level for this region yet. So the viewer observes
a quality drop in ROI since time t , and then experiences a
quality surge at time t + df + dv (where dv denotes the one-
way video frame delay), as it takes some time for the sender
to be aware of an ROI change and deliver the video frames
compressed with updated ROI to the viewer. Such quality
�uctuations severely degrade the user experience[19].

To address this issue, POI360’s adaptive spatial compres-
sion allows the sender to gauge the responsiveness of the
end-to-end ROI update, and then adopt the spatial compres-
sion mode F that best �ts current responsiveness level. Un-
der swift ROI update, the sender can aggressively compress
the non-ROI regions. On the other hand, under sluggish ROI
update, the sender should create a smooth quality transition
from ROI to the non-ROI regions, as the compressed content
may be temporarily displayed in the new ROI. The key chal-
lenge here is to precisely estimate the end-to-end ROI update
responsiveness. As shown in Fig. 10, this responsiveness is af-
fected by 3 factors: (i) The ROI feedback delay df determines

t
ROI Stream compressed with new ROI

ROI mismatch time

New ROI quality converged

Sender

Viewer t
ROI change

Update ROI knowledge

Figure 10: ROI mismatch due to network latency.
how long it takes for the sender to be aware of an ROI change.
(ii) The one-way video frame delay dv re�ects how long it
takes for the 360◦ video stream compressed with the updated
ROI to arrive at the client. (iii) The ROI stability shows how
often the user changes the ROI and by how much.

POI360 employs a single metric, the ROI mismatch time
(M) to capture all these factors. As shown in Fig. 10, M is
de�ned as the time interval during which the 360◦ video
sender and client have inconsistent knowledge of the user’s
ROI. When the network causes higher ROI feedback latency,
M will be higher. Similarly, when the network causes higher
video frame delay, it takes longer for the frames with updated
ROI to reach the client, leading to higher M as well. Finally,
when the user switches the ROI consecutively, inconsistency
becomes more severe, again leading to higher M .

POI360 measures M by monitoring the ROI video quality
at the client side: Ideally, the ROI region should always enjoy
the highest quality. In other words, the ROI compression level
l(i∗c , j

∗
c) should equal lmin . However, when the user quickly

switches to a new ROI, her head may temporarily point to a
low-quality region. Following Eq. (2), POI360 measures M at
the time scale of every 360◦ video frame.

M =

{
max(t − t0,dv), if l(i∗c , j

∗
c) , lmin

dv , otherwise
(2)

where the client starts counting the time on detecting the
ROI change at time t0, and computes M = max(t − t0,dv) for
the frame coming at time t > t0 until the quality in the new
ROI converges to the highest level. For the frames in which
current ROI already has the lowest compression level, e.g.,
when the user keeps the ROI, we have M = dv , as the update
latency for potential ROI change must be higher than current
frame delay dv . The client then uses a sliding time window
to average across the frame-level measurements of M , and
periodically feeds back the average M to the sender, with the
feedback interval the same as the video frame interval.

After receiving M , to achieve a balance between tra�c
load reduction and the stability of user-perceived ROI qual-
ity, the sender then switches between K pre-de�ned com-
pression modes F1, ...,FK listed in the order of decreasing
compression aggressiveness (smoother quality drop for re-
gions further away from ROI). Our implementation uses
K = 8 and empirically selects the compression mode Fim
with im = max(8, dM/200mse), and the constant C in Eq. (1)
is selected from [1.1, 1.2, ..., 1.8] for the 8 compression modes,
representing 8 levels of compression aggressiveness.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Xiufeng Xie and Xinyu Zhang

4.3 Firmware Bu�er Aware Congestion
Control

POI360’s Firmware Bu�er Aware Congestion Control (FBCC)
aims to address the challenge of irresponsive rate adaptation,
following the solution principle in §3. In what follow, we
describe the details and rationales behind our design choices.

4.3.1 Panoramic video encoding bitrate control. The core
principle behind FBCC’s video bitrate control is to let the
sender promptly detect the overuse of cellular uplink band-
width based on its local cellular �rmware bu�er occupancy,
instead of waiting for the remote peer’s end-to-end con-
gestion measurement feedback. Upon detecting bandwidth
overuse, the panoramic video sender immediately reduces its
encoding bitrate to �t the instantaneous uplink bandwidth,
which is again computed based on the PHY-layer statistics.

How to detect cellular uplink congestion? Conven-
tional congestion control algorithms, like the GCC used in
WebRTC, treat the network as a blackbox and rely on the
end-to-end network delay/loss metrics to detect congestion.
As a result, if a congestion happens, it takes at least one RTT
for the sender of conventional rate control to detect it. In
e�ect, due to the large bu�ers at cellular basestations [42],
those metrics become extremely irresponsive, taking up to
seconds to react to a congestion.

In contrast, FBCC is customized for interactive panoramic
video services running over cellular networks, exploiting
the fact that the last-hop cellular path typically bottlenecks
the network path. FBCC is essentially a network-assisted
rate control algorithm, which leverages the uplink �rmware
bu�er occupancy to enable quick detection of potential con-
gestion. Speci�cally, let J ∈ {0, 1} be the congestion indicator
with J = 1 showing a congestion. B(t) denotes the �rmware
bu�er occupancy at time t , and ∆t denotes the report inter-
val of �rmware bu�er occupancy from the phone’s chipset,
FBCC estimates a bandwidth overuse and potential conges-
tion based on the following conditions:

J =

1, if B(t − (n − 1)∆t) > B(t − n∆t)

for n = 1, ...,K and B(t) > Γ(t)

0, otherwise
(3)

Essentially, the FBCC estimates a congestion on detecting
both of the following events: (i) A continuous increases of
�rmware bu�er occupancy B(t) for K consecutive reports
from the chipset. To guarantee the responsiveness, POI360
uses a small K = 10. (ii) Current �rmware bu�er occupancy
B(t) exceeds a threshold Γ(t), which is set to the long-term
average bu�er level and keeps being updated online.

