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Abstract
60 GHz millimeter-wave networks represent the next fron-
tier in high-speed wireless access technologies. Due to
the use of highly directional and electronically steerable
beams, the performance of 60 GHz networks becomes
a sensitive function of environment structure and reflec-
tivity, which cannot be handled by existing networking
paradigms. In this paper, we propose E-Mi, a frame-
work that harnesses 60 GHz radios’ sensing capabilities
to boost network performance. E-Mi uses a single pair
of 60 GHz transmitter and receiver to sense the environ-
ment. It can resolve all dominant reflection paths be-
tween the two nodes, from which it reconstructs a coarse
outline of major reflectors in the environment. It then
feeds the reflector information into a ray-tracer to pre-
dict the channel and network performance of arbitrarily
located links. Our experiments on a custom-built 60 GHz
testbed verify that E-Mi can accurately sense a given
environment, and predict the channel quality of differ-
ent links with 2.8 dB median error. The prediction is
then used to optimize the deployment of 60 GHz access
points, with 2.2× to 4.5× capacity gain over empirical
approaches.

1. Introduction
The unlicensed millimeter wave (mmWave) band, cen-

tered at 60 GHz and spanning 14 GHz spectrum [1], rep-
resents the most promising venue to meet the massive
surge in mobile data. Recently proposed mmWave net-
work standards, like 802.11ad [2], provision multi-Gbps
connectivity for a new wave of applications such as cord-
less computing and wireless fiber-to-home.

Despite the huge potential, 60 GHz networks face a
number of challenges unseen in conventional low-freq-
uency networks: due to ultra-high carrier frequency, the
60 GHz radios are extremely vulnerable to propagation
loss and obstacle blockage. To overcome such limitation,
60 GHz radios commonly adopt many-element phased-
array antennas to form highly directional, steerable beams,
which leverage reflections to steer around obstacles. De-
pendence on directivity and reflection, however, makes
the network performance a sensitive function of node
placement and environmental characteristics (e.g., geo-
metrical layout and reflectivity of ambient surfaces).

To elucidate the challenge, we set up two laptops with
Qualcomm tri-band QCA6500 chip (2.4/5/60GHz) [3],
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Figure 1: Normalized throughput of same-distance 60
GHz and 2.4 GHz links over different node placements.

and randomly place them over 16 different locations. For
each link, we measured the normalized throughput, i.e.,
the none-line-of-sight (NLOS) throughput when a human
obstacle stands in between, divided by the LOS through-
put. Fig. 1 plots the CDF across links. We observe up to
3× throughput gap when the same-distance 60 GHz link
is placed at different locations, versus 1.4× for the 2.4
GHz link, implying that 60 GHz’s NLOS performance is
much more sensitive to environment. We found that the
60 GHz transmitter can more effectively detour block-
age, if it is placed near a concrete wall that acts like a
mirror. Obviously, reflectors in the environment have a
crucial impact on 60 GHz performance.

Of course, one may not always be able to alter the
environment. However, we argue that, by judiciously
placing 60 GHz access points (APs) within a given en-
vironment, we can substantially improve network cov-
erage and robustness to blockage. To this end, one may
conduct a blanket site-survey and search for the capacity-
maximizing AP location, but the search space becomes
formidable because of the numerous beam directions and
human blockage patterns. In this paper, we propose E-
Mi, a system that can automatically “sense” (model) the
major reflectors in the environment from a 60 GHz ra-
dio’s eyes, and predict the performance of arbitrarily lo-
cated links. The prediction can in turn help optimize AP
placement to maximize network capacity and robustness.

The core challenge in E-Mi is: how to sense the en-
vironment using mmWave radios which can only mea-
sure the received signal strength (RSS) and phase be-
tween each other? Conventional environment mapping
approaches (e.g., stereo camera and laser radar [4–8])
need dedicated hardware and do not capture environment
properties specific to mmWave. In contrast, E-Mi lever-
ages the well known sparsity of mmWave channels [9–
11]: from the 60 GHz radios’ eyes, there are usually only
a few dominating reflectors in practical environment. E-
Mi samples the environment by fixing the Tx radio, and



moving the Rx to a few locations. At each location, the
radio channel comprises one LOS path, and many NLOS
ones. By measuring the RSS/phase, E-Mi traces back
all NLOS propagation paths, uses a geometrical model
to locate where the paths hit reflectors, and eventually
reverse-engineers the location and reflectivity of domi-
nating reflectors. Such environment information is then
fed into a ray tracing engine, which can predict the wire-
less channel quality of arbitrarily located Tx/Rx.

E-Mi’s reflector learning is predicated on the accu-
rate tracing of propagation paths, which itself is an open
challenge. Specifically, E-Mi needs to disentangle all
the NLOS paths for each Rx location, and estimate each
path’s angle of arrival (AoA), angle of departure (AoD)
and length. This differs from the vast literature of phased-
array localization algorithms that only exploit the LOS
path [12, 13]. E-Mi solves the problem using a multi-
path resolution framework (MRF), which resolves dif-
ferent paths’ angles/lengths by creating “virtual beams”
by post-processing the measured RSS/phase.

We have implemented E-Mi on a 60 GHz testbed. Our
experiments demonstrate that E-Mi can accurately re-
solve NLOS propagation paths, with an average error of
3.5◦, 3.5◦, and 0.4 m, for AoA, AoD and path length, re-
spectively. By simply sampling 15 receiver locations in
an office environment, E-Mi can effectively predict the
link quality of other unobserved locations, with median
RSS error of 2.8 dB and AoA(AoD) error 4.5◦(5.7◦).

E-Mi can be a convenient toolset to predict site-specific
RSS distributions and assist 60 GHz network deployment
and configuration. In this paper, we apply E-Mi to one
case study to answer the following question: How to de-
ploy the 60 GHz APs to maximize the average network
capacity and improve resilience to blockage? Our experi-
ments show that an E-Mi-augmented deployment obtains
2.2× to 4.5×median throughput gain over empirical ap-
proaches. E-Mi also makes the 60 GHz network more ro-
bust, reducing median throughput loss from around 700
Mbps to 20 Mbps under random human blockage.

To summarize, the main contributions of E-Mi include:
(i) A multipath resolution framework that allows a pair

of 60 GHz Tx and Rx to trace back the 〈AoA, AoD, length〉
of all NLOS paths, simply via RSS/phase measurement.

(ii) An reflector localization scheme that can locate
where the reflectors “bend” propagation paths, and then
recover the layout/reflectivity of dominant reflectors.

(iv) Applying the sensing information to predicting the
channel quality of arbitrarily located Tx and Rx, which in
turn helps optimize the AP deployment, achieving multi-
fold capacity gain and robustness under human blockage.

2. Related Work
Wireless network planning/profiling. Wireless net-

work planning is a classical problem that has been rely-

ing on empirical solutions for decades. RF site survey,
despite its tedious war-driving procedure, is still widely
adopted by enterprise WLAN and cellular network plan-
ning tools [14, 15]. Recent work used roaming robots
[16] or sparse sampling [17] to access the RSS distri-
bution under a given AP/basestation deployment. But
these approaches hardly shed lights on how to plan a
new/better deployment.

