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ABSTRACT
Loudspeakers are widely used in conferencing and infotainment
systems. Private information leakage from loudspeaker sound is
often assumed to be preventable using sound-proof isolators like
walls. In this paper, we explore a new acoustic eavesdropping at-
tack that can subvert such protectors using radio devices. Our ba-
sic idea lies in an acoustic-radio transformation (ART) algorithm,
which recovers loudspeaker sound by inspecting the subtle distur-
bance it causes to the radio signals generated by an adversary or by
its co-located WiFi transmitter. ART builds on a modeling frame-
work that distills key factors to determine the recovered audio qual-
ity. It incorporates diversity mechanisms and noise suppression al-
gorithms that can boost the eavesdropping quality. We implement
the ART eavesdropper on a software-radio platform and conduct
experiments to verify its feasibility and threat level. When targeted
at vanilla PC or smartphone loudspeakers, the attacker can success-
fully recover high-quality audio even when blocked by sound-proof
walls. On the other hand, we propose several pragmatic counter-
measures that can effectively reduce the attacker’s audio recovery
quality by orders of magnitude.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: [Signal
processing systems]

Keywords
Acoustic Eavesdropping; Acoustic-radio Transformation; WiFi Sens-
ing; Vibration Sensing

1. INTRODUCTION
Despite powerful security-proof measures in this digital commu-

nication age, sound – the primitive medium of unencrypted hu-
man communication and side-product of many private activities
– remains a vulnerable source of information leakage. The pur-
suit for high-fidelity sound capturing has motivated more power-
ful acoustic hardware on consumer devices. Meanwhile, it creates
a looming threat of acoustic eavesdropping that impinges on peo-
ple’s everyday privacy [1]. Even subtle acoustic emanation from
keystrokes [2], printers [3], and PC electronic components [4], can
be exploited to decode sensitive information. However, such acous-
tic attacks all require a tampered microphone in the vicinity of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiCom’15, September 7–11, 2015, Paris, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3619-2/15/09 ...$15.00.
http://dx.doi.org/10.1145/2789168.2790119.

victim sound source which, to some extent, thwarts eavesdroppers
who cannot approach the target’s physical space.

We explore a new eavesdropping mechanism that uses wireless
transceivers to decode loudspeaker sounds from afar. Our basic
idea lies in a translation between acoustic vibration and radio sig-
nal fluctuation. Audio emission causes small vibration of the loud-
speaker body. Such minute motion pattern is invisible to human
eyes. But it can resonance with radio waves reflected by the loud-
speaker, or originating from a wireless transmitter co-located with
the loudspeaker. The contaminated radio waves can be captured
by a tampered receiver and processed to recover the original audio
played by the loudspeaker. We refer to such a remote sound acqui-
sition/recovery system as wireless vibrometry.

Built on commonly available radio devices, and harnessing the
better penetration of radio signals, such an acoustic eavesdropping
system raises alarming issues in security and privacy. Today, loud-
speakers are widely used in communication and infotainment sys-
tems, e.g., tele-conference call, VoIP hangout and home theater. In
such usage scenarios, we envision two categories of threats, cate-
gorized according to how the target loudspeaker modulates the ra-
dio waves: (i) Reflective vibrometry: The adversary is a pair of
radio transmitter and receiver. The transmitter continuously sends
radio signals, while the receiver decodes sound vibration from the
signals reflected and disturbed by the loudspeaker vibration. (ii)
Emissive vibrometry: The adversary is a radio receiver. The target
loudspeaker is co-located with a WiFi radio on the same platform,
e.g., a smartphone, smart TV, or speaker dock. The loudspeaker’s
minute motion causes tiny variation in the WiFi radio’s outgoing
signals, which can be overheard and leveraged by the adversary to
recover the sound.

The concept underlying wireless vibrometry resembles laser radar
(LADAR) [5], which is commonly used to test the stability of build-
ing structures. A LADAR projects laser beams towards vibrating
objects and discerns the vibration patterns based on the shaking re-
flective beams. In contrast, the unique advantage of wireless vi-
brometry lies in its ability to penetrate opaque obstacles. This ad-
vantage comes with more challenges. The narrow field-of-view of
LADAR enables them to measure even micron movements very ac-
curately, because tiny motion can alter the reflecting angle. In con-
trast, radio devices are far less directive and suffer from severe re-
flection/diffusive loss. More importantly, under the aforementioned
threat scenarios, adversary’s radios may not even fall in the line-of-
sight (LOS) of the victim loudspeaker and cannot “point” towards
the vibrating loudspeaker.

In lieu of such challenges, we explore a new set of mechanisms to
extract and boost the acoustic signals from radio channel dynamics.