How to throttle the rate on detecting an uplink con-
gestion? After detecting the uplink bandwidth overuse, the
rate control algorithm should reduce the video encoding bi-
trate to avoid potential congestion. While classical congestion-
control solutions throttle the rate following empirical curves,

POI360 can precisely cut the encoding bitrate to �t the in-
stantaneous cellular uplink bandwidth. In particular, the sum
of the TBS (Pwtbs) for allW LTE subframes (with 1ms length)
in a time window divided by the length of the time window
W is the current PHY-layer LTE uplink throughput:

Rphy =

∑W
w=1 P

w
tbs

W
(4)

When an uplink bandwidth overuse is detected (J = 1), the
throughput Rphy on this saturated uplink channel is exactly
the available uplink bandwidth Rbw :

Rbw

{
= Rphy , if J = 1
> Rphy , otherwise

(5)

As a result, after detecting a uplink bandwidth overuse, FBCC
directly sets the encoding bitrate toTu based on Eq. (4). Note
that POI360 resorts to Tu only under congestion, because Tu
represents the current rate that the client can exploit, but
cannot indicate the potential rate it can explore.

Handling congestion elsewhere. In certain rare cases,
congestion can happen elsewhere along the end-to-end path,
e.g., due to the unpredictable heavy cross tra�c. POI360
detects and handles such cases by degrading to the legacy
WebRTC [18] end-to-end congestion control (discussed in
§7), Google Congestion Control (GCC). More speci�cally,
let Rдcc denote the bitrate selected by the legacy GCC al-
gorithm, and t∗ denote the moment when a cellular uplink
congestion is detected, POI360 combines both the cellular
uplink congestion control and legacy end-to-end congestion
control for encoding bitrate adaptation as follows:

Rv (t) =

{∑W
w=1 P

w
tbs

W , if t∗ ≤ t ≤ t∗ + 2RTT
Rдcc (t), otherwise

(6)

As shown in the above equation, (i) When the cellular uplink
becomes the bottleneck (J = 1 detected at t = t∗), POI360
immediately reduces the encoding bitrate Rv to the cellu-
lar uplink bandwidth Rbw computed by Eq. (5). In this way,
POI360 is more responsive than GCC as its congestion con-
trol does not wait for the reduced Rдcc feedback from the
remote peer. Furthermore, our solution is also more accurate
as it directly converges to the cellular uplink bandwidth, in-
stead of sharply reducing the rate and probing the bandwidth
again. (ii) When J = 0, the congestion happens elsewhere,
or there is no congestion at all. By setting the encoding
bitrate Rv to Rдcc , the selected bitrate from the WebRTC
client, POI360 reuses the legacy WebRTC congestion control
logic to handle network congestion elsewhere. Similarly, if
there is no congestion, uplink congestion control will not be
triggered, so we still have Rv = Rдcc .

Note that after a bandwidth overuse occurs at the cellular
uplink (t∗ < t ≤ t∗ +RTT), legacy GCC at the client side will
also detect a bandwidth overuse and then noti�es the sender
to throttle the rate by sharply reducing the Rдcc to feedback,

POI360 CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

which arrives the sender one RTT after our algorithm reduces
the rate to Rbw . In other words, the di�erent responsiveness
of sender-based and client-based algorithms may causes two
consecutive rate reductions on a single bandwidth overuse
event. To avoid this, as in Eq. (6), our design keeps forcing the
video encoding bitrate to the PHY-layer uplink bandwidth
Rbw within a duration of 2 RTTs (in cases the RTT itself
changes) after an uplink bandwidth overuse is detected.

We also emphasize that FBCC reduces the 360◦ video en-
coding bitrate, rather than the transport-layer bitrate, when
bandwidth overuse occurs. As shown in Fig. 9, if we throttle
the transport-layer bitrate on an uplink bandwidth overuse,
it simply changes the queuing location from the �rmware
packet bu�er to the application-layer packet bu�er, but the
total queue length remains unchanged. The only ways to
clear the queues are to throttle the source tra�c rate and
increase the physical-layer service rate. The encoding rate
control essentially throttles the source tra�c rate. In what
follows, we introduce how FBCC boosts the physical-layer
service rate by properly adapting the transport-layer bitrate.

4.3.2 Cellular-Link-Informed RTP Rate Control. As dis-
cussed in §3.3, conventional rate control may unnecessarily
leave the cellular �rmware bu�er empty due to the poor
interaction between the video bitrate control and transport
rate control. FBCC addresses this issue by pushing the local
�rmware bu�er level to the “sweet spot” that maximizes
bandwidth utilization without causing congestion. Since it
cannot directly change the �rmware bu�er level, FBCC in-
directly controls the bu�er level by controlling the bu�er’s
input – the RTP sending bitrate. The algorithm works with
a time granularity of Dp , which is the feedback interval of
the bu�er level from the chipset (40ms in our test device).

At the beginning of each time epoch with duration Dp ,
the RTP rate controller monitors the occupancy of �rmware
bu�er B(t). When it drops below the target bu�er level B∗phy
corresponding to the optimal cellular uplink rate, it updates
its current RTP sending rate Rr tp (t) following:

Rr tp (t) = Rr tp (t − Dp) +
(
B∗phy − B(t)

)
/Dp (7)

The physical meaning of Eq. (7) is to increase the RTP
bitrate so that the bu�er level can reach the target level when
the next time epoch starts. The optimal �rmware bu�er level
B∗phy depends on the consistent uplink scheduling policy of
the LTE BS, which can be learnt from previous transmissions.
In the rare cases when the cellular uplink is not the network
bottleneck, the video encoding bitrate Rv (t) is bounded by
the network bottleneck bandwidth as in Eq. (6), and we may
have Rv (t) < Rr tp (t), i.e., the uplink �rmware bu�er can still
drain out, but that prevents the congestion at the network
bottleneck. We also note that this design does not a�ect the
fairness to other cellular users, because the LTE BS controls
the fairness in uplink scheduling.

5 IMPLEMENTATION
Browser-based adaptive spatial compression. We imple-
ment POI360’s spatial compression algorithm using HTML5.
Speci�cally, every raw 360◦ video frame is divided to small
tiles (12 × 8 tiles in our implementation) by writing each
tile to a separate HTML5 canvas. The size of each tile is
compressed based on current compression mode F . The
compressed tiles are then stitched together in one HTML5
canvas, in which the sender also embeds its current compres-
sion mode and its knowledge of the viewer’s ROI. Finally,
the browser’s WebRTC module captures and encodes the
outgoing video stream from this canvas. After receiving the
compressed video stream, the client �rst infers the sender’s
compression matrix using the information embedded inside
each received video frame and then unfolds this compressed
frame accordingly. Then the client uses WebGL to render the
unfolded video frame as stereoscopic view for left and right
eyes, which can be viewed with stereoscope VR headsets like
Google cardboard. Since the 360◦ video stream is captured
from real world, rather than generated based on a real-time
3D engine, and the ROI-compressed video frame dimension
become comparable to that of conventional video, the com-
putational overhead and latency of 360◦ video encoding and
rendering for POI360 are comparable to WebRTC-based con-
ventional video telephony like Google Hangout.