Active planning can overcome the limitation by using
ray-tracing. Earlier study of 60 GHz channel statistical
characterization [18] unveiled that 60 GHz signals have
predictable spatial structure in an environment. But they
require precise mapping of dominant reflectors. Such a
map is not always available and is sensitive to environ-
mental change (e.g., placing a new cabinet). E-Mi es-
sentially circumvents this hurdle by allowing mmWave
radios to directly construct the environment map.

Radio-based environment sensing. The simultane-
ous localization and mapping (SLAM) problem has been
extensively studied in robotics [19–21]. Typical SLAM
systems need to roam a robot, and map the environment
based on dead-reckoning and visual images. Such sys-
tems are predicated on two factors: (i) precisely con-
trolled robotic movement and blanket coverage, to gen-
erate an extensive point-cloud representation of the sur-
vey area. (ii) environment sensors, such as sonar, stereo
camera and LIDAR [22], to explicitly locate landmarks
or obstacles. The elusive nature of wireless signals pro-
hibits us from meeting the same requirement. It involves
nontrivial human efforts to label the reflectivity of each
reflector. Besides, the reflectivity may be hardly avail-
able if an object contains compound materials. State-of-
the-art radio-based SLAM [5,23] can only achieve local-
ization accuracy of around 5 meters, far from enough to
predict the spatial performance of a wireless network.

Recent work [7,24,25] adopted mmWave radars to ex-
plicitly scan the environment. By continuously moving
the radar in front of the obstacle’s body, they can iden-
tify the shape/reflectivity. In contrast, E-Mi leverages the
sparsity of 60 GHz signal structure, so as to locate all
dominant reflectors with only a few sampling locations.

Localization using antenna arrays. Antenna array
has demonstrated tremendous potential in localization,
especially because it can identify AoA using signal pro-
cessing algorithms like MUSIC [26] and ESPRIT [27].
Recent systems [12,13,28] renovated such algorithms to
localize a client via multi-AP triangulation. In contrast,
E-Mi uses mmWave phased-array to handle the more chal-
lenging problem of recovering NLOS propagation paths
and locating reflectors. A side benefit of E-Mi is that it
can locate a node using a single AP (Sec. 5) and there-
fore build a spatial distribution map of possible client lo-
cations, which can in turn help optimize the AP deploy-
ment (Sec. 9).
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Figure 2: The MRF identifies the 〈AoA, AoD, length〉
in three steps: (1) Identify the dominant AoA and AoD;
(2) Pair AoA and AoD directions that belong to the same
path; (3) Estimate the length of each path.

Sensor-assisted protocol adaptation. E-Mi is partly
inspired by the principle of sensor-assisted communica-
tions. Nanthapuri et al. [29] proposed to discriminate
various networking context (e.g., mobile vs. static) us-
ing external sensors, and adapt the protocols accordingly.
Ravindranath et al. [30] applied a similar principle to as-
sisting link-level rate adaptation, etc.. BBS [31] lever-
aged a WiFi antenna array to estimate the signal’s AoA
and facilitate the 60 GHz radio beam steering. Beam-
Spy [32] detects human blockage and adapts its beam to a
new direction without beam scanning. In contrast to this
line of research, E-Mi uses 60 GHz radios themselves as
sensors to reconstruct the reflectors and predict the site-
specific RSS distribution to guide AP deployment.

3. E-Mi: An Overview
E-Mi samples the RSS/phase between a pair of 60 GHz

AP and client (also denoted as Tx and Rx), and uses
the samples as input to two major modules: (i) Multi-
path resolution framework (Sec. 4), which estimates the
geometry, i.e., 〈AoA, AoD, length〉, of each propagation
path and also discriminates their RSS/phase. (ii) Domi-
nant reflector reconstruction (Sec. 5): which locates the
reflecting points (i.e., spots where the paths hit the re-
flector), and reconstructs the layout/reflectivity of domi-
nating reflectors, forming a coarse environment map. A
network planner can feed E-Mi’s reconstruction result to
a 60 GHz ray-tracing engine, and identify the AP lo-
cations that lead to higher capacity/robustness (Sec. 9).
This essentially supersedes the laborious war-driving in
traditional wireless site survey [15].

E-Mi requires the Tx and Rx to be equipped with phas-
ed-arrays of practical size (default to 16-element, as in
typical 802.11ad radios [33]). It does not need a custom-
ized PHY layer—It only requires the channel state, which
is a portable function on many commodity WiFi devices
[34] and expected to be available in the 802.11ad prod-
ucts. Although E-Mi works in a constrained environment
that can be illuminated by Tx’s signals, the Tx can be
moved to different positions to extend its coverage.

When scanning the wireless channel, E-Mi places the
Tx and Rx well above the ground, so that they only “see”
dominant reflectors like walls and furnitures. They af-
fect the average-case network performance which are of
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Figure 3: Isolating individual antenna’s signals on an
analog phased array, by switching across different weight
vectors.

utmost interest for network planners. In case such re-
flectors change their locations, we can accommodate the
changes by rerunning E-Mi.

4. Multipath Resolution Framework (MRF)
The MRF estimates the 〈AoA, AoD, length〉 of domi-

nating paths between the Tx and Rx. As illustrated in the
Fig. 2, the AoA and AoD are determined by the relative
positions of dominant reflector, Tx and Rx, and indepen-
dent of the beam pattern of phased arrays. To estimate
these intrinsic parameters, a naive solution is to use beam
scanning: the Tx/Rx may steer over all possible combi-
nations of beam directions, and find the ones with high
RSS. However, a 60 GHz phased-array can only steer to
a set of discrete directions (e.g., a 16-element one can
only steer between beams with 22.5◦ separation [35]).
The discrete beam scanning prevents us from measuring
the signal angle precisely. Moreover, unlike horn anten-
nas, phased-arrays have imperfect directionality — be-
sides the main beam, their antenna pattern bears many
sidelobes which interfere the AoA/AoD estimation.

E-Mi’s MRF introduces three mechanisms (Fig. 2) to
meet the challenges. (i) We first estimate the dominating
AoD and AoA directions, originating from Tx and end-
ing at Rx, respectively. We adapt a classical signal angle
estimation algorithm to 60 GHz phased arrays, which en-
ables super-resolution (i.e., finer resolution than discrete
steering by generating a continuous angular spectrum,
and unaffected by the imperfect beam shape of phased
arrays). (ii) We design a virtual beamforming (vBeam)
scheme that pairs the AoD and AoA directions belong-
ing to the same NLOS path. (iii) We employ a multi-tone
ranging scheme to estimate the total length of each path.

4.1 Estimate Path Angles Using Phased Arrays
Conventional multi-antenna receivers can estimate sig-

nal AoA using angular spectrum analysis, which sin-
gles out the arrival angles with strong signal strength
[12,13]. However, such analysis needs to isolate the sig-
nals on each antenna element using digital phased arrays
(Fig. 3(a)). Practical 60 GHz radios use analog phased
arrays (Fig. 3(b)), which have a single input/output, com-
prising a weighted sum of individual antenna’s signals
that obfuscate each antenna’ signals.



