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ABSTRACT

60 GHz millimeter-wave networking has emerged as the next fron-
tier technology to provide multi-Gbps wireless connectivity. How-
ever, the intrinsic directionality and limited field-of-view of 60 GHz
antennas make the links extremely sensitive to user mobility and
orientation change. Hence, seamless coverage, even at room level,
becomes challenging. In this paper, we propose Pia, a robust 60
GHz network architecture that can provide seamless coverage and
mobility support at multi-Gbps bitrate. Pia comprises multiple co-
operating access points (APs). It leverages the pose information on
mobile clients to proactively select the AP and manage multi-link
spatial reuse. These decisions require a model of the pose/location
of the APs and ambient reflectors. We address these challenges
through a set of AP-pose sensing and compressive angle estimation
algorithms that fuse the pose measurement with link quality mea-
surement on the client. We have implemented Pia using commodity
60 GHz platforms. Our experiments show that Pia reduces the oc-
currence of link outage by 6.3 x and improves the spatial sharing
capacity by 76%, compared to conventional schemes that only use
in-band information for adaptation.
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1. INTRODUCTION

The millimeter-wave (mmWave) wireless technology is emerg-
ing as a disruptive networking paradigm to provide multi-Gbps
connectivity for demanding applications, such as wireless back-
haul [1], cordless virtual reality (VR) [2], wireless fiber-to-home
[3], mobile-to-screen video cast [4], etc. FCC’s recent policy to
release 14 GHz of unlicensed spectrum, along with standardiza-
tion activities such as the IEEE 802.11ad [5], 802.15.3¢ [6] and
802.11ay [7], have spawned many consumer grade mobile devices
on the 60 GHz mmWave band. For example, TPCAST [8], a 60
GHz adapter, can replace the cables between a VR headset and its
PC host. Recent 60 GHz capable smartphones and laptops [9] can
stream Gbps uncompressed videos to an external display.

Ideally, one would anticipate the 60 GHz technology as the next-
frontier for mobile broadband, to replace the current WiFi. How-
ever, to date, the use cases of the 60 GHz wireless technology have
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Figure 1: Multi-AP networks: APs are partially overlapped
and connected to a backend server via wireless backhaul.

mostly been focusing on point-to-point, stationary links. To enable
seamless coverage and mobility support, 60 GHz networks need to
overcome fundamental barriers that do not exist in the prior low-
frequency counterparts. To compensate for the intrinsic attenua-
tion losses due to short signal wavelengths, 60 GHz radios adopt
phased-array antennas which comprise many planar patch elements
to form directional beam patterns. Although these beams are elec-
tronically steerable, their joint coverage is still limited due to the
inherent half-space coverage of patch antennas [10]. So the phased-
array bears a limited field-of-view (FoV), much like a camera. And
the signal strength largely depends on whether the receiver falls in
the transmitter’s FoV. Consequently, achieving stable 60 GHz con-
nectivity, even at room-level, becomes a nontrivial task.

In this paper, we propose Pia, a robust 60 GHz network architec-
ture that can provide room-scale coverage at multi-Gbps bit-rate.
Pia is tailored for emerging applications such as wireless virtual-
reality [2], augmented-reality [11], uncompressed miracast [4], all
requiring Gbps connectivity between a mobile device and a back-
end server for computational offloading or graphical rendering. Our
basic idea is to deploy multiple cooperating APs (e.g., at the cor-
ners of the room), each covering a “picocell” region that can com-
plement others’ blind spots. No matter how the client device moves
and rotates, it is likely to fall in the FoV of at least one of the APs
(Fig. 1). The APs can be 802.11ad-compatible access points or
dedicated relaying devices [2], which connect to a backend server
through Ethernet cables or fixed-beam wireless backhaul [1].

The idea of multi-AP coordination has been investigated exten-
sively in legacy WiFi or cellular networks [12—16], and the key
problem is to determine which AP to connect to, based on signal
strength, traffic load, etc. But the new characteristics of 60 GHz
bring unique dimensions to the problem. Since each 60 GHz AP
may possess hundreds of beam directions, a straightforward way of
selecting the AP will entail trial-and-error probing across all these
directions for all APs. When multiple clients coexist, multiple it-
erations of probing are needed to negotiate the best spatial reuse,
which compounds the overhead. Most critically, the probing needs
to be done not only when a client changes its location, but also its
orientation. Consequently, the probing overhead may overwhelm
normal data transmission.
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Figure 2: FoV and performance of the commercial 60 GHz lap-
top in our measurement. Varying (a) client device’s azimuth
orientation, (b) AP-to-client distance (azimuth = 0°).

Pia overcomes this issue by leveraging the 5-DoF pose informa-
tion (X, y, z position and polar/azimuth orientation) that is avail-
able on many mobile devices (e.g., VR headsets [17] and smart-

phones/tablets with visual-inertial sensing capabilities [18,19]). More

specifically, Pia employs a model-driven approach to predict the
best AP based on a client’s pose, and to assign the best beam pattern
each AP should use to maximize the spatial reuse among multiple
clients. To this end, we identify 4 unique design challenges.

First, our measurements indicate that the 60 GHz throughput of-
ten experiences a catastrophic drop as a client moves out of the
AP’s FoV, so the conventional multi-AP protocols that react after
throughput change can no longer sustain robust connectivity. We
thus design a pose-assisted link predictor that allows the client to
proactively switch to a new AP, before the current link quality drops
to an intolerable level. This decision builds on a prediction of the
client’s short-term pose change, paired with a simple model of the
AP’s coverage which does not require probing all beam patterns.

Second, a vast literature in directional-antenna networking at low-
frequency bands assumed cone-shaped beams [20]. In contrast,
practical 60 GHz phased-arrays have imperfect directional beam
patterns that often comprise multiple sidelobes, causing irregular
interference patterns across spatial angles. Pia addresses this chal-

lenge using a pose-assisted spatial sharing mechanism, which jointly

optimizes the AP selection and beam assignment, to maximize the
concurrent transmission opportunity when multiple clients coexist.

Third, the above two mechanisms assume Pia knows the AP’s
relative position and orientation within the client’s coordinate. How-
ever, the actual APs are often placed in an ad-hoc manner. To meet
this challenge, we design a statistical algorithm, called AP-pose
sensing (APS), that can estimate the AP’s pose based on a random
set of link-quality measurement at the client side.

Finally, Pia’s interference management mainly models the line-
of-sight (LOS) link quality. But the model can be occasionally dis-
turbed by non-line-of-sight (NLOS) reflections from close-by ob-
jects (e.g., concrete walls or metal cabinet). We design a novel
compressive angle estimation method, that fuses the pose informa-
tion with the link quality measurement, so as to discriminate the
reflection paths and model their impacts separately.

The contributions of Pia can be summarized as follows.

(i) We propose to use pose information as a fundamental primi-
tive, and identify the associated challenges/opportunities to facili-
tate robust connectivity within a 60 GHz multi-AP architecture.

(ii) We design pose-assisted link prediction, spatial sharing, and
AP-pose sensing mechanisms, to enable efficient link/interference
management for practical 60 GHz clients.

(iii) We implement Pia on a COTS testbed with 4 60 GHz radios
each with a 4x8 phased array. Our experiments show that Pia’s
pose-assisted AP switching effectively reduces the hazard times
(catastrophic throughput drops) by 4.2~6.3 %, and the spatial shar-

ing enhances the network capacity by 76% compared to the 802.11ad.

2. BACKGROUND AND OVERVIEW
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Figure 3: (a) Throughput and (b) AP’s beam index under

static/mobile in-FoV and static out-FoV.

2.1 Limited FoV of the 60 GHz Radio

Impact of FoV alignment on link quality. Early studies of 60
GHz phased-array [10] indicated that its coverage is often limited
to less than half-space. To elucidate the problem, we set up two
802.11ad laptops, as AP and client, respectively; both equipped
with the Qualcomm QCA6300 series chipset [21]. We measure the
link throughput when rotating the client in front of the AP which
is 1.5 m away and facing to the client directly (more details of the
setup are in Sec. 5). From the results (Fig. 2(a)), we can make
two observations. First, the client’s high-throughput coverage area
forms an angular sector (around 170°), which we refer to as its FoV.
Once the AP falls outside the client’s FoV, the throughput drops
sharply, from 2.2 Gbps to several hundred Mbps. Note that the
antenna’s FoV is different from its beam pattern. Each beam pattern
is much narrower than the FoV itself (more in Sec. 4.1). Second,
there is no ‘notch’ inside the FoV—all the beam patterns together
can fully cover the FoV, ensuring a consistently high throughput.