Besides rendering the stream, the client also keeps up-
dating current ROI based on the user input like the motion
sensor reading on the phone, and periodically feeds back cur-
rent user ROI to the sender via WebRTC data channel. The
feedback interval is set to the video frame interval 1. Mean-
while, the client also keeps monitoring the responsiveness
(M discussed in §4.2) of the end-to-end ROI update, which
is also fed back via the WebRTC data channel. Based on M ,
the sender then adapts its compression mode following §4.2.

FirmwareBu�erAwareCongestionControl. POI360’s
cellular-link-informed rate control obtains the physical-layer
statistics from the diagnostic interface, which is available on
most commodity phones. So it requires no hardware modi�-
cations and is readily deployable. Following the implemen-
tation of MobileInsight[23], the POI360 prototype uses our
customized real-time log decoder to read the phone’s diag-
nostic interface and obtains the LTE uplink TBS and the
uplink �rmware bu�er level for every 40ms. These cellular
physical layer statics are then written to shared memory
which is also accessed by POI360’s FBCC algorithm. We in-
tegrate FBCC into the WebRTC module in the open-source
Chromium browser by modifying the GCC implementation
in WebRTC source code.
1Since both the WebRTC data channel and video stream run over UDP,
current LTE BS gives the same priority to the ROI feedback and video data.
In future 5G networks with more �exible �ow control, the BS may schedule
the ROI feedback at higher priority to further improve performance.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Xiufeng Xie and Xinyu Zhang

360◦ video telephony performancemeasurement. (i)
End-to-end video frame delay measurement. The core idea is
to embed the sending timestamp of a video frame inside
the frame itself, the receiver then extracts the sending time
from the received frame and subtracts it from local time to
compute the delay. The sender and receiver are synchronized
using NTP. Each decimal bit of the sending timestamp (with
millisecond resolution) is encoded using a colored square
block, with the number from 0 to 9 mapping to 10 colors with
uniform separation in the RGB code space. These blocks are
then appended to the side of the outgoing video frame.At
the client side, the RGB values of pixels within each colored
block region of the received frame are averaged and then
mapped back to the decimal number.
(ii) 360◦ video quality measurement. Video quality mea-

surement requires comparison between the original and the
received video frame. However, for 360◦ video, the users
only care about the quality within ROI, as other regions are
not rendered. Therefore our measurement system matches
sender-side and client-side frames in both time and space do-
main to facilitate 360◦ video quality measurement. In particu-
lar, the client only dumps the ROI of its received frame, along
with the corresponding ROI position (i∗c , j∗c). The sender, on
the other hand, may have stale ROI knowledge due to the
network latency, so it has to dump the entire frame. Finally,
in the ROI comparison, we crop the ROI region from the orig-
inal frame based on the client’s corresponding ROI position.

6 POI360 EVALUATION
In this section, we �rst use micro-benchmark experiments
(§6.1) to validate POI360’s design components, including
the adaptive spatial compression (§6.1.1) and the FBCC rate
control (§6.1.2), and demonstrate the individual performance
gain contributed by each of them, Then we conduct extensive
system level tests for our real-time POI360 prototype under
various network conditions (§6.2). Our experiments run on
a commercial LTE network using LG Nexus 5 D820 smart-
phones. To obtain representative human-controlled ROI, we
invite 5 users to participate in the experiments. Since the
behavior of an user’s ROI is highly correlated with the video
content, we use di�erent 360◦ video for each user to avoid
over�tting. To guarantee repeatable 360◦ video tra�c load
in experiments, we use virtual webcam[41] to live stream
the same 360◦ video with 4K resolution when repeating the
experiments for a user. In our experiments, each 360◦ video
telephony session runs for 5 minutes, and each user repeats
the test session for 10 times. Due to the limited LTE band-
width, other network applications running on the same de-
vice can degrade POI360 performance. To isolate such e�ects,
we turn o� other data consuming applications on the phone.

6.1 Microbenchmarks

MOS Video Quality PSNR Range (dB)
Excellent > 37

Good 31 ∼ 37

Fair 25 ∼ 31

Poor 20 ∼ 25

Bad < 20

Table 1: Mapping PSNR to Mean Opinion Score (MOS).

 0

 10

 20

 30

 40

POI360 Conduit Pyramid

P
S

N
R

 (
d

B
)

(a) PSNR over wireline.

 0

 10

 20

 30

 40

POI360 Conduit Pyramid

P
S

N
R

 (
d

B
)

(b) PSNR over cellular.

 0

 0.2

 0.4

 0.6

 0.8

 1

Bad Poor Fair Good EXC
P

D
F

POI360
Conduit
Pyramid

(c) MOS over wireline.

 0

 0.2

 0.4

 0.6

 0.8

 1

Bad Poor Fair Good EXC

P
D

F

POI360
Conduit
Pyramid

(d) MOS over cellular.

Figure 11: Comparing video quality under POI360
compression and benchmark algorithms.

6.1.1 Adaptive Spatial Compression. We �rst verify the
adaptive spatial compression. To highlight the e�ectiveness
of POI360’s design customized for cellular networks, the
same set of experiments are also repeated over a wireline net-
work on a university campus. Speci�cally, we run a POI360
session with two laptops, and the Internet access of both
laptops are provided by either wireline connection or LTE.
To isolate the impact of network protocols, we use GCC,
WebRTC’s default rate control (§2), as the transport layer.

We compare POI360 with two benchmark panoramic video
compression schemes including Conduit[1] and Pyramid
encoding[7]. Conduit crops the ROI region from the panorama
video frame and only streams the cropped parts. To avoid
displaying blank frame, we still send the non-ROI regions
for Conduit but with the lowest possible quality. Pyramid
encoding centers the panorama video frame at the ROI, and
then allocates the center region the highest quality and ag-
gressively compresses the contents in the 4 corners based on
their distance to the center. Based on our system mode (§4.1),
Conduit can be considered as a very aggressive compression
mode with a sharp quality distribution curve, whereas Pyra-
mid encoding adopts a conservative compression scheme
with smooth quality distribution, so it can better handle the
ROI shifting at the cost of higher tra�c load. However, both
algorithms are incapable of dynamically adapting the com-
pression modes based on the network conditions. Besides,
motion-prediction based compression[30] does not work in
our application scenario (§8), thus is not compared here.