To overcome this limitation, a natural way is to vary
the weights and obtain a system of equations to solve for
individual signals. Suppose there are N elements on the
receiving phased array, and S = [S1, S2, · · · , SN ]T de-
notes the signals on the N individual antenna elements.
When the phased array imposes row vector of weight
w1 on its antenna elements, the received signal becomes
y1 = w1S. Suppose the array switches across N dif-
ferent weight vectors to receive the same signals by N
times. The weights constitute a 2-D matrix WR = [w1;
w2; · · · ; wN ] with each row being a weight vector. Then,
the N output signals form a vector: Y = WRS. So, one
can simply use S = W−1

R Y to recover S, and hence
isolate the signals on each antenna element. Fig. 3(c)
illustrates an example where N = 4.

In practice, the weight vectors in a 60 GHz phased ar-
ray are built into hardware and can only be selected from
a predefined group, called codebook. The key question
is: can we find a set of weight vectors to form a matrix
WR that is invertible? The answer is positive: we can
find the weight matrix from 60 GHz codebook that is
orthogonal (i.e., WRWH

R = I , where (·)H denotes the
conjugate transpose), and hence invertible. The beam-
forming codebook ensures orthogonality between weight
vectors because it will maximize the isolation across dif-
ferent beam patterns [35, 36].

To estimate the AoD, a symmetrical operation is needed
at the Tx. Suppose the Tx phased array has M antenna
elements, then it usesM different sets of weights to trans-
mit the signals by M times, which similarly constitute a
transmit matrix WT. We populate S into an N -by-M
matrix. Each element (i, j) of S represents the signals
on i-th Rx antenna, when the j-th Tx antenna element
is triggered. Then, the received signals of analog-array
becomes: Y = WRSWH

T . Each column/row in matrix
Y contains received signals measured using a specific
transmitting/receiving weight vector. By way of a simi-
lar orthogonality argument as the Rx, we can recover S
as follows: S = WH

R YWT.
Isolation of individual antenna’s signals allows us to

apply MUSIC [37], an eigen angle analysis algorithm
to jointly estimate the AoA/AoD, in the same way as in
digital phased arrays [12]. MUSIC can achieve a scal-
able resolution with more antenna elements and extricate
the discrete beam shape of phased arrays. Specifically,
we measure the preamble signals sent/received by stan-
dard 60 GHz radios [2], which are sent repeatedly across
packets, and across different Tx/Rx beam patterns. We
isolate the preamble signals sent/received by different
Tx/Rx antenna elements. Then, we run MUSIC to com-
pute the angular spectrum, essentially the likelihood of
signals coming from different angles. Finally, we find
the peaks in the angular spectrum that are larger than
the noise floor and take the corresponding directions as

AoAs/AoDs of dominating paths.
A few additional operations are worth noting: (i) Since

each AoD is pairwise to an AoA w.r.t. the same dominant
reflector, we remove the excessive AoA/AoD estimations
of smaller eigenvalue, and make sure the number of AoA
and AoD values are equal. (ii) To ensure the consistency
of reference direction, i.e., 0 degree, in the measurement,
the antenna’s orientation can be simply kept at a fixed
direction, or be compensated by motion sensors in the
mobile device. (iii) MUSIC is adopted only for AoA
and AoD estimation. The RSS estimation and AoA/AoD
pairing of each path is accomplished by the virtual beam-
forming, which will be detailed next.

4.2 Virtual Beamforming: Match Path Angles
E-Mi’s virtual beamforming (vBeam) algorithm serves

two purposes: First, the AoAs and AoDs identified above
do not have a pairwise mapping. The vBeam can pair up
the AoA and AoD values that belong to the same path.
Second, the received signals S are a mix from all prop-
agation paths. To estimate the length of each path (Sec.
4.3), their signals have to be separated from each other.

The basic idea is to process the received signal matrix
S offline and emulate Tx/Rx beamforming towards spe-
cific directions. This allows us to generate arbitrary beam
patterns, bypassing the codebook constraint of phased ar-
rays. Then, vBeam uses a beam matching metric to sin-
gle out each pair of AoD and AoA directions that belong
to the same path.

Beam generation: vBeam generates weight vectors
of specific beam patterns and applies them to signals from
different antenna elements. Whereas the weight vectors
can be computed using conventional delay-sum beam-
former [38], vBeam applies a beam-nulling technique in-
stead, which beamforms to the desired AoA/AoD direc-
tions while nulling signals from other AoA/AoD direc-
tions. This effectively steers the phased-array’s sidelobes
toward directions from which there is no signal coming,
and thus helps suppress irrelevant signals.

Suppose the AoA and AoD identified above are de-
noted by vectors Θ = [θ1, θ2, . . . , θK ] and Φ = [φ1, φ2,
. . . , φK ], with K being the number of dominant paths.
Denote ar(θi) and at(φi) as column weight vectors that
beamform toward AoA/AoD angle θi and φi. Take the
Rx-side as an example, the nulling beam vector anull

r (θi),
which beamforms to θj for j = i and nulls other θj for
j 6= i, can be directly derived from ar(θi) by [39].

Beam matching: Suppose vBeam beamforms towards
AoA angle θi and AoD angle φj using the foregoing ap-
proach. In order to determine whether θi and φj belong
to the same propagation path, we design a beam match-
ing metric F, which manifests a high value if and only if
θi and φj match to the same path. F is computed by:

F[i, j] = E[|anull
r (θi)Sanull

t (φj)
H |2], ∀ 1 ≤ i, j ≤ K,



Algorithm 1 Virtual Beamforming
1: procedure vBeam(Θ, Φ, S)
2: for i = 1:K, j = 1:K do � Loop for Rx and Tx arrays
3: F [i, j] = E[|anull

r (θ̂i)Sanull
t (φ̂j)

H |2] � Beamform RSS
4: end for
5: for i = 1:K do � Beam matching
6: [I row, I col]← max subscript(F) � Subscript of

maximum
7: F[I row, :]← 0; F[:, I col]← 0;
8: Θ̂[i]←Θ[I row]; Φ̂[i]←Φ[I col]
9: end for

10: return Θ̂ and Φ̂ � pairwise AoA and AoD
11: end procedure

where the inner part of above equation applies the virtual
beams to signal matrix S, and outer expectation com-
putes the corresponding RSS. Since it is difficult to find
an absolute gauge threshold, E-Mi adopts an iterative al-
gorithm (Algorithm 1). It starts with the largest metric
and takes the corresponding AoA/AoD as a pair. Then it
removes values of pairwise AoA/AoD from the row and
column of the matching matrix F and repeats above pro-
cedure to find the next largest matching metric. This ap-
proach works well for paths of different signal strengths.

Once vBeam identifies all the pairwise AoA/AoD, it
can isolate path i’s signal Spath

i by projecting the entire
signal matrix S towards path i’s AoA and AoD:

Spath
i = anull

r (Θ̂[i])Sanull
t (Φ̂[i])H , (1)

where Θ̂ and Φ̂ are matrices of the pairwise AoA and
AoD. E-Mi then further estimates the RSS of signal iso-
lated from each path.