(i) Basic acoustic-radio transformation (ART) algorithm, which
harnesses the received signal strength (RSS) and phase informa-
tion, readily available on typical radio transceivers [6], to “demod-
ulate” acoustic signals from the target loudspeaker. Our basic idea
is to model the procedure of audio vibration disturbing radio waves
as a procedure of low-rate amplitude/phase modulation. With this
model, we design a frequency-domain demodulator to isolate irrele-



vant radio signal components, extrapolate the audio signals, project
them to the time-domain, which eventually become perceptible by
human.

(ii) Diversity mechanisms to enhance reflective vibrometry. Whe-
reas LADAR essentially discriminates the displacement of vibrat-
ing surface, we found that wireless vibrometry is mostly sensitive
to the multipath overlapping patterns, with both analytical and ex-
perimental evidence. We design two diversity mechanisms to take
advantage of this effect, so as to amplify the loudspeaker vibration.

First, we design a simple frequency selection mechanism to fos-
ter the case where multiple signal paths involving loudspeaker re-
flection can strengthen each other. Second, we adapt multi-antenna
beamforming to amplify the signal paths reflected by the loudspeaker.
Since loudspeaker cannot provide any location or anchoring signals
to facilitate the MIMO beamforming, we adopt the strategy of blind
beamforming that coherently combines the signals on multiple an-
tennas, without prior knowledge of target. In addition to receiving
beamforming similar to [7,8], we take advantage of transmit beam-
forming gain through a role-switching mechanism.

(iii) RSS sampling and amplification mechanisms for emissive
vibrometry. We design packet processing algorithms to extrapolate
RSS values from legacy WiFi packets emitted by uncontrolled wire-
less devices. Consequently, we can reduce the RSS noise by orders
of magnitude, thereby substantially amplifying the tiny radio RSS
disturbance caused by the target’s audio vibration.

The feasibility and effectiveness of the above approaches is ver-
ified through a software-radio based eavesdropper implementation,
for both the reflective and emissive vibrometry. Through compre-
hensive experiments, we identify various practical factors, such as
spatial separation, obstacle blockage, loudspeaker model, and en-
vironment dynamics, that determine the threat level. The results
demonstrate that a basic wireless vibrometry setup, with eavesdrop-
per placed close to the loudspeaker, can easily transform acoustic
vibration into quality sounds. Using a combination of the diver-
sity mechanisms, the eavesdropper can decode the loudspeaker’s
sound from 5 m apart, even with a sound-proof wall in between. In
emissive vibrometry, the eavesdropper can decode the audio from
unmodified WiFi devices with loudspeakers, at a much higher level
of fidelity owing to high radio signal power emitted (instead of re-
flected) by the target.

These results pose alarming challenges to securing acoustic in-
formation. Using sound-proof walls is no longer effective, and even
a radio shield may not work because the eavesdropper can attack
from a wide range of radio frequencies. However, we show that
several pragmatic counter-measures may make the eavesdropping
significantly hard and thwart adversaries. In particular, we analyt-
ically provide a guideline of safety distance for a reflective victim
and propose PHY-layer power randomization mechanisms for an
emissive victim, which can reduce the eavesdropper’s recovered
audio quality by orders of magnitude. The impact of nearby hu-
man movement is also quatitatively evaluated through experiments.
Slow and minor movement, e.g., breathing, has negligible influence
on the ART attack; Rapid larger-scale body movement, e.g., walk-
ing, will considerably undermine the eavesdropping quality.

Contributions. In contrast to prior laser or vision based ap-
proaches [5, 9] to remote acoustic sensing, this work is the first to
thoroughly investigate vibrometry on wireless devices, from both
theoretical and experimental perspectives. We design a simple ART
algorithm to decode remote acoustic vibration on loudspeakers by
monitoring the reflective/emissive radio signals disturbed by the
loudspeakers. Through an analytical framework and extensive ex-
periments, we distill the key factors that enable highly sensitive
WiFi vibrometry, and empower the vibrometry with a blind beam-
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Figure 1: Two threat models based on wireless vibrometry: Re-
flective and Emissive.

forming and frequency selection framework. The enhancement tech-
niques share similar spirit with diversity mechanisms in wireless
communications, but a wireless link can use known preambles to
synchronize/train the transmitter/receiver channel. From a secu-
rity/privacy perspective, we are the first to examine the factors that
determine how threatening wireless vibrometry can be when ap-
plied in acoustic eavesdropping in practice, and to propose counter-
measures.