The limited FoV practically exists in all 60 GHz devices, be-
cause the phased array’s front-side comprises many planar antenna
elements, each having a FoV of 80° to 180° [10,22]. The backside
has very weak signal emissions, because it is grounded by a metal
plane, and often faces inward the host device which causes strong
attenuation. Following this common practice, 802.11ad-compatible
laptops (e.g., Acer P446 and Dell Latitude E7240) typically install
the phased array close to the outer surface of the lid. The TP-
CAST [8] 60 GHz adapter is mounted atop a VR headset, with
the phased array pointing towards the ceiling. For smartphones,
antennas are recommended to be placed on the top or bottom sur-
face [23].

Note that, besides the host device itself, the human user can fur-
ther block the phased array. In this work, we assume the user of the
device always falls outside the phased array’s FoV, i.e., blocking the
backside only. This is a valid assumption considering the antenna
placement principle [24] (in the most unobstructed zone during reg-
ular use), and also the fact that the user moves synchronously with
the device in practical applications, e.g., mobile gaming and wire-
less VR. Blockage of other users can be alleviated by careful AP
deployment/planning, which will be discussed in Sec. 7.

Fig. 2 (b) also plots the measured throughput as link distance in-
creases, with client and AP falling in each other’s FoV. We find the
link can sustain a high throughput over a reasonably long distance.
Even at 13 m, the throughput remains at 1.8 Gbps, much higher
than the out-of-FoV case. This range is consistent with previous
measurements [25,26]. It indicates that the devices’ orientation,
which determines FoV alignment, plays a more critical role than
link distance in maintaining robust room-level connectivity.

Profiling the beam-steering under mobility. Can the beam
steering on commercial 802.11ad radios be fast enough to adapt
to the user movement? To answer this question, we walk inside
the network area, holding the client device with natural pose varia-
tions, but keeping it within the FoV to an AP. Fig. 3(a) further plots
the throughput measurement over time. Although the throughput
shows higher variations, the mobile in-FoV case can still main-
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Figure 4: Pia’s modules and operation workflow.

tain 50% at worst and 80% on average compared to the stationary
case, and 3~5x higher than the out-of-FoV case. The beam index
changes rapidly in the mobile case (Fig. 3 (b)), indicating the real-
time beam adaption of 802.11ad can accommodate user mobility
with reasonable efficiency, at least at walking speed. So the in or
out of FoV relation becomes the dominant factor that determines
link throughput.

2.2 Pia Operations

To facilitate seamless coverage and mobility support for 60 GHz
networks, Pia adopts a two-stage workflow (Fig. 4). The sens-
ing stage takes the 60 GHz link status information, i.e., modula-
tion and coding scheme (MCS) and beam index, along with the
pose information from the mobile client as input, and runs the AP-
pose sensing (APS) algorithm (Sec. 3.2) to estimate the APs’ pose
within the client’s coordinate system. With the same input, Pia also
runs a compressive angle estimation algorithm to estimate the lo-
cation/orientation of major reflectors that may affect the network
performance (Sec. 4.2). Both schemes are one-time initialization
procedures that run before putting the network into use. They need
to be repeated only when the APs are redeployed or the environ-
ment changes significantly.

During the running stage, each client periodically feeds back its
pose information to the backend server, using its current AP as a
relay. The server runs the link prediction (Sec. 3.1) and interference
management (Sec. 4) algorithms, and returns the decisions to the
APs/clients. Pia’s decision-making mechanisms are proactive in
nature, based on a prediction of the long-term (> 500 ms) pose
(Sec. 3.1.2). The pose sampling period and feedback latency are
relatively negligible compared with the look-ahead time.

3. Pia DESIGN
3.1 AP Selection

We first consider a single mobile client and focus on how to dy-
namically select the AP to maintain high link throughput. This
issue resembles the classical AP handoff problem in WiFi [12—-16].
A common solution is to probe each AP and select the one with
highest potential throughput. However, such approaches are reac-
tive, and more critically, the many-beam phased-arrays in 60 GHz
networks will cause huge probing overhead. For example, to probe
all possible beams, an 802.11ad client needs to wait for the beam
training beacon, which occurs only once per beacon period (typi-
cally 100 ms) [27]. By the time a proper AP is identified, the link
may have already suffered from a long period of outage. Pia adopts
a different design principle. It predicts the best AP based on the
client’s pose, without explicit probing. It proactively decides on
which AP the client should switch to, and when. The AP/beam
selection algorithms will execute each time when a new pose data
arrives. Pia will inform AP the new beam selection only when algo-
rithm’s output changes. We now describe the mechanisms in detail.

3.1.1 Pose-Assisted Link Predictor
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Figure 5: 5-DoF pose of Figure 6: Link status prediction
the phased array. based on the poses.

In Pia, each pose sample, denoted as P = [z, v, 2, 0, ¢], repre-
sents the 3D location, polar and azimuth angle of the norm of the
phased array in a spherical coordinate system (Fig. 5). We can ig-
nore the rotation angle around the antenna’s norm direction because
such rotation does not change the FoV alignment relation between
the client and AP.

Based on the empirical insights in Sec. 2.1, each client discrim-
inates the APs using a binary metric 0/1, denoting whether an AP
is estimated to be within or out of FoV. It should be noted that
this binary metric is only applied for AP selection purposes. Finer-
grained metrics will be used for multi-client interference manage-
ment (Sec. 4.1). In addition, for picocell coverage within a room
area, the power budget of commodity 60 GHz devices already pro-
vides consistently high throughput for the in-FoV case (Sec. 2.1).
For larger scale networks such as outdoor small-cells, the AP-to-
client distance may have a non-negligible impact, but can be easily
modeled in Pia given the location information.

The predictor takes the AP’s and client’s poses as input. It pre-
dicts the link status as 1 if they mutually fall within each other’s
FoV (Fig. 6), and 0 otherwise. We define the FoV angle as from
the antenna norm to the edge of its coverage (35 and f3. in Fig. 6).
For example, the FoV of our device is 85°, measured in Fig. 2. A
device’s FoV is generally available from its antenna specifications,
or can be manually measured following Sec. 2.1.

Let P = [z, Ye, 2e, Oc, 0] and P = [z, ys, 25,05, 5] be
poses of client and AP, respectively. Pia computes two vectors V¢
and Vg that point to the norm of AP’s antenna and the direction
from AP to client, following 3D geometry:

Ve = Ry (0:)Rx(:)[0,0, 1] (1)

Vse = [2c, Ye, ZC}T — [2s, s, ZS]T @)
where (-)T denotes transpose operator. Ry () and R, («) are the
3D rotation matrices [28] that rotate a point relative to the origin
along Y-axis and Z-axis by an angle of « respectively. Eq. (1) con-
verts the orientation of AP’s antenna into a vector format. Then Pia
can determine the angle ¢ between vectors Vs and V¢ by:

bs = atan2(]|Vs X Vae|2, Ve Vee) A3)

where function atan2(-) calculates the four-quadrant inverse tan-
gent [29]. Similarly, Pia computes the angle ¢. between the norm
of client’s antenna and — Vs, and checks if ¢ and ¢, are smaller
than the AP’s FoV 3, and client’s FoV f.:

Link_State = {1’ s < B s P < Be 4)
0, Otherwise

Fig. 7 plots an example trace of the link predictor, as the client
walks within a 2x3 m? region with natural orientation changes
(More setup details are available in Sec. 6). To obtain the ground-
truth link state, we measure the link throughput corresponding to
each pose sample, and then convert it into 1/0, using a threshold
of 1.6 Gbps that can reliably distinguish the in-FoV and out-FoV
(Sec. 2.1). We highlight the false in-FoV predictions (i.e., out-FoV
predicted as in-FoV) which mislead the client to switch to a low-
throughput AP. We find the prediction error is only 9.11% across all
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the 1324 pose samples. More importantly, the errors mostly con-
centrate on the boundary area i.e., when transiting from in/out-FoV
to out/in-FoV. We will show that such errors have marginal impacts
because Pia reacts well before the transition occurs (Sec. 3.1.3).