POI360 CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

User-perceived video quality in ROI. We �rst evaluate
the user-perceived ROI quality based on the aforementioned
setup. First, Fig. 11a and 11b plot the average PSNR within
the ROI region over both cellular and wireline networks,
with error bars showing the standard deviation of PSNR
value. We can observe that POI360’s compression algorithm
achieves the highest PSNR within the ROI region. In wireline
networks, all the algorithms perform reasonably well. How-
ever, Conduit and Pyramid su�er from signi�cant quality
loss when running over cellular networks, with 11 to 13 dB
lower PSNR than POI360. Such disparate performance comes
from POI360’s capability to adapt the compression modes
based on the network latency that a�ects the end-to-end ROI
update responsiveness. POI360 can e�ectively switch to the
proper spatial compression mode that best �ts the current
network condition. In contrast, when a viewer changes ROI
in Conduit, the remote peer cannot update its knowledge of
the viewer’s ROI in time. So the viewer can only see com-
pressed regions with low quality. Pyramid shows slightly
higher PSNR than Conduit, as it has a smoother spatial qual-
ity distribution, and hence less quality drop during the ROI
shift.

To understand the viewer’s subjective experience, in Fig. 11c
and 11d, we further plot the PDF of the Mean Opinion Score
(MOS) computed based on the frame-level PSNR, following
the well-known relation between the MOS and PSNR[36]
summarized in Table 1. We see that POI360 achieves the best
MOS over both cellular and wireline networks. In particular,
over cellular networks, 52% of its frames have good quality
while 4% have excellent quality. Conduit does not provide
any frame with good or excellent quality, and Pyramid only
has 7% frames with good quality. Even in wireline networks,
POI360 has more than half of the frames with excellent qual-
ity and the rest of the frames with good quality, substantially
outperforming both Conduit and Pyramid.

We emphasize that POI360’s performance gain mainly
comes from its principle of adaptive compression. The com-
pression itself is taking e�ect just like other schemes. For
example, given a 360◦ video with 12.65Mbps raw bitrate, the
received stream bitrate at the POI360 client is only around
3Mbps, reduced by 76% (more in §6.1.2 and Fig. 16a).

Video quality stability in ROI. Besides video quality
itself, the short-term stability of video quality is also vital
for user experience[19]. We characterize this stability by the
standard deviation of the ROI compression level in a 2 sec-
ond sliding window. The CDF plot in Fig. 12a shows that
all the algorithms have small quality variation in wireline
networks with relatively stable network condition and small
RTTs. In contrast, in cellular networks (Fig. 12b), Conduit
and Pyramid show poor stability, with 5× and 14× higher
std. than POI360. This is because the large and unstable RTT
of cellular networks makes the end-to-end ROI update laggy,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Short-term comp. level variation (std.)

POI360
Conduit
Pyramid

(a) ROI region compression
level variation over wireline.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Short-term comp. level variation (std.)

POI360
Conduit
Pyramid

(b) ROI region compression
level variation over cellular.

Figure 12: Short-termROI compression level variation
(std. value of ROI compression level in a 2s window).
causing the �uctuating compression level in the actual ROI.
The problem is especially severe for Conduit, as it only has 2
compression levels, thus ROI shifting triggers unacceptable
video quality oscillation between the high/low levels. Using
more compression levels, Pyramid smooths out the transi-
tion, thus achieving better stability than Conduit. However,
its rigid spatial compression mode still cannot �t all condi-
tions in the highly dynamic cellular networks. In contrast,
POI360 achieves the best stability as it can always adapt to
the compression mode best �tting current network condi-
tion.

360◦ video frame delay.We now analyze the frame-level
delay performance collected from the same set of experi-
ments. Fig. 13a plots the CDF of frame delay over the wireline
network. We can observe that POI360’s compression algo-
rithm achieves the lowest video delay. Furthermore, in cellu-
lar networks (Fig. 13b), POI360 achieves a median delay of
460ms, 15% less than Conduit which aggressive compression,
because its adaptive design can switch to more aggresive
compression modes than Conduit under bad network condi-
tion, or prioritize the video quality when the network allows.
In other words, POI360’s better ROI quality and stability
come without sacri�cing the crucial delay performance. This
delay is also comparable to the conventional video telephony
delay over cellular networks measured in existing works[46].
We emphasize that end-to-end frame delay is not frame in-
terval, as shown in Fig. 2, e.g., a video stream can be delayed
by 460ms while keeping a 36FPS frame rate. Pyramid encod-
ing has higher video delay than Conduit, as it compresses
the non-ROI regions less aggressively. In contrast, POI360
strikes a balance between video quality and delay: When the
end-to-end ROI update is responsive, it can aggressively crop
and stream only the high-quality ROI like Conduit; When
the ROI update becomes sluggish, it can distribute the video
quality more evenly across the frame like Pyramid encoding.

Video frame freezing ratio. Based on the video frame
delay, we then compute the frame freezing ratio, the most
crucial user experience metric. We de�ne freezing ratio (FR)
as the percentage of video frames that experience higher than
600ms delay. Fig. 14a shows that all algorithms work prop-
erly in wireline networks, with FR below 2%, and POI360
has the lowest FR of 0.6%. However, in cellular networks

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Xiufeng Xie and Xinyu Zhang

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Video Frame Delay (ms)

POI360
Conduit
Pyramid

(a) Frame delay (wireline).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Video Frame Delay (ms)

POI360
Conduit
Pyramid

(b) Frame delay (cellular).

Figure 13: 360◦ video frame delay under POI360 com-
pression and benchmark algorithms.

 0

 4

 8

 12

 16

 20

POI360 Conduit Pyramid

V
id

e
o

 F
re

e
z
e

 R
a

ti
o

 (
%

)

(a) Freeze ratio (wireline).

 0

 4

 8

 12

 16

 20

POI360 Conduit Pyramid

V
id

e
o

 F
re

e
z
e

 R
a

ti
o

 (
%

)

(b) Freeze ratio (cellular).

Figure 14: 360◦ video freeze ratio under POI360 com-
pression and benchmark algorithms.
(Fig. 14b), both Conduit and Pyramid encoding fail with an
unacceptable FR of 8% to 17%. In contrast, POI360’s adap-
tive compression tames the FR below 3% under the network
dynamics.

In sum, POI360’s adaptive compression substantially out-
performs the benchmark algorithms in terms of video quality,
stability and delay, especially in cellular networks with long
RTT and highly dynamic network conditions. However, there
is still a performance gap between cellular and wireline , es-
pecially in terms of freezing ratio. In what follows, we show
how POI360’s cross-layer rate control helps bridge this gap.