2. WIRELESS VIBROMETRY: AN OVERVIEW
In this section, we brief the basic assumptions behind wireless

vibrometry, given its two targeted scenarios (Figure 1). In general,
both scenarios involve an eavesdropper (also referred to as attacker
or adversary) and a target (or victim) loudspeaker. The target is
assumed to be static. The eavesdropper controls radio transceivers
that can run at a specific frequency band, with a practical trans-
mit power level. The eavesdropping radios can be compromised
devices within LOS of the target, or unfettered devices that are sep-
arated from the target by sound-proof obstacles (walls, windows,
etc.). In any case, the eavesdropper can transmit/capture radio sig-
nals, but has no direct control over the target. However, as long
as the eavesdropper’s radio signals can reach the target, wireless
vibrometry is feasible. Specifically, we explore a set of solutions,
colloquially referred to as audio-radio transformation (ART), to en-
able wireless vibrometry.

(i) Basic ART (Sec. 3) directly decodes audio by processing the
RSS/phase of radio signals disturbed by the loudspeaker. It is the
basic decoding mechanism for both reflective and emissive vibrom-
etry.

(ii) Enhanced reflective ART (Sec. 4) works in the reflective vi-
brometry scenario, where the adversary sends single-tone radio sig-
nals, and captures the signals reflected by the loudspeaker body.
This enhanced mechanism harnesses diversity mechanisms, includ-
ing multi-antenna blind beamforming and frequency selection to
maximize the threat.

(iii) Enhanced emissive ART (Sec. 5) works in the emissive vi-
brometry scenario, where the target loudspeaker and a WiFi radio
are co-located in the same device. The adversary captures the tar-
get’s outgoing WiFi packets, extrapolates the RSS, and executes a
set of amplification algorithms to enhance the decoded audio qual-
ity. Here the adversary has no knowledge about the target’s WiFi
radio identity and does not need to decode the actual content of the
packets.

We will further propose countermeasures against ART in Sec. 6.

3. BASIC ART
In this section, we model wireless vibrometry as a process where

audio vibrations modulate the radio signal magnitude/phase. Then
we describe the basic acoustic-radio transformation (ART) algo-
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Figure 2: Illustration of loudspeaker modulation and multipath
effects of reflective radio vibrometry.

rithm as the reverse demodulation process. We focus on reflective
vibrometry, since the emissive vibrometry is a simplified special
case. We further conduct experiments to evaluate the feasibility of
ART, and identify the potential design knobs that warrant an en-
hanced ART.

3.1 Modeling Audio-Radio Frequency Trans-
lation

Let’s consider a simple Line-of-Sight (LOS) scenario illustrated
in Figure 2, where an adversary’s radio Tx broadcasts wireless sig-
nals. Some of the signals undergo multipath reflections on the loud-
speaker’s surface. Part of the reflected signals will eventually be
captured by the Rx. When the loudspeaker surface is vibrating, it
will modulate the RSS and phase of reflected signal accordingly.

We first assume the loudspeaker is playing a mono sound with
single frequency ω. The loudspeaker membrane and surface res-
onates and vibrates at the same frequency ω. Suppose the vibration
displaces its surface by d(t) at time t:

d(t) = k sin(ωt+ θ), (1)
where k is the vibration magnitude, determined by the sound vol-
ume, and θ is the initial phase of sound. For simplicity, we omit the
time index t of functions in later notations. Hence, d ≡ d(t).

(a) Impact of vibration on radio RSS: We model the RSS of
signals reflected from loudspeaker as:

RSSL = σA2(d0 + d̂), (2)

where d̂ = d cosβ, β being the angle between vibration direc-
tion and reflection direction. d0 denotes the distance between an-
tenna and loudspeaker. σ is the reflectivity (reflection gain) of loud-
speaker surface (0 < σ < 1). A(·) is the channel gain function
(equivalent to 1/pathloss). The square operation over A(·) mod-
els the attenuation of signals due to round-trip propagation: one
for path from Tx to loudspeaker and the other for path from loud-
speaker to Rx. The loudspeaker surface is considered as a virtual
transmitter that emits reflected signals.

For clarity, here we only consider the direct reflection path from
loudspeaker. The analysis can easily incorporate the secondary-
order reflection signals. The function A(·) can be assumed to fol-
low any classical pathloss models in communications theory, e.g.
free-space or log-normal [10]. Owing to continuity of the pathloss,
we can expand Eq. (2) following Taylor’s theorem:

RSSL = σ[A2(d0) + 2A(d0)A
′
(d0)d̂+ · · ·+ o(d0)d̂

k], (3)

in which A
′
(·) is the first order derivative, and o(d0) is the Peano

form of remainder.
The first term A2(d0) is the DC component (carrier signals sent

by the radio) and can be filtered out by a DC filter. The second
term 2A(d0)A

′
(d0)d̂ carries the sound frequency components, and

2A(d0)A
′
(d0) can be considered as the sensitivity, or gain of audio-

to-radio transformation. All remaining terms are the harmonic com-
ponents of audio frequency. Eq. (3) implies that the magnitude of

harmonic frequencies is determined by the linearity of path loss
function A(·) w.r.t. to distance. The larger the path loss exponent,
the more non-linearA(·) will be, and thus the stronger the harmonic
becomes.