4.3 Multi-Tone Ranging: Estimate Path Length
E-Mi estimates each path i’s length by processing its

signals Spath
i , using a multi-tone ranging mechanism. Mo-

dern communication systems such as 60 GHz 802.11ad
commonly adopt OFDM, which modulates signals across
different frequency tones (called subcarriers). The phase
of each subcarrier can be measured using built-in channel
estimators. Suppose a subcarrier has frequency f1, then
its phase increases linearly with propagation path length
d, following 2πf1d/c. Our multi-tone ranging leverages
the phase divergence among OFDM subcarriers, caused
by their frequency difference. Given two subcarriers with
frequency f1 and f2, their phase divergence at distance
d equals ∆ϕ = 2π(f2 − f1)d/c, where c is light speed.
f1, f2 are known and ∆ϕ can be measured. So we can
easily map ∆ϕ back to d.

To improve resilience to channel noise, E-Mi harnesses
diversity from many subcarriers in 802.11ad-like com-
munication systems. Suppose we have isolated the pream-
ble signal Spath

i along path i (Sec. 4.2). Suppose L sub-
carriers are located at frequencies f1, f2, · · · , fL, and the
Rx-measured phase values are ϕ1, ϕ2, . . . , ϕL. Then we
estimate path i’s length via the following optimization
framework:

d∗ = arg max
d

|
∑L
i=1e

j(ϕi−
2πfid

c )|. (2)

The RHS of Eq. (2) computes the difference between
measured phase and theoretical phase over distance in
the phaser domain. Essentially, the optimal distance es-
timation d∗ leads to the closest match between these two
sets of phase values.

In practice, due to the carrier frequency offset (CFO)
between Tx and Rx, the subcarriers will bear unknown
phase shifts, which contaminate the phase measurement.
We cannot apply the standard CFO compensation tech-
nique [40] in this case because it will simultaneously nul-
lify the phase divergence. We address this problem us-
ing a reference calibration scheme. Specifically, we first
separate the Tx and Rx by a known distance d0 and mea-
sure the phase value ϕi(d0) of each subcarrier i. When
the Tx/Rx moves to a new (unknown) distance d, the
CFO can be canceled by computing their phase differ-
ence: ϕi(d) − ϕi(d0) = 2πf(d−d0)

c . Substituting ϕi by
ϕi − ϕi(d0), Eq. (2) can be reformulated as:

d∗ = arg max
d

|
∑L
i=1e

j(ϕi−ϕi(d0)−
2πfi(d−d0)

c |. (3)

We note that the phase divergence has an aliasing ef-
fect: if the phase difference between two subcarriers ex-
ceeds 2π, it will wrap and cause ambiguity. To maxi-
mize the unambiguous ranging distance, we should max-
imize the cycle length of phase divergence, or equiva-
lently minimize the frequency separation between sub-
carriers (denoted as fmin). The unambiguous range is
thus determined by c

fmin
. For 802.11ad, fmin equals the

separation between adjacent subcarriers, i.e., 5.156 MHz
[2], or equivalent to up to 58.18 m unambiguous ranging
distance, which is sufficient for indoor scenarios.

5. Dominant Reflector Reconstruction
The 〈AoA, AoD, length〉 of all propagation paths form

a set of spatial constraints, allowing E-Mi to locate the
reflecting points, i.e., points where dominant reflectors
“bend” the propagation paths. Consequently, E-Mi can
geometrically reconstruct reflectors’ position, orientation,
and reflectivity.

5.1 Locating Reflecting Points in Environment
To locate the reflecting points, E-Mi first pinpoints the

Rx relative to the Tx, based on the 〈AoA, AoD, length〉
constraints. Fig. 4 shows an example. Suppose we ob-
tained the 〈AoA, AoD, length〉 of a single path. Then any
point along line segment AB satisfies the same 〈AoA,
AoD, length〉 constraint, and is likely to be the Rx posi-
tion. Therefore, a single path cannot pinpoint the Rx. But
we can resolve the ambiguity by adding another path: the
intersection between line segment AB of one path and
segment A′B′ of another path pinpoints the Rx location.

Practical environment may encounter more than two
paths. Denote path i’s 〈AoA, AoD, length〉 as θ̂i, φ̂i and
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d̂i. Following Fig. 4, we can use a simple geometry to
represent the intersection formed by all line segments:

µix+ νiy = γi, (4)
with µi =sin(θ̂i) + sin(φ̂i), νi = −(cos(θ̂i) + cos(φ̂i))

γi =xtx(sin(θ̂i) + sin(φ̂i))− ytx(cos(θ̂i) + cos(φ̂i))

+ d̂i(sin(φ̂i) cos(θ̂i)− cos(φ̂i) sin(θ̂i))

where (xtx, ytx) and (xrx, yrx) are the Tx and Rx po-
sition, respectively. Assuming the Rx position is inter-
sected by N line segments, Eq. (4) can be rewritten in a
matrix format:

ΓX = P, (5)

whereX = [xrx, yrx]T , Γ = [µ1, . . . , µK ; ν1, . . . , νK ]T ,
and P = [γ1, . . . , γK ]T . In practice, due to residual er-
ror of measurement, line segments may not intersect on
a single point. We thus reformulate Eq. (5) as a least-
square optimization problem:

X∗ = arg min
X

||P − ΓX||2, (6)

whereX∗ estimates the Rx position with minimum error.
Unfortunately, our initial experimental tests found the

optimization alone works poorly due two practical fac-
tors: (i) The 〈AoA, AoD, length〉 estimation (Sec. 4) con-
tains residual errors, especially for long-range and weak-
RSS paths. Such errors may cause intersecting line seg-
ments to be close to parallel, which significantly ampli-
fies the Rx location error. (ii) The MRF (Sec. 4) may cap-
ture high-order reflections that do not follow the model
in Fig. 4. Such mismatch may deviate the estimation ar-
bitrarily away from the real position.

E-Mi introduces two mechanisms to overcome above
challenges.

(1) Weighting the residual error. We first reformu-
late the optimization problem in Eq. (6) to account for
MRF’s residual errors. The inner term of Eq. (6) calcu-
lates the difference between matrices ΓX and P . Since
different paths’ geometries have different residual errors,
we weight the paths according to the confidence level in
MRF’s estimation, based on the following observation:
those paths of shorter length (thus higher RSS) tend to
have less error. Thus, we can use the inverse of path

length as the weight. Besides, we need to minimize the
sum of distance from Rx position to all line segments,
which requires normalization by a coefficient

√
µ2i + ν2i

[41]. The final weight value for path i is:
wi =

1

di

√
µ2i + ν2i

,

which consists of the inverse of path length and the nor-
malization factor. Stacking the weights into a vectorW =
diag(w1, . . . , wK), the optimization problem Eq. (6) can
be rewritten asX∗ = arg minX ||W (P−ΓX)||2, which
can be solved by standard least-square algorithms.

(2) Filtering higher-order reflection. To constrain
the problem within the geometrical model of first-order
reflection (Fig. 4), we should exclude any higher order
reflection paths in the optimization. Our key observa-
tion is that line segment intersections of higher-order re-
flections tend to randomly distribute and exhibit a larger
deviation since they do not fit into the geometry model
for the first-order reflection. Therefore, we apply a K-
means clustering algorithm to filter out the p% most sig-
nificantly deviated line segments that most likely belong
to the higher-order reflection. The choice of p value de-
pends on the amount of higher-order reflections. We pre-
fer a larger p value in a highly reflective environment,
and otherwise a smaller p. Yet, we find E-Mi is not sen-
sitive to it because most indoor environments have com-
parable number of dominant reflectors, and an empirical
value (e.g., p = 20) would suffice.