3.1.2 Pose Predictor

Pia needs to estimate the link status for the near future based on
a prediction of the client’s pose. For simplicity, it adopts a classical
kinematic model, Continuous White Noise Acceleration (CWNA)
[30], for pose prediction, although other kinematic models can be
applied as well. CWNA assumes zero acceleration, i.e., both the
linear and angular velocities are stable within a very short duration.
Thus, the pose P at time ¢ 4 1 can be predicted as:

Pe(t 4 1) = Po(t) + AP.(1),
AP (t+ 1) = AP.(t),

where AP¢(t) = Pc(t + 1) — Pc(t) is the pose velocity.

A key question here is how far should Pia predict ahead of time.
Let L denotes the look-ahead time. L should be long enough to
ensure the AP switching can finish timely, yet not too long to make
the prediction unreliable. In our Pia implementation (Sec. 5), the
AP switching time is negligible (< 10 ms), so we empirically set
L to 500 ms, roughly the scale where human movement velocity
remains coherent [30].

3.1.3 AP Switcher

To avoid the adversarial impact of false in-FoV predictions (Sec.
3.1.1), Pia leverages the transition area where different APs’ FoVs
partially overlap (Fig. 8 (a)). It makes AP switching decision ahead
of time before the link status of current AP degrades, so as to avoid
the boundary region vulnerable to false prediction. To realize seam-
less switching, the APs should be deployed with partially overlap-
ping FoVs. However, we will empirically verify that, even when
this requirement is not satisfied, Pia’s AP switcher can still mini-
mize the client’s outage duration (Sec. 6.2).

To determine the desired AP and appropriate switching time,
Pia’s AP switcher takes the predicted link status for all APs from
time ¢ + 1 to ¢ + L as input. Fig. 8(b) shows an example time
series of link status (0/1) prediction for two APs, computed based
on the pose data of headset and AP using Eq. (4). Such informa-
tion forms a table-like data structure. Pia then makes the switching
decision following three basic rules: (i) Prepare a switching only
if the current AP has at least one O value in the table. Otherwise,
the AP will remain in the client’s FoV in the look-ahead duration
L and switching is unnecessary. (ii) Look for other APs that have
overlapped 1s with current AP in the predicted time span, and se-
lect the AP with smallest AP-to-client distance as the AP to switch
to. This essentially enables Pia to react within the transition area,
and choose an alternative AP with potentially strongest RSS. (iii)
Choose the center of overlapped 1s as the switching time, so as to
avoid the boundary regions vulnerable to prediction errors (Fig. 8).
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Figure 8: (a) AP switching during the transition area. (b) Table
of predicted link status for two APs.
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Figure 9: AP-pose sensing: Determine the orientation from a
3D ellipsoid that covers all client’s poses in the AP’s FoV.

There are two exceptional cases that Pia needs to handle in order
to minimize the impact of potential link outage: (i) When no other
APs have any 1s, Pia needs to stick to the current AP. (ii) When no
overlapped 1s exist, Pia will switch to the AP that has the earliest 1
in the predicted time span.

3.2 AP-Pose Sensing

The above link predictor assumes the APs’ poses are known. Ide-
ally, a user can measure APs’ poses during deployment. However,
in practice, the phased array antenna is commonly sealed inside the
device, and the exact direction where its FoV points to is invisible
to the end user. Pia’s APS algorithm overcomes this barrier by au-
tomatically estimating each AP’s pose, which will account for the
antenna array placement inside the device. Although certain local-
ization schemes [31] may help obtain the AP’s (s, ys, zs) coordi-
nate, they require at least three reference devices. Pia’s use cases
typically do not satisfy this requirement because only one reference
device, i.e., the mobile client, exists with known position. Besides,
these schemes need access to fine-grained PHY-layer information
such as phase, and often require precise carrier clock calibration
between the transmitter and receiver, which is not viable on com-
modity 60 GHz hardware. To enable 5-DoF AP-pose sensing for a
wider range of 60 GHz devices, we devise a statistical algorithm
that only needs the link throughput measurement as input.

Collecting the sensing data. APS is called during the sensing
stage of Pia, when the user randomly walks within the network
coverage. Meanwhile, the client device records its pose and link
throughput with respect to a connected AP. Then, Pia converts the
link throughput into binary link status in the same way as the ex-
periments in Fig. 7. Since a client device can estimate the link
throughput for multiple APs simultaneously, a user only needs to
collect the sensing data for all APs with a single walk. Besides, the
user’s walking trace needs not cover every spot in the area.

Statistical estimation of the AP pose. Let Sg denote a set that
contains all legitimate AP’s pose values, and S¢ be the pose sam-
ples in the sensing trajectory. Then the optimal estimation of the AP
pose should result in the minimum error in matching the measured
in-FoV/out-FoV samples. We formulate this optimal estimation P*
as one that minimizes the weighted false in-FoV errors (wgr) and
false out-FoV errors (wro) for a given set of samples:



Algorithm 1 AP-Pose Sensing

1: procedure APposeSensing(St, T, Wgl, Wro)
2: [T, Yq, zq4] = ellipsoidCenter(St)

3 D = APLocList(S¢) > Generate list of legitimate AP locations
4 vMin < inf, P*<-NULL > Initialize variables
5: for [zs,ys,25] € D do

6: [0s, ps] =toAngle([zs, ys, 2s], [Tq, Yd, 24]) > To orientation
7.

8

9

> Find the sweet spot

P; + [Ts,Ys, 25,05, 5,0+ 0 > Candidate AP pose
for Pj € St,tj € T¢ do
v =0+ inFoV(P;,P;) x (1 — t;) * wg

10: +(1 — inFoV(P;,Pj)) * t; * wro > Eq. (5)
11: end for

12: if v < vMin then > Minimize weighted error
13: vMin +— v, P* <« P

14: end if

15: end for

16: return P*
17: end procedure

> Return the estimated AP’s pose

P* = argmin wFIE;s:tl‘ inFoV(P;,P;) x (1 —t;)+
P,€Sg (5)

wro Y124 (1 — inFoV(Py, P)) * t,
where |S¢| represents the number of samples in S¢, and ¢; is the
ground-truth link status (0/1 value). Function inFoV(-) determines
if the client and AP are within each other’s FoV (Eq. 4) and returns
a binary (0/1) indicator. P; denotes the AP’s pose and is the only
variable we need to solve. We choose to minimize the weighted
error because the false in-FoV error is more harmful to the link
stability than the false out-FoV error (Sec. 3.1). Thus, it deserves a

larger weight in the optimization (wrr:wro = 4:1 in Pia).

However, Eq. (5) is non-convex, and solving it directly will be
computationally expensive due to the large space of Ss. Suppose
we partition locations in the unit of 10 cm and rotations in 3°. Then
the number of candidate poses for a typical-size room (120 m?)
will be 2%%.

To prune the search space, we leverage a sweet spot where the
axial direction of the AP’s FoV passes through. At this location
spot, the in-FoV estimation should have a minimal error. To locate
such a spot, consider an example trace of sensing data in Fig. 9,
where we mark all locations with “in-FoV” link status as red dots.
Using the approach in [32], Pia finds a 3D ellipsoid of minimum
volume covering all the red dots. The ellipsoid’s center is identified
as the sweet spot because steering the AP’s FoV to it will maximize
the number of red dots the AP covers. Afterward, Pia searches over
the 3D space using Eq. (5) to determine the AP’s location. The
search space becomes much smaller because it only involves 3-
DoF. Since the sweet spot uniquely specifies the axial direction of
the AP’s FoV, the AP’s orientation can be directly determined for
a given location without searching. Algorithm 1 summarizes the
above procedure of APS. Moreover, Pia can detect the AP position
change after initial sensing, because an inaccurate AP pose will
significantly reduce the AP selection accuracy (Sec. 6.1). When
the AP selection reliability degrades below a certain threshold, Pia
will notify the user to recalibrate the AP’s pose.