(b) Impact of vibration on radio signal phase: Assuming the
adversary’s Tx transmits a mono tone signal with frequency fr , and
up-modulated to carrier frequency f0 (with wavelength λ0). Then,
the phase can be expressed as signal path length divided by wave-
length:

PhaseL =
2π(d0 + 2d̂)

λ0
+ γ (4)

where γ is the initial phase of reflection path. The 4πd̂
λ0

term con-
tains the audio frequency from loudspeaker.

The above two sets of analysis imply that the sensitivity of vi-
brometry is determined by the following factors: (i) The vibration
direction β relative to the reflection signal direction. The closer β
is to 0, the stronger the vibrometry effect will be. (ii) The volume
of the sound that determines the magnitude of displacement d, and
hence the strength of vibrometry. (iii) The radio’s carrier frequency
f0 or wavelength λ0. In addition, for RSS based vibrometry, the
strength is proportional to the reflectivity of the loudspeaker sur-
face σ, and inversely proportional to the distance d0 between radio
adversary and the loudspeaker victim.

The emissive vibrometry model is similar, except that the sig-
nal source comes directly from the radio antenna vibrating together
with the loudspeaker. We thus omit the details.

3.2 Demodulating the Transformed Audio
We proceed to design a basic ART that can demodulate the loud-

speaker’s audio out of the reflected radio waves. We focus on de-
modulation using the radio RSS (Eq. (2)), but the technique can be
easily extended to phase based recovery.

Several challenges emerge here. First, the reflected signals be-
come extremely weak as attacker-victim distance d0 increases be-
yond a few meters. Second, the vibration magnitude d of the loud-
speaker surface falls within sub-millimeter scale [11]. The varia-
tion it causes to the radio signal is orders of magnitude lower than
the signal power itself. Third, the leakage signal directly coming
from the adversary’s Tx to Rx, and reflections from irrelevant back-
ground objects, can overwhelm the signals modulated by the loud-
speaker alone.

Algorithm 1 Decoding the audio that is modulated by ART
1: INPUT: received radio samples y[t]
2: OUTPUT: recovered audio samples d∗[s]
3: /*Get one audio sample from every m radio samples*/
4: foreach segment s in set [0:S)
5: ys ← y[sm+ 1, (s+ 1)m] /*Segment radio signals*/
6: z(v)←

∑m
u=1 ys(u)e

−i2πvu
m /*FFT analysis*/

7: g(s)← |
z(

⌊
fr
fb
×m

⌋
)

m
|2 /*Pick RSS of CW’s freq.*/

8: endforeach
9: d∗ ← filterbandpass(g) /*Filter out the DC component*/

To address the challenges, we exploit a unique feature inside the
audio-modulated radio signals, i.e., the radio sampling rate is far
beyond the audio frequency. Thus, we can enforce an averaging on
the oversampled signals so as to amplify and promote the audio out
of noise. In addition, we observe that the leakage and background
signals are typically quasi-stationary compared to the audio vibra-
tion, and thus can be isolated from the ART signals through proper
filtering. Algorithm 1 formalizes our basic decoder that incorpo-
rates these solutions. Below we detail the key steps.
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Capturing audio-modulated radio samples: The eavesdrop-
per transmits a baseband continuous wave (CW) with frequency fr ,
comprised of T samples:

x(t) = sin(2πfrt), t ∈ [0, T ). (5)

Meanwhile, the loudspeaker vibrates following Eq. (1). Based on
the RSS modulation model in Eq. (3), we approximate the received
radio samples as follows,

y(t) =
√

RSSL(t) + RSSe x(t) + n(t), t ∈ [0, T ) (6)

where RSSL(t) and RSSe are signal strengths reflected from loud-
speaker and relatively stationary objects in the environment. n(t)
is the noise. For clarity, we have omitted the phase term of signal
components from multipaths.

Segmenting the samples: We divide all T radio samples into
S segments, each containing m samples. Since audio vibrates at a
much lower rate, audio signals within any small segment of radio
samples can be considered stationary. Thus, we have RSSL(sm) ≈
RSSL(sm + u), ∀u ∈ [0,m) and s ∈ [0, S). For the sth segment
ys, we can approximate the u-th sample inside as:

ys(u) ≈
√

RSSL(s) + RSSe x(sm+ u) + ns(u), (7)

where ns(u) , n(sm+u). Samples in each segment are regarded
as single-tone radio signals modulated by an audio of constant am-
plitude, plus a stationary component and noise.