After determining the client position, the locations of
reflecting points (xiref, y

i
ref) can be estimated by:

xiref − xr
yiref − yr

= tan(θ̂i),
xiref − xt
yiref − yt

= tan(φ̂i), (7)

which solves a set of equations following simple geome-
try in Fig. 4.

5.2 Reconstructing Dominant Reflector Layout
and Reflectivity

E-Mi reconstructs the dominant reflector geometry (ori-
entation/location/length) and reflectivity, by sampling the
wireless channel across a sparse set of Rx locations, and
locating the corresponding reflecting points following the
above steps. It creates a 2-D cross section of the environ-
ment corresponding to the horizontal plane of the Tx/Rx.
Extension to the 3-D case will be discussed in Sec. 10.

Reconstructing dominant reflectors’ geometry. Ide-
ally, we can move the Rx to many positions, each helping
to locate multiple reflecting points. A sufficient number
of reflecting points can form a pixel cloud that outlines
the reflector geometry. However, due to sparsity of the
propagation paths [9–11], collecting a dense pixel cloud
requires hundreds of Rx positions even for a small office.

To avoid such war-driving, we design a sparse recon-
struction method which only samples at a few positions.
We abstract the reflectors into two categories. Specular



Virtual
source Reflector Reflector

Tx Tx’ (VS)

Rx’

Rx’’

RP

Tx Tx’ (VS)

Tx’’ (VS)

Tx’’’ (VS)

ScatterReflector

RP

Rx’’’

Rx’

Rx’’

Rx’’’

Figure 5: Reflecting point (VP) and corresponding vir-
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reflectors: a large continuous surface, e.g., wall and cabi-
net, upon which mmWave signals experience specular re-
flection [7]; Diffusive reflectors: small-size objects, e.g.,
pillar and computer screen, which scatter signals towards
a wide range of angles [42].

(i) Locating specular reflectors. We model a specular
reflector as a continuum of planar segments, each with
different reflectivity or orientation. According to the law
of reflection, signals that are reflected by a specular re-
flector look like emitting from a virtual source (Fig. 5).
Given the 〈AoA, AoD, length〉 and reflecting point loca-
tion of one propagation path, we can use simple geome-
try to pinpoint the virtual source (VS) position relative to
the real TX position, following the law of reflection.

Ideally, each specular segment should have a single
VS even as the Rx moves and creates different reflection
paths. Yet due to the MRF’s residual errors, the VSs es-
timated at different Rx positions do not exactly overlap,
but fortunately they tend to form a cluster (Fig. 5). We
apply the clustering algorithm [43] to isolate the clusters
and use each cluster center to represent one VS. Once a
reflector segment’s VS is identified, its position and ori-
entation is readily determined via a mirror-partitioning
between the real source and VS. Further, we extend the
reflector segment, and take the size of geometrical shape
from pixel cloud as constraint to determine the length of
each reflector segment. An example experiment will be
provided in Sec. 8.2 to elucidate the procedure.

(ii) Locating diffusive reflectors. Observing that a dif-
fusive reflector corresponds to densely concentrated re-
flecting points (Fig. 5), we can also apply the clustering
algorithm on the reflecting points and use the centers of
resulting clusters to represent the diffusive reflectors. Yet
this will be interfered by dispersive reflecting points cre-
ated by specular reflectors. Fortunately, based on the pre-
vious step, we can identify and exclude such interfering
points. Specifically, we identify them based on their Eu-
clidean distance to the specular reflectors. Threshold is
set to 3× the variance of reflector position error, which
can isolate a majority of specular reflecting points.

Estimating reflection loss. We now describe how E-
Mi models reflection loss, the major distorting factor when
signals hit the reflector. Other factors such as diffraction
may also vary the signal strength but the effect is mi-

nor [44]. E-Mi separately models the reflection loss of
each path it has identified. Three factors contribute to the
propagation loss: free-space pathloss, oxygen absorption
Ol and reflection loss Rl, i.e.,

RSS = Pt +Gt +Gr −
(
20 log10(d) +Ol +Rl

)
,

where d is the path length. Pt, Gt, Gr represent the Tx
power and Tx/Rx antenna gain. The Ol almost remains
a constant for distance of tens of meters [36]. For each
path, d and RSS are known from MRF (Sec. 4). Thus,
to obtain Rl, we need to obtain the constant parameters
Pt, Gt, Gr, which may not be available in practice. In
addition, the constant value Ol is unknown either.

We address this issue by using the LOS path as refer-
ence calibration to cancel those unknown factors. First,
we can isolate the LOS path’s signals from NLOS paths’
signals by metrics such as shortest path length and strong-
est RSS. We then estimate the reflection loss of each
NLOS reflecting path via a simple subtraction:

Rl = RSSLOS −RSSref − 20 log10(dref/dLOS), (8)

where RSSLOS, RSSref and dLOS, dref are RSS and path
length for LOS and reflected path. Since each reflect-
ing segment/point may have multiple estimations corre-
sponding to multiple reflection paths, we take the average
as its final reflection loss.

6. Parametric Ray-tracing: Predict Link
Performance

Ray-tracing is a fine-grained way to model wireless
signal propagation in both indoor and outdoor environ-
ment [45, 46]. It tracks the details of how each signal
path is attenuated over distance and reshaped by reflec-
tors. Measurement studies demonstrated that, given a
precise physical description of reflectors, the signal pat-
tern predicted by ray-tracing is reasonably close to real
measurement in both LOS and NLOS scenarios [47].

E-Mi employs a parametric ray-tracing engine, whose
input is the aforementioned layout/reflectivity for domi-
nant reflectors constructed directly from the 60 GHz ra-
dios’ eyes. We develop E-Mi’s ray-tracer following the
classical approaches in [48,49], which models the signal
propagation in a 2-D domain using a geometrical/optical
tracing. The ray-tracer captures the attenuation and re-
flection effects along all paths, and recursively traces a
path until it attenuates by more than 30 dB. In addition,
the ray-tracer accounts for the angle-dependent antenna
gain patterns from phased-arrays. The gain patterns can
be obtained from either phased-array simulators or hard-
ware specification. After synthesizing signals from all
paths, the ray-tracer outputs the final RSS and converts it
to bit-rate following a standard 802.11ad rate table [11].

7. Implementation
We prototype E-Mi on a custom-built 60 GHz software-

radio testbed, which uses WARP [50] to generate and
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process baseband waveforms under the control of a host
PC. The digital signals are converted to/from analog thro-
ugh a high-speed DAC/ADC, and carrier-modulated by
the Pasternack PEM-003 60 GHz RF front-end [51].