4. POSE-ASSISTED INTERFERENCE MAN-

AGEMENT

Despite the 7 GHz of spectrum for 802.11ad, there only exist 4
orthogonal channels. Multiple clients sharing the same channel can
become inevitable in dense networks, and when the AP-to-server
wireless backhaul needs dedicated channels. The 802.11ad stan-
dard [5] specifies a spatial sharing mechanism, where directional

links can sense their mutual interference. Concurrent transmissions
are allowed only among interference-free directional links. How-
ever, to allow other links to sense its interference, each link needs
to first transmit in an exclusive service period [5]. This repeats
whenever its beam changes, which ultimately reduces spatial reuse,
especially when there are multiple mobile links. We now describe
how Pia overcomes the challenge.

4.1 Improving the Spatial Sharing Opportu-
nity

4.1.1 Beam Strength Vector

Pia uses beam strength vector (BSV) as the core data structure to
arbitrate the AP beam assignment for multi-client scenarios. BSV
is defined as a vector characterizing the RSS values (w.r.t. the AP)
across different transmit beam patterns. An example BSV is shown
in Fig. 10 (a), measured using our 60 GHz AP and a customized
software radio (Sec. 5) separated by 2 m. To obtain the BSV in
commodity 60 GHz devices, there are two approaches:

Measurement from radio. First, one can leverage 802.11ad’s
built-in beam training protocol. At the beginning of each beacon
interval (BI), the AP transmits multiple beacon frames, each using a
different beam pattern. The client can record the RSS of each trans-
mit beam pattern, which forms the BSV. This approach doesn’t rely
on the pose information and can be applied to general scenarios.

Prediction from pose. However, an AP sends out beacon frames
at a fixed time interval, e.g., 100 ms, which is too long for delay-
sensitive VR applications. Instead of waiting until the beginning of
a BI, Pia chooses to leverage the pose information to directly derive
the BSV. It first calculates the polar/azimuth angle looking from the
AP’s pose to the client’s position (similar to Eq. (2) and (3)). It then
looks up the gains of all beam patterns in the view-angle direction.
The angular beam pattern can be obtained from the phased-array
datasheet or using a one-time measurement (Sec. 5). Fig. 10 (b)
illustrates a 2D example of this procedure, where the left plots the
gains of different beam pattern indexes at different angles, and the
right shows the corresponding BSV at angle -36°.

4.1.2 Pose-Assisted Spatial Sharing

To enhance the spatial reuse opportunity, we introduce a novel
interference management framework, which leverages the pose in-
formation to simultaneously determine the best AP and beam pat-
tern for each client. Our key insight is that practical phased-arrays
are not perfectly directional. Due to the use of discretized beam-
forming weights (i.e., codebook entries) [10], each beam pattern
may bear a main lobe along with multiple weaker side lobes. Fig 11
illustrates example beam patterns of our AP device, measured using
a software radio (Sec. 5). Therefore, instead of greedily choosing
the beam with strongest main lobe for each link and then measure
whether the links can coexist without interference as specified by
802.11ad [5], Pia can judiciously assign beams with weaker lobes,
which may sacrifice the RSS of certain links but create more spatial
reuse opportunities for them.

We formulate this basic idea as a joint AP selection and beam
selection problem. For clarity, we will focus on the downlink and
optimize the AP’s beam selection because the downlink traffic will
be the dominance in the VR application. However, the extension
to uplink and client-side optimization can follow the same princi-
ple since the client’s pose is available. Our objective is to find the
optimal AP and beam assignment that maximizes the overall link
quality using beam strength map (BSM), a data structure that aggre-
gates the BSVs between each pair of AP and client. Each row of
BSM s a BSV for a client and an AP. Fig. 12 plots an example mea-
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sured using our 3-AP 3-client testbed (Sec. 5). To account for the
signal attenuation over distance, Pia subtracts the predicted BSV
by the pathloss of Frii’s model [33] which takes the AP-to-client
distance as input. Note that Pia does not need to predict client’s
absolute RSS because the spatial sharing mechanism only relies on
the ratio between BSVs.

Suppose there are N, clients and N, APs. Let A(i) and B(3)
be the AP and beam assignment for client . Ideally, to maximize
network capacity via spatial reuse, Pia should maximize the signal-
to-interference-ratio (SIR) of all clients:

BSM[A B(z)]

max - —_— (6)
B Ne Z Nﬁ INFm( ON

where BSM(a, 1, b] denotes the 31gnal strength from AP & to client

1 using beam b, and function INF.(d, 1) calculates the maximum

interference that AP a can cause to client ¢, which is given by:

INFpa(é,i) = max INF(j, 1),
JAG)=a

A() # A(0)
A(j) = A0,

However, directly solving Eq. (6) entails a high computational
complexity of O((NsNy)Ne), where Ny is the number of beam
patterns in the phased array. This above SIR-based solution is not
scalable to the client number. Moreover, in our evaluation (Sec. 5),
we found it cannot process the pose input in real time for even two
clients. Instead, we design a lightweight algorithm that maximizes
the signal-to-leakage-ratio (SLR). The leakage is defined as the sig-
nal strength sent by an AP and received by an undesired client. SLR
computes the ratio of desired client’s RSS to leakage. Maximizing
the SLR will also enhance the SIR because it minimizes the leakage
that causes interference to others. SLR reduces the optimization
complexity by decomposing the dependency between clients in AP
assignment and beam assignment.

(i) AP assignment. To maximize the SLR, it is best to assign the
client to an in-FoV AP at closest distance, because it maximizes
the RSS while minimizing the leakage from other APs. Pia thus
assigns the client to an AP with the maximum average BSV across
all beam indexes (e.g., client 1 is assigned to AP 1 in Fig. 12).
When assigned to the same AP, multiple clients can work under the
802.11ad TDMA mode.

(ii) Beam assignment. Upon a new client assignment, the AP first
iterates through each beam index, and calculates the RSS of current
client and maximum leakage signal strength to other clients, which
forms the SLR. The AP then chooses the beam assignment that has
the maximum SLR value. Finally, it examines whether the resulting
SIR for each client exceeds its packet decoding threshold; if not, it
assigns a dedicated time slot for it. Algorithm 2 summarizes the
SLR-based algorithm. Its runtime complexity can be straightfor-
wardly derived as O(N.Ny(Ns + N.)), and it is efficient enough

INF(j,Z'): gSM[A() 7B(J)L

clients.

Algorithm 2 SLR-based AP and Beam Assignment
1: procedure assignSLR(BSM[], N.)

2: fori =1: N.do

3: A (3) + indexOfMax(mean(BSM]:,1,:].")) > Assign AP
4: end for

5: fori=1: N. do

6: forj =1: N.do

7: SLR[j,:] + % > Leakage from client 4 to j
8: end for

9: B(:) « indexOfMax(min(SLR[:,:])) > Assign beam
10: end for

11: return A and B > Return AP and beam assignment

12: end procedure

to run in real time. Although the SLR-based algorithm is subopti-
mal, our evaluation shows its performance is close to the SIR-based
algorithm.

4.2 Dealing With the Environmental Reflec-
tors

The above scheme geometrically models the interference coming
from transmitters within direct LOS. In practice, when the trans-
mitters become close to strong ambient reflectors, their beams may
be redirected, causing NLOS interference. To account for such ef-
fects, Pia incorporates a novel reflector sensing scheme which en-
hances the model in Sec. 4.1.2. It requires the user to conduct a
one-time environment learning, by placing the 60 GHz client de-
vice near each strong reflector (typically concrete walls and large
metal furniture [34]). Due to the well-known sparsity of 60 GHz
channel [35], from 60 GHz radio’s eyes, there are only a few dom-
inant reflectors, which can account for more than 95% of the total
energy that can be received by the radio in a typical indoor envi-
ronment [36]. The selective scanning reduces the human labor and
accelerates the sensing process by avoiding many unnecessary po-
sitions. However, we cannot let the user directly input the reflector
coordinate since the reflectivity is unknown. Pia uses a novel signal
angle sensing algorithm (Sec. 4.2.1), which fuses the pose sensor
measurements with the BSV measurement, to estimate the relative
location/orientation of reflectors. During the SLR estimation, Pia
accounts for the NLOS interference from each reflector by model-
ing it as a virtual transmitter (Sec. 4.2.2). Moreover, strong reflec-
tors unlikely move frequently due to the size and weight. We only
need to rerun environment learning when their positions change.