6.1.2 Firmware Bu�er Aware Congestion Control. Recall
that POI360’s FBCC module aims to improve the cellular
uplink bandwidth utilization by pushing the �rmware bu�er
occupancy to a proper level. To verify its e�ectiveness, we
repeat the panoramic video telephony sessions with each
lasting for 200 seconds for both POI360 over FBCC and
POI360 over GCC—the default WebRTC rate control used
in the foregoing experiments. Both con�gurations share the
same application-layer dynamic panoramic video compres-
sion module in §6.1.1. The scatter plot in Fig. 15 shows
the �rmware bu�er level and the per-second uplink TBS
(throughput) collected across the panoramic video telephony
sessions. We split this �gure into 3 regions: (i) the low usage
region with uplink throughput below 2 Mbps; (ii) the high
usage region where the uplink throughput exceeds 2Mbps
and keeps increasing with the bu�er level; (iii) the overuse
region where the uplink throughput no longer increases with
the �rmware bu�er level as the uplink is saturated. It is clear
that FBCC maintains the bu�er level around the “sweet spot”
in the high usage region that is far from congestion but high
enough to secure su�cient bandwidth utilization. In con-
trast, GCC’s bu�er occupancy stays at the low usage region

 0
 1
 2
 3
 4
 5

 0 5 10 15 20U
L
 T

B
S

/s
 (

M
b
p
s)

Firmware Buffer Level (KByte)

GCC
FBCC

Low usage High usage Overuse (saturation)

Figure 15: FBCC is allocated higher uplink TBS than
GCC as it maintains a proper �rmware bu�er level.

 0

 1

 2

 3

 4

 5

FBCC GCC
 0

 2

 4

 6

 8

 10

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

V
id

e
o

 F
re

e
z
e

 R
a

tio
 (%

)

Mean Throughput
Video Freeze Ratio

(a) Video freeze ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

Bad Poor Fair Good EXC

P
D

F

FBCC

GCC

(b) Video quality (MOS).

Figure 16: ComparingPOI360 performancewith FBCC
or GCC (WebRTC’s default rate control).
for a substantial fraction of the samples, indicating that it
severely underutilizes the network bandwidth.

We proceed to evaluate the impact of the transport layer
rate control on the performance of panoramic video tele-
phony. Following the same experimental setup discussed at
the beginning of this microbenchmark, we compare POI360
running over FBCC against POI360 running over legacy GCC.
From Fig. 16a, we can observe that the throughput of both
con�gurations are almost identical at around 3Mbps, as they
share the same compression algorithm which compresses
the panoramic video stream bitrate to such a level below the
current cellular uplink bandwidth.

However, the throughput variation di�ers a lot. Speci�-
cally, GCC’s throughput has a 1.2Mbps standard deviation,
57% higher than FBCC. This unstable throughput is mainly
caused by its ine�cient adaptation logic, which explores
the network bandwidth by gradually increasing the sending
rate, and reacts to the bandwidth overuse by sharply throt-
tling the tra�c bitrate. In contrast, FBCC converges to the
network bandwidth quickly as it can directly estimate the
cellular uplink bandwidth based on the �rmware bu�er level
and TBS following Eq. (5) when the bu�er status indicates a
congestion, and then responsively throttles the rate to the
estimated bandwidth. As a result, the extra cross-layer in-
formation helps FBCC achieve a low FR of around 1.6% over
cellular networks, which is signi�cantly lower than the FR of
GCC (4.7%), and is even close to the wireline case (Fig. 14b).
The stability of throughput also translates into high video
quality. Fig. 16b shows the MOS quality computed based
on the PSNR collected from the same experiment. We see
that FBCC has much higher percentage of video frames with
good (69%) and excellent (23%) quality than GCC. In contrast,

POI360 CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

 0

 10

 20

 30

 40

 50

Idle CH Busy CH
 0

 2

 4

 6

 8

 10

P
S

N
R

 (
d

B
)

V
id

e
o

 F
re

e
z
e

 R
a

tio
 (%

)

Mean PSNR
Video Freeze Ratio

(a) Freeze ratio & PSNR with
di�erent background load.

 0

 0.2

 0.4

 0.6

 0.8

 1

Bad Poor Fair Good EXC

P
D

F

Light background load
Heavy background load

(b) Video quality (MOS) with
di�erent background load.

 0

 10

 20

 30

 40

 50

Weak Moderate Strong
 0

 2

 4

 6

 8

 10

P
S

N
R

 (
d

B
)

V
id

e
o

 F
re

e
z
e

 R
a

tio
 (%

)

Mean PSNR
Video Freeze Ratio

(c) Freeze ratio & PSNR with
di�erent signal strength.

 0

 0.2

 0.4

 0.6

 0.8

 1

Bad Poor Fair Good EXC

P
D

F
Weak signal
(-115dBm)

Moderate signal
(-82dBm)

Strong signal
(-73dBm)

(d) Video quality (MOS) with
di�erent signal strength.

 0

 10

 20

 30

 40

 50

15mph 30mph 50mph
 0

 2

 4

 6

 8

 10

P
S

N
R

 (
d

B
)

V
id

e
o

 F
re

e
z
e

 R
a

tio
 (%

)

Mean PSNR
Video freeze ratio

(e) Freeze ratio & PSNR at dif-
ferent driving speed.

 0

 0.2

 0.4

 0.6

 0.8

 1

Bad Poor Fair Good EXC

P
D

F

Slow driving
(15mph)

Urban driving
(30mph)

Highway driving
(50mph)

(f) Video quality (MOS) at dif-
ferent driving speed.

Figure 17: System-level POI360 evaluation.
GCC has more than 40% of the frames with only fair quality,
as its throughput frequently vibrates to low levels.

6.2 System Level Evaluation
We now integrate POI360’s design components and conduct
a system level evaluation under various network conditions
that lead to di�erent level of network bandwidth and ROI
feedback latency.

Di�erent background tra�c load. Since POI360 runs
on cellular networks with the uplink being the typical bot-
tleneck, we verify its resilience under di�erent uplink tra�c
load within the same cell. We conduct the experiments in
two campus environments: (i) light tra�c load environment
during early morning when most users are o� campus; (ii)
heavy tra�c load environment in the noon just after class,
when most roam around campus with their cell phones. All
experiments are performed at the same static location to rule
out the in�uence of signal strength and mobility.