Signal processing – time-frequency domain translation: To
extract the amplitude modulated on top of radio signal, we apply the
discrete Fourier transform (DFT) on each segment ys. The resulting
sequence of DFT coefficients is given by:

z(v) =
m∑
u=1

ys(u)e
−i2πvu/m, v ∈ [0,m). (8)

Since the transmitted signals is a single-tone of frequency fr ,
we only need to inspect the coefficient of that frequency bin, and
extrapolate the audio signal strength within this radio segment:

g(s) = |z(v
∗)

m
|2 = RSSL(s) + RSSe (9)

where v∗ =
⌊
fr
fb
×m

⌋
denotes the frequency-bin index of fr , and

fb is the radio receiver’s sampling rate.
Repeating the procedure above on all radio samples produces au-

dio signals sampled at rate fb
m

. Clearly, a higher radio sampling
frequency means a lager audio sampling frequency, which will lead
to higher recovered audio quality.

Bandpass filter: The series of g(s), s ∈ [0, S) still contains
the DC component, which originates from background reflections,
e.g., the term RSSe (Eq. (9)), and the term σA2(d0) in RSSL (Eq.
(3)). DC component can be eliminated via a bandpass filter. We
empirically choose the lower and upper stopping frequencies as 20
Hz and 1500 Hz, which correspond to the range of human voice.

3.3 Feasibility of Basic ART
We have implemented the basic ART demodulator on a software-

radio testbed with a custom-built FPGA core (see Sec. 7 for details).
In this section, we conduct testbed experiments to verify the key
factors that govern the performance of ART, and explore opportu-
nities that warrant improvement.

Our basic experimental setup complies with the foregoing model
assumptions. The adversary radio emits a single tone with 5 MHz
baseband frequency, carrier-modulated to 2.485 GHz (WiFi channel
14). The target is a PC loudspeaker 2 m away. Figure 3 showcases
a time-frequency plot of a piano sound decoded using the basic
ART. The piano sound has three piano notes of frequencies 440Hz,
493.88Hz and 554.365Hz. We observe a close-to-perfect recovery
and the decoded audio is clearly audible. In addition, the result
also shows weaker harmonics of audio frequencies (e.g., 880Hz),
as predicted by our model.

Audio quality vs. distance: We now vary the distance between
the eavesdropper and loudspeaker at steps of 20 cm. Peak-Signal-
to-Noise-Ratio (PSNR) is a commonly used metric to quantify the
decoded audio quality [9]. Note that for single-frequency audio,
PSNR above -13dB is typically audible to human, while for multi-
frequency audio like human speech, PSNR above 0dB is audible
[12]. Here the loudspeaker is forced to play a 400 Hz tone, without
loss of generality. For each location, we repeat the experiment 10
times, and plot the mean PSNR in Figure 4.

We make the following observations: (i) Either phase or RSS can
be used to decode the audio. Moreover, performance of the RSS and
phase based decoders does not show clear correlation. However, the
highest audio PSNR from RSS is higher than that from phase. (ii)
There does not exist a monotonic trend between PSNR and range.
We suspect this is due to multi-path effects, which deserves a more
in-depth investigation.

Audio quality variation over space: We highlight the multipath
effect by varying the adversary radio location within a small 15cm
× 15cm region, sampled at 3 cm granularity. Figure 5 shows that
the decoded audio quality is highly sensitive to adversary location:
even with a minor location change of 3 cm, the PSNR can differ by
up to 10 dB. We will model the root cause and propose an enhanced
ART algorithm that exploit this effect in Sec. 4.

Audio quality vs. radio sampling rate: Figure 6 shows that
the audio PSNR improves proportionally with radio sampling fre-
quency fb. Hence, a wideband eavesdropper presents a higher
level of threat. The frequency of human speech sounds typically
falls below 500Hz [13]. To recover human speech, the audio sam-
pling frequency should be at least twofold of the audio’s frequency
, according to Nyquist sampling theorem. A common WiFi device
with 20Mbps bandwidth is good enough for eavesdropping human
speech, since fa = 20e6

1024
≈ 19.5KHz � 1KHz, when we use a

typical segment length m = 1024.
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4. ENHANCING REFLECTIVE AUDIO
EAVESDROPPING

The above analysis/experiments hint that the performance of ART
is closely related with radio signal/channel diversity, which we now
explore to enable a more powerful ART for reflective vibrometry.

4.1 Modeling Multipath Effects in ART
We first extend the analysis of basic ART to incorporate multi-

path reflection, which will become the foundation for the enhanced
ART. As illustrated in Figure 2, the received signals S contain LOS
component Sd between adversary Tx and Rx, reflection compo-
nents Sl from loudspeaker and irrelevant component So from other
objects. Since the transmitted signal is a single-frequency tone,
these components can be analyzed on an I-Q plane (Figure 7):

−→
S =

−→
Sc +

−→
Sl , and

−→
Sc =

−→
So +

−→
Sd. (10)

Note that reflection component Sl is a time-varying vector due
to the modulation effect from audio vibration, thus the magnitude
of Sl vibrates. We represent this strength vibration using the arrow
along Sl in the figure. Similarly, the tangent arrow represents the
phase vibration of Sl caused by audio vibration.