4.2.1 Pose-Assisted Compressive Angle Estimation

The key idea in our NLOS interference model is to reverse en-
gineer the impact of reflectors by tracing back the NLOS signals’
angle of departure (AoD) and angle of arrival (AoA). Such signal
angles may be measured using a cone-shaped antenna with perfect
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directionality [37]. However, our goal is to enable angle sensing
in practical 60 GHz devices which have imperfect beam patterns'
(Fig. 11). The results are consistent with previous measurement
study [25] using similar hardware. Our solution originates from
a key observation: Whenever the reflector’s impact becomes non-
negligible, the measured BSV will deviate from the one predicted
by using the LOS model (Sec. 4.1.2), and become the superposition
of two BSVs along the LOS path and reflection path (Fig. 13).

Following the same approach as Sec. 4.1.1, Pia first obtains the
measured BSV, from which it then estimates the number of paths
and their angles, based on a statistical optimization model. For
simplicity of exposition, we focus on the AoD estimation, but the
Ao0A applies in the same way. We first uniformly divide the AP-
to-client view angles (6, ¢) into N, pairs following the geodesic
grid [38]. Let V(6;, ;) denote the predicted BSV (Sec. 4.1.1) for
the it" pair of direction (0;, ¢;), and g; be the unknown channel
gain along the BSV direction. The measured BSV V.. can be ex-
pressed as the sum of BSVs from all directions multiplied by their
associated gains: V, = vazpl V(0;,p:)gi. Thus, we may esti-
mate the AoD by solving g; in the system of equations:

NP
V, — ZV(@i, ©i)gi =0 7
i=1
where the direction (6;, ;) associated with a non-zero g; will be
the AoD of one path.

The problem (7) is under constrained because N, > Nj. For ex-
ample, to achieve an AoD estimation granularity of 8°, we need to
uniformly divide the 3D view angle into 337 directions according
to the geodesic grid [38]. Yet, for a phased-array of 32 elements,
the number of beam patterns is only 64 following the standard prac-
tice of codebook design [39]. To address this problem, we harness
the channel sparsity of the 60 GHz channel [35], i.e., most AoD
directions have close to zero gain (i.e., g; ~ 0), and only those cor-
responding to the LOS and a few strong reflection paths are non-
negligible. We thus stack the g; into an N, x 1 column vector
G =|g1,-.. ,ng]T, which is now sparse. Thus, we can reformu-
late Eq. (7) into a compressive sensing problem that minimizes the
l1 norm of the sparse vector G,

min ||G||: subjectto ||V, —VG|2 <e 8)

where V = [V (01, ¢1),... , V(0n,,¢n,)] is an Ny x Ny, matrix,
and ¢ is determined by the radio’s noise power in BSV measure-
ment. Eq. (8) can be solved efficiently in polynomial time using
the ¢1-MAGIC [40] or CVX [41] toolbox.

4.2.2 Modeling the Reflector Impact

"Practical phased-array beam patterns deviate from the horn shape
because: (i) The OEM codebook does not account for the elec-
tromagnetic impact from peripheral electronic components on the
phased array. (ii) To reduce the manufacturing cost, the 60 GHz
phased-arrays only have limited phase-shift resolution (2-bit for
each antenna element on the Qualcomm platform we use, i.e.,
switching among 0°, 90°, 180°, and 270°). (iii) Our radio uses
the same beam pattern for both beacon frames and data frames.
The former is expected to have more diverse and wider beams [5].
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Figure 14: Estimate the initial pose of the client using compres-
sive angle sensing.

Given the AoA/AoD, Pia can back-trace the departure and arrival
paths, and locate the intersection points as the estimated reflector
positions. Let Pe = [Zc, Ye, 2¢, Oc, c] and Ps = [zs, ys, 25, 0s, ©s)
be the poses of client and AP, and (6., v ) and (04, ¢4) be the esti-
mated AoA and AoD. The AP’s pose can be estimated by the APS
algorithm (Sec. 3.2). The AoA path travels along a series of points
with coordinate:

cos(pa) sin(ba)la Ze
Ka(la) = Ry (0:) Rz () [sin(soa) sin(0a)la | + [Ye| (9)
cos(0a)la Ze

Eq. (9) first rotates a point at the AoA angle (0., o) w.r.t. the ori-
gin by an offset of client’s orientation (6., ¢.), and then translates
the coordinate by an offset of client’s location [z, Ye, zc]. The only
unknown variable in Eq. (9) is [, that controls the distance between
point Ka(lq) and [z, Ye, zc]. In a similar way, we back trace the
AoD path and form a series of points with coordinate Kq(lq) with
l4 as the variable.

In practice, the AoA and AoD paths might not intersect in 3D
space due to the residual error of angle sensing. Pia will select a
point with closest distance to the two paths. Toward this goal, Pia
determines the two points Ka (1) and Kq(1};) with [ and [} that
minimize the distance between them:

(la,ld) = aflgllni)nl\Ka(la) — Ka(la)l]2: (10)
astd
The closest intersection point, i.e., the estimated reflector position,
K. is their median center: K, = (Ka(l;) + Ka(3))/2.

To capture the reflector’s impact, Pia adopts the concept of vir-
tual AP (VAP) — a virtual signal source that mirrors the position of
real AP relative to the reflector (Fig. 13). This idea is inspired by
the 60 GHz ray-tracing method [42-44], which has proven to pre-
dict the 60 GHz signal propagation reasonably close to real mea-
surement. A reflector will redirect the signals so that they look like
emitting from the vAP. Given the client position K¢ = [, Ye, zc]”
and reflector position K, the vAP position K can be derived from
geometry (Fig. 13), by moving from the reflector position along the
AoA direction over distance 1}

K, = M + K. a1
To determine the vAP’s orientation (6v, @), Pia solves following
equation:
cos(—pq) sin(64) K. - K
Ry (0)Rx(p0) {Sin(—w) sin((’d)} =—0, (12
cos(6q) la
where the left side forms a unit vector from vAP’s orientation (6., . )
toward vAP’s AoD direction (64, —¢4). The unit vector should be
at the same direction as the one from reflector’s position to client’s
position (i.e., right side). The azimuth angle of vAP’s AoD is neg-
ative because it is the mirror symmetry of the real AP.

Once the pose of VAP is determined, it will be used in Pia’s spa-
tial sharing module (Sec. 4.1.2) in the same way as a real AP, except
that vAP should account for the reflection loss of reflector (esti-
mated in the channel gain g;). This procedure of vAP localization
should be repeated for each reflector during the sensing stage.



4.3 Calibrating the Client’s Pose Offset

Since the outputs of APS and reflector sensing will be used by
other client devices, in order for Pia to operate correctly, each later
joined client that does not run the sensing stage, needs a one-time
calibration for its pose. The pose information on mobile devices
may contain an unknown initial offset w.z.t. the AP’s coordinate
due to two reasons. (i) Not all devices are capable of reporting
absolute location/orientation. Many accurate and mature indoor
navigation technologies [18,45-48] can only measure relative lo-
cation/orientation change based on visual-inertial sensors. (ii) The
pose, especially orientation, of a phased array antenna may not be
the same as the pose of its host device.

Therefore, Pia needs to estimate an initial pose for each newly
joined client w.r.t. the AP’s coordinate, so that it does not need to
rerun the APS and reflector sensing. Our solution is designed upon
the compressive angle estimation (Sec. 4.2.1), following two steps:

(i) Determining the in-FoV APs. When a client first enters the
network area and moves around, it searches for two nearby APs
within the FoV. There are multiple ways to determine if an AP is
in the FoV. For example, the client can estimate the link through-
put by sending data to the backend server and using the throughput
thresholding heuristic in Sec. 2.1. Alternatively, the client can es-
timate the RSS from the beacon frames. Then, the client estimates
the AoAs and AoDs w.rt. the LOS APs (Fig. 14). Note that the
sensed angle is relative to the device’s phased array antenna rather
than the AP’s coordinate. Then, the two APs share their pose infor-
mation (estimated from APS) with the client. (ii) Determining the
initial pose. The two LOS paths originating from two APs inter-
sect at the client’s location (Fig. 14). Given the APs’ locations and
the AoD of the LOS paths, a simple geometrical calculation can
pinpoint the client’s location. Pia can determine the client’s orien-
tation in the AP’s coordinate, in a similar way as finding the VAP’s
orientation in Sec. 4.2.2. The estimated location and orientation
together form the initial pose of the client. It is worth noting that
the initial pose estimation requires the AP fall in the client’s FoV.
Thus, it cannot be applied to assist the network operations, such as
AP switching.