Fig. 17a plots the video freezing ratio FR and PSNR. We ob-
serve that the overall FR is only around 1% under light tra�c
load. Even during the busiest hour, the freezing rate is only
around 4%, and PSNR drops by 2 dB. Under light tra�c load,
the MOS metric shows a relatively larger fraction of frames
with excellent quality. But even with heavy competing traf-
�c, majority of the frames are in either excellent or good
condition, and none is poor or bad condition. Therefore, our
results demonstrate that POI360 is robust to the background

tra�c load. Such robustness owes to its awareness of cellular
link statistics like the uplink �rmware bu�er level, and its
ability to e�ectively maintain an adequate uplink rate by
manipulating the bu�er level.

Di�erent LTE channel quality. Since POI360 aims to
realize the ubiquitous capturing and streaming of 360◦ video,
it is important to understand the impact of the location-
dependent cellular link quality on its performance. To create
di�erent channel qualities, we place our prototype at di�er-
ent locations and evaluate the performance under di�erent
levels of received signal strength (RSS): (i) weak signal in-
side a concrete parking garage, where the RSS is −115dB
as reported by the phone’s �rmware. (ii) moderate signal at
an outdoor parking lot partially shadowed by a tall build-
ing (−82dB RSS). (iii) Strong signal in an open parking lot
without tall buildings nearby (−73dB RSS). The experiments
are conducted during weekends when the cellular channel
is mostly idle.

Fig. 17c shows the resulting PSNR and video freeze per-
formance. We �rst see that the FR is not a�ected much by
the RSS. Even under weak channel, the FR is below 3%. How-
ever, this comes at the cost of lower video quality (Fig. 17d).
Under a weak channel, none of the frames show excellent
quality, whereas the strong channel has 31% of the frames
with excellent quality. The di�erent trends for video freeze
and video quality can be explained by the stability of RSS.
Although the channel can be weak which forces POI360 to
use low video quality, as long as the RSS does not �uctuate,
POI360’s rate control can always converge to the network
bandwidth and stably stream the video without freezing.

Di�erent mobility level. One potential application of
POI360 is to enable 3D experience sharing through drones
or inside moving vehicles. Di�erent mobility levels in turn
a�ects the LTE network condition. To evaluate the impact,
we place our experimental platform inside a moving vehicle
with 3 di�erent speed con�gurations: (i) 15 mph, a typical
slow driving speed within the residential area; (ii) 30 mph,
driving along a road in an urban area; (iii) 50 mph, driving
along a highway. We repeat each test 10 times along the same
route. During the experiments, the phone is under seamless
LTE coverage.

Fig. 17e shows the performance in terms of FR . We see
that slow driving has almost no impact on FR compared with
the static experiments. But FR increases to 7% under city
driving speed and 9% on the highway. Fig. 17f further plots
the MOS video quality computed based on the PSNR, we
can observe that although the video quality decreases under
higher mobility level, even under the speed of 50 mph, all
frames still have either excellent (20%) or good (80%) quality,
which mainly owes to the less building blockage and thus
higher RSS (typically −60dB) around the highway test route.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Xiufeng Xie and Xinyu Zhang

7 RELATEDWORK
The past decade of research in 360◦ video delivery focused
on the encoding aspect [4], i.e., mapping the original sphere
view into various planar formats [8, 10, 11, 26, 31]. The con-
cept of splitting an 360◦ frame into tiles and only delivering
a fraction of the tiles based on the viewer’s ROI has been
investigated [33] to ensure high ROI resolution under certain
bandwidth and latency constraint. To date, 360◦ video stream-
ing mainly deliver pre-captured videos on demand, which
can tolerate second-level bu�ering latency [20]. Through
simulation, Qian et al. [30] veri�ed the feasibility of deliver-
ing on-demand 360◦ videos through cellular networks.

Driven by portable 360◦ cameras, real-time immersive
experience sharing is emerging as a new class of applications.
Through a 360◦ camera mounted on a drone [22, 29], headset
[25], or handheld device [34], real-time 360◦ scenes can be
teleported to remote users, who can experience �rst-person
360◦ view with a VR HMD. Microsoft’s Holoportation [27]
represents the state-of-the-art in streaming 360◦ videos for
telepresence. However, current Holoportation requires 30-50
Mbps bandwidth, and only works within Wi-Fi range.

Ultimately, 360◦ videos call for a more agile adaptation to
the network conditions than conventional video as its heavy
tra�c is more sensitive to the bandwidth variations. Pro-
prietary video chat systems commonly build their own rate
control atop of UDP [46], and measurement studies reveal
severe performance limitations, such as sluggish response to
bandwidth change [5] and frequent freezing [46] especially
over cellular networks. Recently, the IETF chartered the RM-
CAT working group [17] to standardize congestion control
for real-time media. Google Congestion Control (GCC) [12]
has been a leading proposal in RMCAT, and acts as the me-
dia transportation framework in mainstream browsers like
Chrome and Firefox. Alternative proposals [47, 48] regulate
sending rate based on explicit congestion noti�cation (ECN),
but require ECN support on intermediate routers. In recent
Linux kernel, Byte Queue Limits (BQL) can avoid starvation
and unnecessary queuing for the driver queue [37]. But it
has no access to the cellular �rmware bu�er level or the link
quality. In [44], Xu et al. proposed a machine learning model
to predict cellular network performance based on historical
throughput/latency, which, however, still needs at least one
RTT to detect a network change as an end-to-end solution.

Parallel to the interactive media research, on-demand
video streaming protocols are converging towards the HTTP
based dynamic adaptive streaming (DASH) [38]. The key
issue is to accurately estimate the available bandwidth (by
monitoring playback bu�er level [16] or historical through-
put [19], etc.), and then choose a video rate below it. Recently,
piStream [43] proposed to adapt the video bitrate according
to LTE downlink resource utilization. Such on-demand video
streaming systems leverage the large client bu�er of several

seconds to absorb bandwidth estimation inaccuracy. In con-
trast, interactive video has orders of magnitude tighter delay
constraints , thus calls for a responsive rate control design.

8 DISCUSSION & FUTUREWORK
ROI prediction. (i) For rendering local 360◦ video, motion-
based ROI prediction [2, 21] helps smooth the display quality.
However, such prediction only works reliably at a short time
scale. In typical use, the average head angular velocity is
60 deд/sec while acceleration can go up to 500 deд/sec2 as
reported by Oculus [21], i.e., the head position after 120 ms
is unpredictable, which is below the typical video latency
over LTE. (ii) For on-demand 360◦ video multicast, recent
work [3] suggests using the motion patterns learnt from pre-
vious users to predict the ROI of current user, as users per-
form similar motion patterns given the same video content.
However, 360◦ video telephony is di�erent from on-demand
streaming, as the content is generated in real time. Therefore
there are no existing contents to learn from.