We again focus on signal magnitude without loss of general-
ity. From wireless channel prospective, reflected signal from loud-
speaker and other n paths can be formalized as:

Sl = h0x+ n1, and Sc =
n∑
i=1

hix+ n2 = hx+ n2, (11)

where |h0|2 = σA2, σ and A are the material reflectivity and path
loss model discussed in Section 3.1. x is the transmitted symbol. hi
is the channel coefficient factor, and ni denotes the noise in chan-
nel. In classical channel models [10], h and ni can be modeled as
complex Gaussian, i.e., h ∼ CN(0, Nh) and ni ∼ CN(0, N0).

From Figure 7, we can derive the radio RSS by simple geometry:

|S| = |Sl| cosα+ |Sc| cosϕ, (12)

where α (ϕ) is the angle between S and Sl (Sc). In our ART de-
coder (Section 3.2), m radio samples are used to extrapolate one
audio sample, and audio samples pass through a DC filter. Hence,
the recovered audio PSNR is determined by the ratio of non-DC
part of Sl over Sc, i.e.:

PSNR =
mpE[|Sl|2] cos2 α

E[|Sc|2] cos2 ϕ+N0

≈
2mpσA(d0)A

′
(d0)k cosβ|x|2 cos2 α

Nh|x|2 cos2 ϕ+N0
, (13)

where the approximation omits high-order harmonic terms. p de-
notes factor of energy loss due to NLOS eavesdropping, e.g. pene-
trating the wall.

The analysis unveils the following insights:

Rx Tx Tx Rx Rx Tx

Radio 1 Radio 2 Radio 1 Radio 2 Radio 1 Radio 2(a) (b) (c)
Figure 8: Three stages of role-switching beamforming algo-
rithm. (a) Rx beam-searching (b) Rx-guided Tx beamforming
(c) Tx-Rx beamforming.

(i) The PSNR is determined by α and ϕ, which depend on the rel-
ative arriving angle between signals reflected by loudspeaker and
other objects, which in turn depend on the adversary’s location
and frequency (wavelength). Thus, the PSNR can be improved
by judiciously selecting position or radio frequency. This insight
also corroborates the foregoing feasibility study: the PSNR fluc-
tuation is mainly attributed to the multipath coherence combining
effect, rather than the minor distance changes between adversary
and loudspeaker.

(ii) The transmit symbol term x appears in both nominator and
denominator, implying that the adversary cannot achieve an arbi-
trarily high PSNR by increasing its radio signal power. However,
it can improve by reducing the term Nh|x|2 cos2 ϕ. More specifi-
cally, this can be achieved by adopting wireless beamforming tech-
nology, which can focus the energy on a certain spot, e.g., the loud-
speaker surface.

4.2 Harnessing Diversity
We now exploit diversity techniques to enhance the reflective

ART. Diversity has been well studied in communications theory
[10]. However, we will show that it takes new facets in ART, par-
ticularly because the adversary has no control over the target loud-
speaker.

4.2.1 Blind Beamforming to Amplify Reflective ART
Based on the prior analytical insights, we explore multi-antenna

beamforming to enhance the reflective ART. Unlike traditional beam-
forming in wireless communications [10], which enforces channel
training between active Tx/Rx radios using known preambles, here
we need to amplify signals from a passive loudspeaker with un-
known channel signature. One may consider existing blind beam-
forming algorithms [7, 10] that search and assign different weights
to the Tx/Rx antennas to maximize SNR. However, due to slow
time scale of audio playback, the accumulated time of such trials is
formidable and thwarts any in situ eavesdropping attack. Moreover,
previous algorithms [7] can have a cooperative target (i.e., a target
human performs special gestures) to estimate channel preamble, but
in eavesdropping case the eavesdropper doesn’t have any control on
the loudspeaker.

We propose a role-switching beamforming (RSBF) algorithm to
address these challenges. From a high level, RSBF comprises three
steps, as illustrated in Figure 8: (i) One-time test transmission (last-
ing for a few seconds, just enough to obtain one audio segment).
Any one antenna, e.g., 2nd, of radio 2 acts as transmitter. All anten-
nas in radio 1 receive the data and run an Rx beamforming (RXBF)
algorithm to compute their beamforming weights. (ii) Rx-guided
Tx beamforming. Antennas of radio 1 act as transmitter and beam-
form to one antenna of radio 2. The Tx beamforming weights are
directly derived from their Rx weights, with no extra runtime over-
head. (iii) Tx-Rx beamforming, where antennas of radio 2 compute
new Rx beamforming weights under Tx beamforming from radio 1.