The PHY layer metrics (e.g., channel state informa-
tion) in commercial 60 GHz radios, though internally
available to the radio vendors, are still not opened to the
public yet. The recently developed phased-arrays in 60
GHz software radios [52] can only support a small num-
ber of elements. Therefore, we reproduce the effects of
a 60 GHz circular phased array using the time-lapse syn-
thesis method, which follows the way that a phased array
modulates, weights and transmits wireless signals. We
mount a 60 GHz omni-directional antenna MI-WAVE
267V (with 360◦ azimuth and 40◦ elevation beamwidth)
[53] onto Axis360 [54], a programmable motion control
system (Fig. 6). The Axis360 rotates the antenna to dis-
crete positions along a circle, each position correspond-
ing to one antenna element on a real circular array. The
array dimension follows empirical recommendations in
antenna design [39]. The radius of a 16-element circular
array is 6.4 mm, with 2.5 mm (half-wavelength) between
adjacent elements. This time-lapse synthesis approach
has been adopted and verified by previous works [55,56].

To synthesize a pair of Tx/Rx phased-arrays, we ap-
ply beamforming weights (based on a standard 802.11ad
codebook [35]) and then combine the measurement from
all elements within the Rx circular array. Since E-Mi
runs in static environment, this time-lapse approach can
realistically reproduce a real phased-array where all el-
ements are excited concurrently. Besides, each element
of a phased array antenna is expected to have a close to
omnidirectional coverage in horizon plane [57]. Fig. 6
depicts an example Tx phased-array gain pattern gener-
ated by this time-lapse approach, and measured using a
3.4◦ horn receiver. Despite the measurement speed of
our platform is slow currently owing to the mechanical
antenna rotation, a full-fledged 60 GHz device, that has
the electronic phased array antenna, can transmit a wire-
less packet at tens of microseconds. The overall sensing
time of each location will be at millisecond-level.

We implement E-Mi’s major modules (Sec. 3) within

Concrete walls Drywalls Pillar/Monitor

Figure 7: Dominant reflectors in an office environment.

the software-radio’s host PC. Due to limited bandwidth,
our platform cannot send 802.11ad-compatible pream-
bles for channel estimation. Instead, the Tx sends five
orthogonal tones from 3 MHz to 15 MHz as baseband
signals, modulated by 60.48 GHz carrier frequency. This
does not obstruct our validation because the narrow band
implementation can be considered as only utilizing a few
subcarriers in the 2 GHz wide band. When an 802.11ad-
compatible device is available, E-Mi can be easily ex-
tended to conduct MRF and dominant reflector recon-
struction across orthogonal subcarriers over a wideband.

For evaluation purpose, we also use the beam-scanning
method to acquire the ground-truth 〈AoA, AoD, length〉,
similar to Rappaport et al. [9]. We use a pair of Tx/Rx
radios equipped with directional horn antennas of 3.4◦

beamwidth [58]. With Axis360, the Tx antenna sweeps
the horizontal plane at a step of 3◦. Meanwhile, the Rx
measures the wireless channel and steers to next step af-
ter the Tx completes a full scanning.

8. Experimental Validation

8.1 Effectiveness of Multipath Resolution
To verify the MRF (Sec. 4), we set up a pair of Tx

and Rx, each synthesizing a 16-element phased-array.
We conduct experiments in a 90 m2 office environment,
which represents a typical indoor environment. The dom-
inating reflectors involve 2 drywalls, 2 concrete walls and
1 pillar (Fig. 7). We fix the Tx and randomly move Rx
over multiple locations. The result is compared against
the ground-truth AoA, AoD (measured using the oracle
beam scanning, Sec. 7) and path length (measured using
a laser ranger). The ground-truth measurement reveals
each link has 3 to 5 dominating propagation paths.

Success rate of AoA/AoD detection: Recall that
MRF needs to detect and then pair each AoA/AoD that
belongs to the same path (Sec. 4). Our measurement
shows that MRF correctly detects 89% and 82% of AoAs
and AoDs, and almost 100% of the correctly detected
AoAs/AoDs are correctly paired. MRF fails to detect
AoA/AoD of some paths primarily because their reflected
signal strength is too weak – We find the RSS of uniden-
tified paths is typically 16 dB lower than the LOS path.
In other words, the detection failure is not critical since
they will have a limited impact on link performance.

Accuracy in resolving AoA/AoD: Fig. 8 depicts how
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accurately E-Mi can resolve the AoA/AoD of all the mul-
tipaths that it successfully detects. We observe that the
estimated direction closely matches the true direction.
On average, the AoA/AoD error is only 3.5◦ and the
90-th error is 8◦. Considering that the beam-switching
granularity of a 16-element phased-array is 22.5◦ [35],
the accuracy of AoA/AoD estimation indeed bypasses the
granularity constraint of codebook-based beamforming
and achieves super-angular resolution. We expect the
accuracy can be improved by larger phased-arrays, due
to more entries in the received signal matrix (Sec. 4).

For comparison, we also run the codebook-based beam-
scanning method (Sec. 4). We found its success rates in
detecting AoA, AoD and pairing the AoA/AoD is only
64.4%, 66.7% and 53.3% respectively. And the average
estimation error of AoA and AoD are 21.0◦ and 22.1◦,
respectively. The fundamental reason lies in the afore-
mentioned sidelobe problem (Sec. 4). This experiment
further verifies the necessity and effectiveness of the vir-
tual beamforming method in MRF, which pairs up AoA
with AoD while nullifying sidelobes.

Accuracy of path length estimation: We run E-Mi’s
multi-tone ranging mechanism over all detected paths.
The scatter plot in Fig. 9 shows the estimated length v.s.
true length. E-Mi achieves an average error of only 0.4 m
and 90-th error of 1 m. The LOS paths (typically < 4 m)
tend to have smaller estimation error (0.23 m on average)
than NLOS reflection paths due to better RSS. E-Mi can
achieve this ranging accuracy using even a relative small
bandwidth because the vBeam algorithm (Sec. 4.2) can
isolate the signals from different paths. This accuracy is
sufficient for most 60 GHz applications since the predic-
tion metrics (AoA/AoD and signal strength) are not very
sensitive to the range measurement error (by the Friis
law, 1 m error only causes less than 2 dB path loss devia-
tion). It is expected that the ranging error will further re-
duce (Sec. 4.3) in practical 802.11ad radios with 1.7 GHz
bandwidth. To summarize, this microbenchmark verifies
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Reflector color Reflection loss Reflector color Reflection loss
—— drywall 15.87 dB —— concrete wall 8.60 dB
—— drywall 13.83 dB —— drywall 20.56 dB
—— concrete wall 5.50 dB —— pillar/monitor 1.24 dB

Table 1: Estimated reflection loss on different reflectors.

that the multi-tone ranging precision in E-Mi is sufficient
to support dominant reflector reconstruction, even when
using our low-end communication hardware.

8.2 Effectiveness of Dominant Reflector Recon-
struction

Following the setup in Sec. 8.1, a static Tx executes
the algorithm in Sec. 5.1 to locate the reflecting points for
each given Rx position. We move the Rx to 15 uniform
positions to reconstruct the dominating reflectors.

Accuracy in localizing reflecting points. Since the
reflecting point location has a linear, deterministic rela-
tion with the Rx position (Sec. 5.1), we mainly focus on
evaluating the latter, whose ground truth is obtained via
a laser range finder BOSCH DLE40.