Improving the ROI update responsiveness. Although
POI360 smooths out the ROI quality transition by adaptive
compression, it still takes the cellular RTT before the quality
of new ROI converges. The key to reduce this convergence
time is shortening the end-to-end network path. In current
4G LTE network, tra�c still goes to the Internet even both
ends of the video telephony connect to the same BS. In future
works, mobile edge computing can be used to enable the
relaying at the edge BS, thus signi�cantly shortens the path
and accelerate the quality convergence of POI360.

9 CONCLUSION
Although on-demand 360◦ video streaming for recorded con-
tents has been studied extensively, real-time interactive 360◦
video telephony remains mostly unexplored. In this paper, we
investigate the feasibility of realizing interactive 360◦ video
telephony services over LTE cellular networks, and present
our readily-deployable solution POI360, which employs adap-
tive compression to balance the tra�c load reduction and
user-perceived video quality. POI360 also features a novel
cellular-link-informed rate control algorithm to boost the
responsiveness to potential uplink congestion. Finally, a real-
time prototype of POI360 is implemented, which validates
our design in various network conditions. We believe this
work can inspire new applications that bring the interactive
video services to the 360◦ world.

ACKNOWLEDGMENTS
We appreciate the anonymous reviewers for their insightful
comments. This research was supported in part by a Google
Faculty Research Award, and by the NSF under Grant CNS-
1506657, CNS-1518728, CNS-1343363 and CNS-1350039.

POI360 CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

REFERENCES
[1] Aakash Patel and Gregory Rose. 2015. Conduit: E�cient Video Com-

pression for Live VR Streaming. (2015). https://avp.github.io/conduit/
[2] Ronald Tadao Azuma. 1995. Predictive Tracking for Augmented Real-

ity. In Ph.D. dissertation, University of North Carolina at Chapel Hill.
[3] Yanan Bao, Tianxiao Zhang, Amit Pande, Huasen Wu, and Xin Liu.

2017. Motion-Prediction-Based Multicast for 360-Degree Video Trans-
missions. In IEEE SECON.

[4] J. Chakareski. 2013. Adaptive Multiview Video Streaming: Challenges
and Opportunities. IEEE Communications Magazine 51, 5 (2013).

[5] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. 2011. Skype
Video Congestion Control: An Experimental Investigation. Computer
Networks 55, 3 (2011).

[6] Eduardo Cuervo and David Chu. 2016. Poster: Mobile Virtual Reality
for Head-mounted Displays With Interactive Streaming Video and
Likelihood-based Foveation. In Proceedings of ACM MobiSys.

[7] Evgeny Kuzyakov and David Pio. 2016. Next-generation video encod-
ing techniques for 360 video and VR. (2016). https://code.facebook.
com/posts/1126354007399553/next-generation-video-encoding

[8] Facebook. 2016. Cubemap Transform Open Source Code. (2016).
https://github.com/facebook/transform

[9] Facebook. 2016. Facebook 360 Video. (2016). https://facebook360.fb.
com

[10] Facebook. 2016. Next-generation video encoding techniques for
360 video and VR. (2016). https://code.facebook.com/posts/
1126354007399553/next-generation-video-encodin

[11] V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz, and P. Halvorsen. 2016.
Tiling in Interactive Panoramic Video: Approaches and Evaluation.
IEEE Transactions on Multimedia 18, 9 (2016).

[12] Google. 2015. A Google Congestion Control Algorithm for Real-Time
Communication. https://tools.ietf.org/html/draft-alvestrand-rmcat-
congestion-03. (2015).

[13] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and
Subhabrata Sen. 2016. Understanding On-device Bu�erbloat for Cellu-
lar Upload. In Proceedings of the 2016 ACM on Internet Measurement
Conference.

[14] Stefan Holmer, Mikhal Shemer, and Marco Paniconi. 2013. Handling
Packet Loss in WebRTC. In Image Processing (ICIP), 2013 20th IEEE
International Conference on. IEEE.

[15] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu,
Z. Morley Mao, Subhabrata Sen, and Oliver Spatscheck. 2013. An
In-depth Study of LTE: E�ect of Network Protocol and Application
Behavior on Performance. In Proc. of ACM SIGCOMM.

[16] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell,
and Mark Watson. 2014. A Bu�er-based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service. In Proc. of ACM
SIGCOMM.

[17] IETF. 2015. RTP Media Congestion Avoidance Techniques (RMCAT).
https://datatracker.ietf.org/wg/rmcat/documents/. (2015).

[18] IETF/W3C. 2015. WebRTC. (2015). https://webrtc.org/
[19] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness,

E�ciency, and Stability in HTTP-based Adaptive Video Streaming
with FESTIVE. In Proc. of ACM CoNEXT.

[20] Ngo Quang Minh Khiem, Guntur Ravindra, and Wei Tsang Ooi.
2011. Towards Understanding User Tolerance to Network Latency in
Zoomable Video Streaming. In Proceedings of the ACM International
Conference on Multimedia.

[21] Steven M LaValle, Anna Yershova, Max Katsev, and Michael Antonov.
2014. Head Tracking for The Oculus Rift. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on.

[22] Nick Lavars. 2016. Exo360 Drone Shoots VR Content on the Fly. (2016).
http://newatlas.com/exodrone360-vr-content/43854/

[23] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and
Tao Wang. 2016. MobileInsight: Extracting and Analyzing Cellular
Network Information on Smartphones. In ACM MobiCom.

[24] M. Makar, A. Mavlankar, P. Agrawal, and B. Girod. 2010. Real-Time
Video Streaming With Interactive Region-of-Interest. In IEEE Interna-
tional Conference on Image Processing (ICIP).

[25] Mariella Moon. 2016. 360�y Puts 4K Video Cams on
Helmets. (2016). https://techcrunch.com/2016/10/06/
oculus-shows-o�-facebook-messenger-video-calls-in-virtual-reality/

[26] Khiem Quang Minh Ngo, Ravindra Guntur, and Wei Tsang Ooi. 2011.
Adaptive Encoding of Zoomable Video Streams Based on User Access
Pattern. In Proceedings of the Annual ACM Conference on Multimedia
Systems (MMSys).