Algorithm 2 Role-switching Beamforming
1: /*RF Heterogeneity Calibration*/
2: Γr[n] = yr[n]/yr[1]
3: Γt[n] = yt[n]/yt[1]
4: W = Rx_BF (D[1 : N ]) /*Rx beamforming*/
5: Wt =

WΓr
Γt

/*Rx-guided Tx weights*/
6: /*New Rx weights under Tx beamforming*/
7: Wr = Rx_BF (DT[1 : N ])

Algorithm 2 summarizes the RSBF procedure. Below we elaborate
on the design.

Calibrating RF Heterogeneity. Due to hardware imperfection,
antennas and RF chains may have different initial phase offsets and
gains. Heterogeneity calibration first measures the normalized dis-
tortion of different RF ports w.r.t. the first one. All calibrating an-
tennas can be placed on a circle around one transmit antenna. Since
they have the same distance to transmit antenna, their received sig-
nals Y will experience similar distortion H . The difference of re-
ceived signals are mainly caused by antenna heterogeneity Γr:

Y = HΓrX,

where Y = [y1, y2, . . . , yN ] and Γr = [fr1, fr2, . . . , frN ] are
1×N matrixs, and X is the transmit symbol. The normalized dis-
tortion Γr is then:

Γr = [1,
fr2
fr1

, . . . ,
frn
fr1

] = [1,
y2
y1
, . . . ,

yn
y1

] = Y,

where Y is the normalized received signals w.r.t. to the first an-
tenna. In a similar way, we can estimate the transmit RF hetero-
geneity. Γt

Rx Beamforming without Channel Training. The objective
of the Rx beamforming algorithm is to find the weights W =
{w[i]|1 ≤ i ≤ N} for radio signals arriving at different antennas,
in order to maximize the audio PSNR:

argmax
W

PSNR(
N∑
i=1

w[i]D[i]), (14)

where D[i] is the signals at ith antenna. Directly searching for the
optimal weights is computationally inefficient as the search space
lies in the continuous complex domain. We thus propose the follow-
ing approximation. First, the amplitude and phase are discretized
into range [Al : Ah] and [Pl : Ph] with step As and Ps respec-
tively. We choose Al = 0.5 and Ah = 2, which cover ±3dB
magnitude range, and Pl = 0 Ph = 2π to cover the whole phase
range. Empirically, As = 0.05 and Ps = 0.1 is sufficient in terms
of granularity.

Our Rx beamforming algorithm recursively computes the opti-
mal complex weight for the ith antenna w.r.t. to previous i − 1
antennas. It ensures the weight for a new antenna will not degrade
the audio PSNR when co-working with existing antennas. To avoid
trapping into local maxima, we randomize the antenna ordering.
Our algorithm differs from existing beamforming weight search-
ing [7] that computes the weights forN−1 antennas independently
w.r.t. to the first one, which cannot prevent audio PSNR from de-
grading when antennas are co-working.

Note that computation of the optimal complex weights is an of-
fline procedure. In other words, we assess the beamforming weights
by collecting and then processing a single short time series of radio
signals, rather than real-time over-the-air transmission and process-
ing. To compare the effects of different weight selections, we first
use existing voice detection methods to identify if there is sound
of interest in the decoded audio. Then we recurse on the weight
selection with higher PSNR.

Algorithm 3 Rx_BF – “Offline”Rx Beamforming
1: INPUT: received data stream D[i]
2: OUTPUT: weights W
3: curD ← D[1], m_PSNR← 0 /*Initialize*/
4: foreach antenna i in set [2:N ]
5: mψ ← 0, m_ρ← 0
6: foreach ψ in range [Pl:Ps:Ph] /*Search phase*/
7: TD ← curD + exp(1i ∗ ψ)D[i]
8: if PSNR(TD) > m_PSNR
9: m_PSNR← PSNR(TD), m_ψ ← ψ

10: foreach ρ in range [Al:As:Ah] /*Search amplitude*/
11: TD ← curD + ρ ∗ exp(1i ∗m_ψ)D[i]
12: if PSNR(TD) > m_PSNR
13: m_PSNR← PSNR(TD), m_ρ← ρ
14: W [i]← m_ρ ∗ exp(1i ∗m_ψ)
15: curD ← curD +W [i]D[i]
16: return W

Rx-guided Tx Beamforming. The basic idea behind Rx-guided
Tx beamforming is to leverage the channel reciprocity, i.e., wireless
link will distort signals in a similar way by reversing the role of Tx
and Rx. Hence, Rx beamforming weights which focus on signals
coming from certain position can also concentrate the energy onto
the same spot when used as Tx weights. Mathematically, the ra-
tionale can be expressed by: WrH = (HTWr

T )T , where (.)T

denotes the transpose of matrix. Left (right) part of the equation
show the case when weights are used at receiver (transmitter) side.
However, RF heterogeneity must be compensated before applying
the weights:

Wt = Wr
TΓr/Γt, (15)

where Wr represents Rx weights. The guided Tx (radio 1) beam-
forms to one of antennas at Rx (radio 2). To fully leverage the
beamforming power, Rx runs another round of RXBF algorithm to
maximize the audio PSNR.