Fig. 10 (a) plots the CDF of localization error. E-Mi
can locate the Rx position with mean/90-th error of 0.38
m and 0.6 m, which is even smaller than the path length
estimation, because we apply the minimum least square
method that leverages the redundant information of mul-
tiple reflected paths to reduce the estimation error. In-
deed, when we intentionally eliminate the LOS paths, the
performance (“NLOS only”) drops due to lower path di-
versity. The results verify that E-Mi’s reflecting point lo-
calization algorithm indeed achieves high precision based
on the MRF. More paths provide more diversity and hence
higher accuracy.

Performance of dominant reflector reconstruction.
Recall that, given an estimation of the Rx’s and reflecting
points’ positions, the dominant reflector reconstruction
locates the virtual source, specular reflector, and diffu-
sive reflector, respectively. Fig. 10 (b) puts together the
output from each step, and shows the final reconstruction
output based on 15 Rx sampling positions. We observe
that the output closely matches the ground truth: 4 walls
(specular reflectors) and one pillar/monitor (diffusive re-
flector). In effect, even the geometrical size of the re-
flectors matches the ground truth well with less than 0.3
m error. Table 1 lists the estimated reflection loss. The
two concrete walls have 10+ dB lower loss than the two
drywalls. And the metal pillar/monitor shows even lower
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loss. Intuitively, this matches with the reflectivity of ma-
terials at 60 GHz [59]. We have also evaluated E-Mi in
the cross of a corridor (Fig. 11) and observed a similar
level of accuracy in positioning the dominant reflectors.

In summary, E-Mi can effectively identify the geom-
etry, locations and distinguish the reflectivity of major
reflectors from the 60 GHz radio’s eyes.

Accuracy of link performance prediction. We now
feed the reconstructed reflector geometry/reflectivity into
the parametric ray-tracing engine, and predict the spatial
channel for another set of 15 randomly located Tx/Rx
pairs. Following the ground-truth measurement (Sec. 7),
we found these links have 66 paths in total. Fig. 12
showcases example results from two randomly selected
links. We observe that the predicted AoA/AoD patterns
are highly consistent with the ground truth. The miss-
ing spot (e.g., AoA 30◦/AoD 40◦) is caused by reflec-
tion that is not captured by the Tx/Rx during MRF. We
found such spots correspond to signal paths with negligi-
ble RSS and hence little impact on network performance.
Also, adding more Rx position samples can incremen-
tally reduce the probability of prediction loss.

Fig. 13 plots the channel prediction error over all prop-
agation paths among all links. The average and 90-th er-
rors of path length are 0.64 m and 1.41 m. The average
AoA and AoD prediction errors are 4.5◦ and 5.7◦, and
90-th errors are 12.2◦ and 10.0◦, respectively. These re-
sults verify that E-Mi can accurately predict the AoA/AoD
and path length of unobserved locations, based on a num-
ber of sparse samples.

Fig. 14 further shows the predicted v.s. measured RSS
among all paths and the corresponding CDF. We observe
that among all paths and links, E-Mi’s median RSS pre-
diction error is only 2.8 dB. The scatter plot in Fig. 14
further shows that locations with higher RSS benefits
from higher prediction accuracy, since it mainly involves
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Figure 15: Experiment in a complicated printing room.

LOS paths that follow the Friis pathloss model more closely.
Even though E-Mi’s prediction is imperfect, we show
that it can already become a salient tool for network de-
ployment and protocol optimization (Sec. 9).

Scalability in complicated environment. We explore
the scalability and generality of E-Mi in two steps. First,
we collect ground-truth channel profile in a printing room
– a more complicated environment (Fig. 15) than the of-
fice. Fig. 16 (a) and (b) compare the channel profiles
(high RSS corresponding to the AoAs/AoDs created by
dominant reflectors). Although the printing room hosts a
much larger number of objects, the number of dominant
reflectors remains similar (∼ 6). Our close examination
reveals that the dominant directions mainly come from
the metal shelf, glass window and concrete wall, etc.,
i.e., large objects with strong reflectivity. On the other
hand, wooden shelf, desk, and small structures on the
wall, barely contribute to the RSS. In both environments,
the 6 most dominant reflections account for > 95% of
the total RSS. This experiment demonstrates that even in
a complicated environment, the 60 GHz channel remains
sparse, i.e., only a few dominant reflectors determine the
channel quality. Thus, to predict the channel, E-Mi only
needs to capture and model a few dominant reflectors.

Second, we investigate how many sampling locations
are needed to reconstruct the dominant reflectors. We
simulate an 8×10 m2 room environment with four con-
crete walls. The Tx is placed at the center and Rx ran-
domly moves over 5 ∼ 30 locations in each test. Across
tests, different number of planar reflectors are placed ran-
domly around the Tx/Rx locations. We use the ray trac-
ing to obtain the ground-truth 〈AoA, AoD, length〉. Fig. 17
(a) depicts the average error between E-Mi’s reconstructed
reflector positions and ground truth. Generally, more
dominant reflectors requires more sampling positions. Yet,
even for an 8-reflector environment, E-Mi only needs 20
sampling locations to ensure an accuracy of around 0.2
m. Since the number of dominating reflectors tends to be
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Figure 16: Spatial channel profile of (a) a printing room
with many reflectors and (b) an office environment.
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Figure 17: (a) Reflector location error vs. number of Rx
sampling positions. (b) Client throughput CDF under a
2-AP architecture.

sparse, the amount of on-site sampling needed in E-Mi
is still substantially lower than that of a site-survey. Be-
sides, the reflector accuracy depends on the radio’s sens-
ing position, and it tends to be more accurate if the radio
can see stronger reflected paths from a reflector. Fortu-
nately, this location sensitivity will be averaged out when
the number of sensing positions is sufficiently large.

9. Case Study of E-Mi
In this section, we present an example application which

uses E-Mi to predict 60 GHz network performance and
optimize the AP placement. E-Mi can also be applied
to other scenarios, e.g., device localization and environ-
ment mapping. Yet, exploring E-Mi in a broader range
of areas is beyond the scope of this work.

9.1 Environment-Aware 60 GHz AP Deployment
Measurements (Sec. 1 and [11]) showed that the per-

formance of 60 GHz networks is a sensitive function of
location and reflector position, specifically w.r.t.

(i) Coverage: The spatial RSS distribution of a 60
GHz AP tends to be unevenly distributed, even among
same-distance links, due to two unique factors: (a) High
directionality: The AP’s phased-array antenna can only
generate a discrete set of directional beam patterns, which
typically point to unevenly distributed spatial angles [11,
36]. (b) Ambient reflections: Different reflectors cause
RSS to distribute unevenly, e.g., receivers close to strong
reflectors tend to benefit from high RSS [11].

(ii) Robustness: i.e., resilience of the network under
blockage. 60 GHz links tend to be frequently disrupted
due to inability to diffract/penetrate human body. Beam-
steering alleviates the problem, but whether the resulting
reflection path can detour blockage highly depends on
the geometry/reflectivity of environment [11, 60].