S. IMPLEMENTATION

Multi-AP 60 GHz network testbed. We prototype Pia based
on a multi-AP 60 GHz testbed, as shown in Fig. 15. The testbed
consists of three APs and one client, all equipped with the Qual-
comm 60 GHz wireless network interface card (with QCA6310
32-element phased array/RF front-end and QCA6320 MAC/base-
band). Each AP is a small PC which interfaces the card through
an M.2-to-PCle adapter. We mount the phased array antenna on a
flat panel that can adjust its tilt angle. Each client is a laptop (Acer
P446-M59BB) with the phased array built in the outer side of the
laptop’s cover.

Although the server-to-AP backhaul links can use 60 GHz in-
terfaces with fixed beams, our prototype implements them using
10 Gbps Ethernet with a NETGEAR XS708E switch. We con-
figure the two-hop network into two subnets, and the APs simply
act as relays between client and the backend server (Fig. 15). To
switch the AP, Pia modifies their gateway, and the data will be for-
warded along the new AP. The switching latency is less than 5 ms
(Sec. 6.2).

Extracting radio information from Linux driver. We use the
latest wil6210 driver [49] for the 60 GHz wireless adapters. Since
the firmware (wil6210.fw) and phased array codebook (wil7210.brd)
are still unavailable in the Linux firmware library, we port them
from a Windows driver (Atheros Sparrow 11ad version 3.3.3.7233)

60 GHz net: () Backhaul net:
192.137.1.* 192.100.1.*
Gateway: 60 GHz AP1 Gateway
AP1
Tango tablet % 0 *
Phased array
(front) (back) 60GHz 0 CHZ 60 GHz AP2 Bac
. h Station
. wireless () server
card
60 GHz AP3

Figure 15: (Left) Pia’s hardware components, phased-array in
the red circle. (Right) Multi-AP configuration.

that is released by Acer. We modify the wil6210 driver and make
it quickly (131 entries/second) export the low-layer information to
user space, including instant (Tx/Rx) throughput, signal quality, ac-
tive (Tx/Rx) beam index, and (Tx/Rx) MCS. Such information is
used as input to Pia’s modules.

Client pose. We attach a Google Tango tablet [18] to the lap-
top’s outer surface, which can track the laptop’s relative pose at
cm-level and degree-level accuracy [50, 51] with less than 80 ms
latency [52]. We will evaluate the impact of pose errors in Sec. 6.
We develop an Android application that converts the quaternion ro-
tation into pose (Sec. 3.1.1) and streams it to the laptop via USB at
297 entries/second.

Pia components. We implement the major design components
(AP selection, APS, spatial sharing, signal angle sensing) in Mat-
lab and C. The algorithms run on the back-end server (Fig. 1)
which is a commodity PC with i7-3770k CPU and 16 GB mem-
ory. To achieve millisecond AP switching latency, many legacy
802.11 drivers (e.g., athSk, ath9k, ath10k [53] and iwlwifi) sup-
port mac80211 VIF [54] which allows one client to maintain mul-
tiple virtual interfaces to different APs [55, 56], thus eliminating
the re-authentication and re-association that account for the ma-
jor overhead in AP switching. Since such support is still under
development in wil6210, we achieve rapid AP switching through
reverse-tethering, i.e., configuring the AP into the managed mode
and client into the AP mode, which allows the laptop to maintain
connections to multiple senders.

Measuring beam patterns. Pia’s interference management re-
quires the phased array’s beam patterns (Sec. 4). Since our 60 GHz
radio’s hardware specifications are not public, we measure them
using the same 60 GHz software radio as in [35,36,57]. We place a
receiver radio (with a 20° horn antenna) 2 m away from an AP and
point its antenna center to the AP’s phased array. We mount the
AP on a 3D motion controller that can rotate its azimuth/elevation
angle at a step of 3°, allowing us to measure the RSS from different
directions (i.e., angular beam pattern). Since the beam switching on
the 60 GHz wireless card is controlled by closed-source firmware,
we are currently unable to switch the phased array’s beam directly.
In order to obtain the beam patterns for all beam indexes (31 in
total), we measure the RSS values of beacon frames at the begin-
ning of each beacon interval, which are sent sequentially by the
AP, each using a different beam pattern, following the 802.11ad
standard [5,27]. We predict the BSV using pose data from the
measured beam patterns. Besides, we find that in our platform the
beacon frames share the same codebook as the data frames. Even
though they may be different in other radios, we can still follow the
same principle and measure beam patterns of the data frame.

6. EVALUATION

Methodology: We deploy the 60 GHz testbed in a 7x8 m? of-
fice environment, with 3 APs mounted on stands (2 m height) near
the corner of the room, forming a triangle and facing 45° towards
the ground. We choose the corner positions because of the physi-
cal constraints and convenience, just like the placement of typical
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home routers. Besides, it is also the best way to stress-test our
system’s capability since the client needs to perform AP switching
more frequently. Pia can easily scale to a larger space with more
APs.

To bootstrap the system, we first generate a set of legitimate AP
poses to feed APS (Sec. 3.2). Pia creates a bounding box using the
rouge room size input by the user, and then partitions the possible
AP coordinate by a step of 10 cm. Further increasing the granu-
larity will not improve the AP-pose sensing accuracy because it is
already close to the system limit (Sec 6.1). We then execute the AP
switching in real time (Sec. 3.1). The current Qualcomm firmware
does not support real-time beam control and RSS feedback for each
beacon frame. To evaluate the interference management (Sec. 4.1),
we collect BSV data over 100 random client poses for the com-
modity 60 GHz AP using our customized 60 GHz Rx (Sec. 5). We
then use the BSV data as input to evaluate the performance of Pia’s
spatial reuse, angle sensing, and reflector estimation, which best
approximate the end-effect of an actual device.

Metrics: In the micro benchmarks, we focus on metrics directly
related to the design modules’ performance, e.g., AP selection ac-
curacy, pose error, SIR, and angle sensing error. The system level
tests will focus on network-level metrics: throughput, latency, and
reliability. We measure the achievable throughput by iperf3 [58]
and the network latency by sending back-to-back ping packets. By
default, error bars in all results denote the 90-percentile error.

6.1 Micro Benchmarks

6.1.1 Effectiveness of APS and AP Selection

Impact of training. We first evaluate how the sensing stage af-
fects APS (Sec. 3.2) by collecting training data while walking ran-
domly over 15 meters, which only takes a user less than one minute
to walk through. We partition the collected data into multiple sizes
to evaluate the impact of data size on the sensing accuracy. Fig. 16
shows that both the location error and orientation error decrease
dramatically over longer walking traces. When the walking dis-
tance is <5 meters, the estimation error tends to be large, because
Pia doesn’t gather sufficient data to statistically filter out erroneous
locations. With >11 m training, the AP’s pose error stabilizes at
0.29 m and 0.17 radian (i.e., 9.7°), which indicates the APS algo-
rithm can quickly estimate AP’s pose with minimal training efforts.

We then use the collected data onwards for Pia’s link predictor.
Fig. 17 shows that with distance >11 m, Pia’s AP selection reli-
ability (i.e., choosing an in-FoV AP) can maintain at 94.4%. Pia
can achieve a high prediction accuracy using relative small training
efforts because it exploits the geometrical structure of the FoV.

Impact of client’s pose information error. We then inject Gaus-
sian noise to the collected data, and vary the mean from mm to
decimeter-level, consistent with the range of pose errors on mo-
bile devices (Sec. 7). The resulting APS location estimation error
(Fig. 18) grows linearly with the client’s pose error. Fortunately,
since many recent mobile location tracking schemes [59-61] can
already provide at least 10~30 cm accuracy, the estimated AP pose

is sufficient for reliable AP selection. Besides, since the APS is a
one-time initialization, specialized tracking devices such as Tango
can be used to ensure high precision. In addition, the APS orienta-
tion is not sensitive to client’s pose error because the sweet spot of
ellipsoid center (Sec. 3.2) averages out the deviation.