[27] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne
Chang, Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L. David-
son, Sameh Khamis, Mingsong Dou, Vladimir Tankovich, Charles
Loop, Qin Cai, Philip A. Chou, Sarah Mennicken, Julien Valentin,
Vivek Pradeep, Shenlong Wang, Sing Bing Kang, Pushmeet Kohli,
Yuliya Lutchyn, Cem Keskin, and Shahram Izadi. 2016. Holoporta-
tion: Virtual 3D Teleportation in Real-time. In Proceedings of ACM
Symposium on User Interface Software and Technology (UIST).

[28] Derek Pang, Sherif Halawa, Ngai-Man Cheung, and Bernd Girod. 2011.
Mobile Interactive Region-of-interest Video Streaming with Crowd-
driven Prefetching. In Proceedings of International ACM Workshop on
Interactive Multimedia on Mobile and Portable Devices.

[29] Ben Popper. 2016. Drones and Virtual Reality Headsets are a Delicious
Combination. (2016). http://www.theverge.com/2014/11/24/7274997/
parrot-bebop-drone-virtual-reality

[30] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. 2016. Op-
timizing 360 Video Delivery over Cellular Networks. In Proceedings of
the Workshop on All Things Cellular.

[31] Ngo Quang Minh Khiem, Guntur Ravindra, Axel Carlier, and
Wei Tsang Ooi. 2010. Supporting Zoomable Video Streams with Dy-
namic Region-of-interest Cropping. In Proceedings of the ACM SIGMM
Conference on Multimedia Systems (MMSys).

[32] Richoh. 2016. Theta S 360 Mobile Camera. (2016). https://theta360.
com/en/about/theta/s.html

[33] Patrice Rondao Alface, Jean-François Macq, and Nico Verz-
ijp. 2012. Interactive Omnidirectional Video Delivery: A Bandwidth-
E�ective Approach. Bell Labs Technical Journal 16, 4 (2012).

[34] Adam Ryder. 2016. VR Action Camera Field Test: Ricoh
Theta S and 360Fly 4K. (2016). http://www.popphoto.com/
hands-on-with-two-360deg-action-cameras

[35] Jihoon Ryoo, Kiwon Yun, Dimitris Samaras, Samir R. Das, and Gregory
Zelinsky. 2016. Design and Evaluation of a Foveated Video Streaming
Service for Commodity Client Devices. In Proceedings of the Interna-
tional Conference on Multimedia Systems (MMSys).

[36] Sayandeep Sen, Syed Gilani, Shreesha Srinath, Stephen Schmitt, and
Suman Banerjee. 2010. Design and Implementation of an "Approx-
imate" Communication System for Wireless Media Applications. In
SIGCOMM.

[37] Dan Siemon. 2013. Queueing in the Linux Network Stack. Linux
Journal (2013).

[38] Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Stream-
ing Over the Internet. In IEEE Multimedia.

[39] Xinding Sun, J. Foote, D. Kimber, and B. S. Manjunath. 2005. Region of
Interest Extraction and Virtual Camera Control Based on Panoramic
Video Capturing. IEEE Transactions on Multimedia 7, 5 (2005).

[40] John Tan. 2015. WebRTC Mobile: Facebook and Slack Are In. (2015).
https://www.sinch.com/opinion/webrtc-facebook-google-�refox/

[41] Umlaeute. 2017. v4l2loopback - A Kernel Module to Create V4L2
Loopback Devices. (2017). https://github.com/umlaeute/v4l2loopback

https://avp.github.io/conduit/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding
https://github.com/facebook/transform
https://facebook360.fb.com
https://facebook360.fb.com
https://code.facebook.com/posts/1126354007399553/next-generation-video-encodin
https://code.facebook.com/posts/1126354007399553/next-generation-video-encodin
https://webrtc.org/
http://newatlas.com/exodrone360-vr-content/43854/
https://techcrunch.com/2016/10/06/oculus-shows-off-facebook-messenger-video-calls-in-virtual-reality/
https://techcrunch.com/2016/10/06/oculus-shows-off-facebook-messenger-video-calls-in-virtual-reality/
http://www.theverge.com/2014/11/24/7274997/parrot-bebop-drone-virtual-reality
http://www.theverge.com/2014/11/24/7274997/parrot-bebop-drone-virtual-reality
https://theta360.com/en/about/theta/s.html
https://theta360.com/en/about/theta/s.html
http://www.popphoto.com/hands-on-with-two-360deg-action-cameras
http://www.popphoto.com/hands-on-with-two-360deg-action-cameras
https://www.sinch.com/opinion/webrtc-facebook-google-firefox/
https://github.com/umlaeute/v4l2loopback

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Xiufeng Xie and Xinyu Zhang

[42] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013.
Stochastic Forecasts Achieve High Throughput and Low Delay over
Cellular Networks. In USENIX NSDI.

[43] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran Li. 2015.
piStream: Physical Layer Informed Adaptive Video Streaming Over
LTE. In ACM MobiCom.

[44] Qiang Xu, Sanjeev Mehrotra, Zhuoqing Mao, and Jin Li. 2013. PRO-
TEUS: Network Performance Forecast for Real-time, Interactive Mobile
Applications. In Proc. of ACM MobiSys.

[45] YouTube. 2016. Uploading 360-degree Videos. (2016). https://support.
google.com/youtube/answer/6178631?hl=en

[46] Chenguang Yu, Yang Xu, Bo Liu, and Yong Liu. 2014. “Can you SEE
me now?”: A Measurement Study of Mobile Video Calls. In Proc. of
IEEE INFOCOM.

[47] Jing Zhu, R. Vannithamby, C. Rodbro, Mingyu Chen, and S. Vang An-
dersen. 2012. Improving QoE for Skype video call in Mobile Broadband
Network. In Proc. of IEEE Global Communications Conference (GLOBE-
COM).

[48] Xiaoqing Zhu and Rong Pan. 2013. NADA: A Uni�ed Congestion
Control Scheme for Low-Latency Interactive Video. In International
Packet Video Workshop (PV).

https://support.google.com/youtube/answer/6178631?hl=en
https://support.google.com/youtube/answer/6178631?hl=en

	Abstract
	1 Introduction
	2 Background for 360 Video
	3 Challenges & Solution Space
	3.1 ROI Quality Fluctuation.
	3.2 Video Rate Control Responsiveness
	3.3 Uplink Bandwidth Underutilization.

	4 POI360 system design
	4.1 System Model
	4.2 Adaptive Spatial Compression
	4.3 Firmware Buffer Aware Congestion Control

	5 Implementation
	6 POI360 Evaluation
	6.1 Microbenchmarks
	6.2 System Level Evaluation

	7 Related Work
	8 Discussion & Future Work
	9 Conclusion
	Acknowledgments
	References