To address the environment sensitivity, we propose to
use a multi-AP architecture to cover a constrained en-
vironment. Through a central controller, the APs can
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Figure 18: (a) Coverage improvement over alternative
strategies. (b) Throughput loss under random blockage.

tightly cooperate with each other. When experiencing
poor throughput or blockage, a client can immediately
switch to an alternative AP. The architecture itself is not
new, but in 60 GHz environment, it needs to meet one
key challenge: For a set of APs under a given environ-
ment, how to deploy them optimally so as to maximize
the coverage and robustness to blockage?

We employ E-Mi to answer this question. The basic
idea is to predict the AP locations that provide best cov-
erage and robustness to a typical set of client spots. The
client spots are locations at which clients tend to con-
centrate. The client spots can be manually specified by
users within E-Mi’s environment map (e.g., Fig. 10 (b)).
Alternatively, the E-Mi AP can divide the environment
map into grids, implicitly sense clients’ locations over
time (Sec. 5.2), and incrementally build clients’ spatial
distribution. Client spots can be defined as grids where
the dwelling probability exceeds a threshold (e.g., 0.05).

To maximize coverage, we define the performance met-
ric D as the mean bitrate among W given client spots.
Suppose each client is associated to the AP with highest
bitrate. Then, for each combination of AP locations,

D =
1

W

∑W
i=1 argmax{j=1,··· ,A} T(RSS)ij , (9)

where RSSij represents the RSS from AP j to client i. A
is the number of APs, and T (·) maps RSS to the achiev-
able bitrate using the 802.11ad rate table [32]. The can-
didate AP position can either fall in the grids or be man-
ually specified by users within E-Mi’s environment map.
To find the best multi-AP deployment, we simply use E-
Mi to predict the performance of all candidate position
combinations and select the one that maximizes D.

For a given multi-AP deployment, we further define
the robustness metric as E = D′/D, where D′ is the
mean bitrate under blockage. Using E-Mi, we can “re-
hearse” the impact of human body blockage without field
war-driving. Since human body is aquaphobic [11, 36,
61], the blockage may annihilate one or more paths. So
we can use ray-tracing to derive D′ by averaging the bi-
trate resulting from blockage of random movement. We
repeat the procedure over candidate AP position combi-
nations and single out the best. The optimized AP loca-
tion essentially maximizes the number of paths to each
client. The more reachable paths will make the network
more resilient to blockage because radios can immedi-
ately reestablish the link upon blocking via another path.



9.2 Experimental Verification
We evaluate the E-Mi-based AP deployment with dom-

inant reflectors in Fig. 10 (b). We set 24 random client
spots and divide the environment into 20 equal sized grids.
The center of each grid is considered as a candidate AP
position. We compare E-Mi with random deployments
and an empirical approach that puts APs in four corners
to maximize coverage. Since our experiments have al-
ready validated the accuracy of the ray tracing method,
we reuse ray tracing to evaluate the RSS from an AP
to client. The RSS is then mapped to bit-rate and link
throughput following [11]. Consistent with Sec. 8.1, each
AP/client has a 16-element phased array, with 32 code-
book entries and beamwidth of 22.5◦.

Coverage: Fig. 17 (b) plots the CDF of clients’ through-
put under 2-AP deployment. For Random, the through-
put is averaged across all AP locations. We observe that
E-Mi gains substantial advantage from its environment-
awareness, with median throughput improvement of 2.24×
over Random, and 4.54× over Corner. Moreover, E-Mi
consistently delivers higher capacity for all clients, i.e., it
does not sacrifice fairness. The results manifest the inef-
fectiveness of empirical approaches, which are unaware
of the impact of dominant reflectors on 60 GHz network
performance. Even with 2 APs, E-Mi can optimize AP
placement and boost network capacity to 1.4× compared
with a single-AP deployment.

We further evaluate E-Mi in 30 different environment
topologies, created by intentionally adding reflectors (up
to 10), with random orientations, inside the environment.
Fig. 18 (a) shows that, given a single AP, E-Mi has 2.2×
average capacity gain over the empirical deployment, and
up to 4× gain in certain environment that is observed
to feature heterogeneous reflector placement. More APs
can offset the environment heterogeneous, and hence de-
grade E-Mi’s gain slightly.

Robustness: Under the same topology as Fig. 17 (b),
Fig. 18 (b) plots the CDF of throughput loss across all
clients under random human blockages (created by ran-
domly moving at different locations inside the environ-
ment). Owing to its awareness of reflectors, E-Mi’s me-
dian throughput loss is only around 20 Mbps, in com-
parison to 700 Mbps to 830 Mbps in the empirical ap-
proaches. The normalized throughput gain of our op-
timization is consistent with the measurement (Fig. 1)
using commercial 60 GHz devices.

We also found that the coverage-maximizing deploy-
ment may differ from the robustness-maximizing one. In
practice, one may use a weighted balance between the
metrics, based on how likely the blockage is to happen.

10. Discussion and Future Work
Using E-Mi in commodity phased-arrays: Our eval-

uation used a virtual array of 16 omni-directional an-

tenna elements to synthesize a phased-array. Commod-
ity phased-arrays may have a limited field-of-view an-
gle, and their beams reside within half-space (180◦) [33].
However, as long as the codebook and gain pattern are
available (usually specified by device manufacturers), E-
Mi’s multipath resolution framework is applicable. In
addition, we can flip the phased-arrays’ orientation to en-
sure full-space coverage.

From 2-D to 3-D sensing: Our E-Mi design places
the Tx/Rx on the same height and senses a 2-D cross-
section. Extending E-Mi to the 3-D case involves some
new challenges, e.g., resolving AoA/AoDs along both
azimuth and elevation dimensions. However, the main
design principles of E-Mi can still apply. Notably, the
geometry of dominant reflectors along the vertical di-
mension (mostly floors and ceilings) is much simpler and
easier to estimate. A user can even directly provide the
height information to assist E-Mi in estimating the dom-
inant reflectors in 3-D. We leave such exploration to fu-
ture work.

Sensing complicate-structured environment: E-Mi
abstracts the 2-D environment as a composition of lines
(for specular reflectors) and spots (for diffusive reflec-
tors). The abstraction is accurate if the radio environment
is sparse, i.e., dominated by large reflectors like walls
and furnitures (e.g., cabinet, bookshelf, and refrigerator).
Environmental sparsity in turn causes channel sparsity,
which has been observed by many 60 GHz measurement
studies [9, 18, 62, 63]. Nonetheless, E-Mi cannot cap-
ture complicated structures. These structure may violate
the channel sparsity assumption and exacerbate higher
order reflections. E-Mi does not attempt to capture mo-
bile structures either, as clarified in Sec. 3.

11. Conclusion
We present E-Mi as a sensing-assisted paradigm to fa-

cilitate 60 GHz networks, whose performance is highly
sensitive to reflectors. E-Mi senses the environment from
60 GHz radios’ eyes. It “reverse-engineers” the geom-
etry/reflectivity of dominant reflectors, by tracing back
the LOS/NLOS paths between a pair of 60 GHz nodes.
Through case studies and testbed experiments, we have
demonstrated how such environment information can be
harnessed to predict 60 GHz network performance, which
can in turn augment a broad range of network planning
and protocol reconfigurations.
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