Fig. 19 plots the impact of pose error on link prediction. The
location error has a limited impact—even for 1.21 m client posi-
tion error, Pia’s link prediction accuracy only decreases by 2.1%
Yet, 0.52 radians (30°) of orientation error reduces the prediction
accuracy by more than 10%, because orientation error more easily
deviates the radio’s FoV. Fortunately, recent 3D orientation track-
ing systems can maintain the error below <5° [62], as accurate as
Tango. Therefore, Pia can run on mobile devices with more than
90% AP selection accuracy.

AP switching latency. To verify if the client can seamlessly
switch across APs, we force it to switch between two APs per sec-
ond. Fig. 21 plots the round-trip latency between the client and
backend server, from which we observe three patterns. The latency
is less than 1 ms when measure occurs in a beacon interval (BI),
and increases to 3 ms at the beginning of BI due to the beaconing
overhead. The 3 ms latency follows the 100 ms periodicity that well
matches with the AP’s beacon interval. The AP switching causes
additional 10~25 ms packet latency, because of the beam training
overhead with the new AP. Yet, every time it only affects a single
packet. Besides, the pose information can be exploited to reduce
the beam adaptation overhead, which we leave for future work.

6.1.2 Effectiveness of Compressive Angle Estimation
and Interference Prediction

Accuracy of signal angle sensing. The performance of Pia’s
compressive angle estimation (Sec. 4.2) is determined by the SNR
of BSV measurement. To evaluate the impact, we first measure
BSV under higher SNR (>30 dB). Since BSVs are obtained by
measuring the detailed waveform of beacon frames, we can add
Gaussian noise to the original waveform and create BSVs for dif-
ferent SNRs. The CDF plot in Fig. ?? shows an average angle esti-
mation error of less than 5° when SNR is high (e.g., >9 dB). Resid-
ual errors are caused by discretization of the view angles (Sec. 4.2).
The angle error may drift a lot under low SNR, when the BSV is
significantly distorted by noise. However, by simply repeating the
BSV measurement by 5 times and averaging out, angle error can be
reduced to less than 5° (Fig ??). Such repetitive measurements add
little extra sensing time (only 5 BIs for 5 measurements).

Pia’s angle sensing can also estimate each path’s channel gain
(Sec. 4.2.1). Fig. 22 plots the CDF of estimation error, where
we obtain the ground-truth by dividing the measured BSV by the
predicted one (Sec. 4.1.1). A higher SNR leads to more accurate
gain estimation (error <3.4 dB when SNR >9 dB). Notably, the
estimated gain is generally smaller than the ground-truth because
compressive sensing solver spreads the energy to other directions
to minimize the residual error.

Accuracy of client-pose and reflector estimation. Since the
client’s pose estimation and reflector estimation rely on the com-
pressive angle estimation, we run them consecutively. We first re-
peat the former at 20 random spots and compare it with ground-
truth that measures w.r.t. AP’s coordinate using a laser range-finder.
The result (Fig. 23) shows a mean position offset of 0.5 m. We fur-
ther place a strong reflector (metal sheet) and randomly vary its
position around the Tx/Rx from 1 to 3 m. The reflector position es-
timation shows similar accuracy, albeit requiring 5 BSV measure-
ments due to low SNR (reflected signal is 10~15 dB weaker than
LOS). Notably, the positioning accuracy is comparable to state-of-
the-art indoor localization systems [45,60, 61, 63], and the orienta-
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tion accuracy < 5° suffices for Pia to run reliably (Fig. 19).

Interference prediction accuracy. Pia estimates the interfer-
ence using predicted BSV (Sec. 4.1.2). To verify its accuracy, we
calculate the signal strength difference between the collected BSV
data and the predicted one subtracted by the pathloss of Frii’s model
(Sec. 4.1.2). We found Pia can reliably predict the strength of LOS
paths based on their poses and active beam indexes regardless of
the client-to-AP distance, with a small average error of 0.74 dB
(Fig. 24). The prediction error over reflected paths is larger (<4
dB) due to extra errors from reflector estimation. Yet, Pia can tol-
erate this residual prediction error by using a more conservative
decodable threshold (Sec.4.1.2).

Performance of SLR-based assignment. The SLR-based algo-
rithm evades exponential searching space for optimal AP and beam
assignment (Sec. 4.1.2). Fig. ?? and Fig. ?? plot the SIR and Jain’s
fairness [64] difference between the SLR algorithm and the opti-
mum (i.e., maximizing average SIR). We found at least 50% of the
SLR outputs are the optimal assignment (i.e., zero SIR difference),
and 90% have <3 dB difference, implying the SLR-based algo-
rithm performs close to the optimum. Furthermore, for those sub-
optimal assignments, the SLR-based algorithm more likely gives
better fairness (i.e., negative fairness difference), because the opti-
mal solution may sacrifice fairness to maximize the SIR.

Since we do not have real-time control over the radio’s trans-
mit beam index, we cannot quantify the impact of client’s moving
speed. The beam selection (Sec. 4.1.2) may not catch up, for in-
stance, if the large pose estimation delay (i.e., time between when
pose changes and when estimation changes) is large compared to
moving speed. In this case, the radio may have to fall back to the
802.11ad standard. However, for the VR system, since pose infor-
mation feedback is also used for graphics rendering, we believe the
pose estimation delay is sufficiently small for Pia to operate cor-
rectly under the VR-motion speed. We will have more exploration
in the future work once the hardware grants us a better control.

6.2 System Level Tests

6.2.1 Network Robustness by AP Switching

We conduct a system-level test of the AP switching by emulating
the wireless VR scenario, where the client follows a random walk
and pan/tilt change. The backend server streams a real-time uncom-
pressed video (1280x 720 at 75 FPS, approximately 1.58 Gbps bit-
rate) via the APs to clients. Owing to the channel fading, through-
put measurement will show small fluctuations even when the link is
stationary. The small throughput variations do not affect the video
transmission reliability, but will falsely trigger many bad link indi-

Figure 23: Pose estimation er-
ror using angle sensing.
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cations if we threshold the link state by the video bitrate. Thus, we
choose the threshold as 95% of the video bitrate and consider video
frames cannot be delivered reliably when the network throughput
drops below T" = 1.50 Gbps. We run Pia against 4 schemes:

(i) noSwitch: Client connects to a single fixed AP. (ii) hard-
Probe: Client sequentially probes each AP (once per second) by
temporarily switching to it and sending a few packets to have the
MCS stabilized. If the probed AP’s link quality is better, the client
will stay with it. (iii) softProbe: Client measures network through-
put every 0.5s, and probes for the best one only if the through-
put drops below T'. (iv) oracle: Switch AP based on the known
throughput in the trace data without counting any overhead.

Link availability. Fig. ?? plots the link availability, i.e., percent-
age of time that throughput exceeds 7'. Pia’s availability is 97.3%,
close to the oracle (99.6%) whose availability is below 100% due
to certain blind spots not covered by any AP. This can be addressed
by proper deployment or adding more APs. The availabilities of
other schemes are much lower (< 84.9%). Even hardProbe and
softProbe show low availability due to the AP probing overhead.

Hazard times. Fig. ?? plots hazard times, i.e., the number of
occurrences that link throughput drops below 7" in a 5S-minute test.
Compared with noSwitch, softProbe, and hardProbe, Pia reduces
the hazard times by 6.3, 4.5 and 4.2x. The extra hazard times
over the oracle is caused by occasional wrong AP selection. The
unavailability, i.e., 1-availability, divided by hazard times gives the
average duration of each drop. Pia can not only quickly recover
[from wrong predictions, but also prevent most throughput drops by
proactively switching the AP.

Video frame latency. Fig. 27 plots the measured video frame
latency. The mean and 90-percentile latency of Pia (11.0 ms and
17.8 ms) are close to the oracle (10.6 ms and 16.4 ms), and much
lower other schemes (90-percentile about 40 ms). Note that the
latency can be reduced substantially under higher PHY bit-rates
(802.11ad supports up to 6.7 Gbps, whereas the Qualcomm radio
can only reach 2.5 Gbps).

6.2.2 Multi-client Spatial Sharing

We conduct trace-based emulation to evaluate Pia’s spatial shar-
ing mechanism. We reuse the BSV trace collected in Sec. 6.1,
calculate the SIRs of clients in concurrent transmission, and map
them to the achievable bitrate following a standard 802.11ad rate
table [35]. The impact of reflectors is modeled through the vAPs
(Sec. 4.2). We determine the AP and beam selection for each client
using Pia and 3 baselines: (i) noShare: The transmission oppor-
tunity is randomly assigned to one client at a time. Each client
finds the best AP and beam based on the 802.11ad AP discovery
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switching schemes. schemes.
and beam training. (ii) 802.11ad: Clients run interference sensing,
each in a dedicated BI, to determine the concurrent transmission
feasibility (Sec. 4.1). Afterward, they transmit concurrently in next
5 Bls. (iii) oracle: Maximizing the clients’ SIRs (Eq. (6)).
Throughput gain. Fig. 28 (a) plots the achievable throughput
over the number of clients. All clients achieve similar through-
put in noShare, since it roughly splits the time equally. 802.11ad
improves throughput by 17.3% compared to noShare. Yet, clients
suffer from unfairness—client1’s throughput is 75.7% higher than
others, because clientl is at a position causing asymmetric inter-
ference that starves others, a well-known problem in directional
networks [65]. Pia performs closely to the oracle, with 1.47x and
2x gain over noShare for 2 and 3 client cases, respectively, and
offers higher fairness. Note that the throughput stops increasing as
client number reaches 4 because spatial reuse saturates.
Concurrent transmission opportunity. Fig. 28 (b) plots per-

centage of successful concurrent transmissions for client1 and client2.

Although the percentage gradually decreases as more clients join,
Pia improves the concurrent transmission opportunity by 28% and
36.7% for 2-client and 4-client respectively compared to 802.11ad.
The stacked bars represent a breakdown of the source of gain, from
selecting beams with weaker signal leakage (bottom) and eliminat-
ing interference sensing overhead (top), which together verify the
effectiveness of Pia’s pose-assisted spatial reuse mechanism.

7. DISCUSSION

60 GHz AP deployment. Based on our experiments, we iden-
tified 3 general guidelines to maximize the coverage and effective-
ness of Pia in a multi-AP network. (i) Deploying the APs higher
than typical human heights, such as ceiling, that will maximize the
AP’s FoV to the client and minimize blockage of other passing-by
people. (ii) However, placing the AP to the ceiling cannot prevent
the link blockage. When a user walks away from the AP’s beneath
center, the client’s FoV is still prone to moving out of the AP’s
FoV. To ensure multi-Gbps coverage everywhere, the APs should
be densely deployed. (iii) The FoV of APs should be partially over-
lapped to minimize the number of blind spots. Besides, it is worth
noting that Pia is not tied to any specific ways of AP deployment.

Pose information availability. Our evaluation results show Pia
can tolerate 0.5 m location error and 0.35 radians orientation error.
Current mobile devices, combining motion sensors, light sensor,
camera, efc., can already provide accurate pose tracking. A% [62]
can estimate 3D orientation <5° using accelerometer and magne-
tometer. Many mobile localization systems [45—48, 66] can track

users at centimeter to decimeter accuracy. Commercial products
such as Google Tango [18] can provide the 6-DoF tracking at cm-
level accuracy, by using motion sensors and a depth-camera. VR
headsets like HTC Vive [17] can tracking user motion at mm-level
precision [67], which is the ideal candidate for our system. All of
these systems suffice to support Pia’s pose-assisted design princi-
ple.

Extension to general mobile 60 GHz networks. In this work,
we tailored the system design to match a typical wireless VR setup
in a constrained room environment. However, the design principles
can be extended to general millimeter-wave networks to support
mobility and seamless coverage. Although the absolute location
tracking technologies for mobile devices may not be sufficiently
accurate and reliable, the relative motion tracking (e.g., rotation
change and moving offset) using built-in visual-initial sensors can
suffice for Pia. To alleviate the accumulated drift of relative track-
ing, Pia may periodically apply the pose calibration (Sec. 4.3).
Moreover, to mitigate the initial training overhead, we could deploy
APs to known locations and develop an online-sensing method to
infer the phased array’s orientation (inside the AP) and reflectors’
poses during usage. Though it may trigger many error predictions
at the beginning, the accuracy could improve over more collected
data, which we will leave for our future work.

8. RELATED WORK

Pia is most closely related with the following domains:

Robust 60 GHz networks. To make 60 GHz networks robust
against human blockage and movement, prior research primarily
focused on minimizing the beam searching overhead, so that the 60
GHz links can efficiently recover from disruption. Existing systems
leveraged the correlation between beams [68] or used out-of-band
channel [2,69] to estimate the best beam at low overhead. However,
when blockage occurs, the reflection path may be either weak or
non-existent [35]. To ensure better coverage, MoVR [2] adopted a
customized 60 GHz relay to amplify and forward the AP’s signals.
To maximize the beam alignment, MoVR also leverages the pose
to guide the AP/mirror’s beam steering. Pia shares similar spirit—
the multiple APs act as relays for the client. Yet, Pia focuses on
the more general problems of AP selection/switching and spatial
reuse, harnessing the pose information on client devices. Pia is
compatible with 802.11ad or any future 60 GHz base stations, and
does not need dedicated analog signal forwarders as in [2].

The general idea of using smartphone sensors to improve net-
work performance has been examined in [70], which proposed to



synthesize various motion sensor hints to adapt protocol primitives
such as bit-rate adaptation. Sani et al. [71] conducted an empiri-
cal study and showed that, by judiciously choosing among multiple
directional antennas on a mobile device based on motion sensor
information, the WiFi link SNR can be improved by 3 dB. In con-
trast, new challenges emerge in 60 GHz networks due to vulnera-
bility to blockage and limited FoV. Meanwhile, the electronically
steerable beams bring new opportunities to spatial reuse. Yang et
al. [72] designed a sensor-assisted multi-level codebook for effi-
cient beam searching under mobility. Pia, in contrast, harnesses
the 5-DoF pose information to address the network-level problems
arising from multiple APs and clients.

AP handover and selection. Numerous solutions have been
proposed to curtail the AP handover/reassociation overhead in WiFi
networks. The most viable idea is to fork multiple virtual net-
work interfaces [55,56]. Although the switching mechanism it-
self is still applicable, the decision metrics for switching (e.g., sig-
nal strength, distance [13, 14] and location [12, 15, 16]) in low-
frequency networks are no longer applicable to the 60 GHz network
due to orientation sensitivity. Alternative machine-learning based
selection algorithms [73-75]) have been explored. However, such
learning algorithms require dense training, and the accuracy is still
much lower compared with Pia’s geometry-model based algorithm
(Sec. 6.1). Athanasiou et al. [76] proposed an asymptotically op-
timal algorithm to balance and ensure fair client association in 60
GHz networks. In contrast, Pia is the first work from an architec-
ture/systems perspective that optimizes the 60 GHz link quality and
reliability via AP/beam switching using the pose information.

Spatial reuse of 60 GHz networks. Directional antennas are
known for achieving spatial reuse and alleviating interference. A
vast literature [20] explored the MAC issues in directional net-
works. DIRC [65] further accounted for the impact of irregular
interference with imperfect directionality. These systems focus on
static radios, with a cone-shaped antenna model, which differs dra-
matically from the beam shape of practical 60 GHz phased arrays
(Sec. 4.1). Park et al. [77] proposed a null-forming technique that
can create specific null points to avoid interfering peer devices, but
this requires arbitrary control of the antenna weights, whereas prac-
tical 60 GHz phased arrays can only use a set of fixed beamforming
weights which form a codebook.

9. CONCLUSION

Whereas the “laser-like” beam of millimeter-wave radios has
triggered many doubts about their coverage, we have demonstrated
the high potential of Pia to address the concern. Pia employs the 5-
DoF pose information on mobile devices, together with a multi-AP
network architecture, to achieve seamless coverage under mobil-
ity and user’s orientation change. Pia can be applied to meet the
needs of demanding Gbps applications such as wireless VR. Its de-
sign principle of pose-assisted mobility 60 GHz networking can
also be extended to general mmWave pico-cell/small-cell networks
with dense AP deployment.
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