4.2.2 Amplifying Multipath Effect via Frequency Se-
lection

Besides leveraging spatial diversity of beamforming, we can also
harness the frequency diversity — a radio signal and its reflected
version may either strengthen or weaken each other, depending on
its frequency (or wavelength). This in turn affects the audio quality
of ART decoding.

Typical wireless systems (e.g., WiFi) adopt a two-level channel-
ization: a transceiver first selects a residential band at a certain car-
rier frequency, and then splits the band into multiple bins called
subcarriers. We examine the channelization impact on ART by
fixing the adversary location. Figure 9 plots the PSNR of recov-
ered audio when adversary sends an 1 MHz baseband sine-tone
through WiFi channel 1 to 14 (corresponding to carrier frequency
from 2.412 GHz to 2.485 GHz). Figure 10 further plots the PSNR
when the sine-tone is sent through different subcarriers within one
WiFi channel.

The figures show that, owing to wider frequency separation, channel-
level frequency diversity has much more significant impact than
subcarrier-level diversity. The former typically creates 20 dB of
PSNR discrepancy among channels, versus 10 dB in the latter. An-
other observation is that higher radio channel gain does not always
mean higher audio quality, which is consistent with our theoretical
prediction.

Based on these findings, we design a two-level channel selection
mechanism to foster the multipath strengthening effect. Specifi-
cally, when initiating eavesdropping, the adversary spies on each
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Figure 10: Audio and radio
SNR over subcarrier.

channel for a few seconds, and fixes on the one with highest PSNR.
Then, within that channel it transmit the single-tone through the
subcarrier with highest channel gain. Note that the adversary can
estimate the channel gain of all subcarriers simultaneously by send-
ing a single OFDM packet with a training preamble.

5. EMISSIVE AUDIO EAVESDROPPING
Unlike the reflective case, an adversary in emissive vibrometry

needs to decode audio by monitoring the RSS vibration of WiFi
packets from the target. These packets are modulated across a wide
spectrum, arrive randomly, and are beyond the control of the ad-
versary. Our basic solution follows the same principle as the basic
RSS-based ART (Sec. 3), but incorporates mechanisms to extract
and amplify RSS values from the legacy WiFi packets.

Packet Detection: Following the 802.11 standard, each WiFi
packet starts with a known preamble called Short Training Field
(STF), which has a repetitive pattern in time domain. Hence, we
follow the typical approach in [14], which can detect such periodic
preambles using a self-correlation algorithm. We further use an
802.11 OFDM demodulator [15] to decode the unencrypted MAC
header which conveys the data symbol modulation scheme (e.g.,
BPSK).

RSS Estimation and Amplification: Suppose the target’s MAC
address is known to the adversary (we will discuss about how to
relax this assumption). The simplest way to extract RSS is to single
out target’s WiFi packets, and extrapolate the time-domain signal
power level across each packet to obtain one RSS value. However,
we found this approach only leads to around -8 dB of PSNR even
if the eavesdropper is 5 cm away from the target. The underlying
reason is the high peak-to-average power ratio (PAPR) in 802.11’s
OFDM modulated packets, which renders a simple RSS averaging
highly inaccurate.

To solve this problem, we first demodulate the OFDM-modulated
packet into low-level data symbols. Let’s first consider a simple
case with BPSK or QPSK modulated data symbols, which all have
the same magnitude in the constellation diagram. We can estimate
the RSS by simply computing the average power over all N data
symbols inside the packet:

RSS =

∑N
i=1 |s[i]|

2

N
, (16)

which circumvents the high PAPR. In general, data symbols may
not have the same magnitude when using higher modulation order,
i.e. 16QAM and 64QAM. We need to normalized the received sym-
bols according to their constellation magnitude before computing
the average power.

A typical WiFi packet has an N -value of thousand scale (e.g.,
N = 2048 for a 512-byte QPSK modulated packet). Our RSS
averaging method essentially reduces the noise level by N , thus
potentially boosting the PSNR of ART by orders of magnitude. We
thus refer to this approach as RSS amplification.

Params Value Params Value Params Value
p -8dB N0 -90dBm β 0
m 4096 d 1mm α 0
σ 1 |x|2 100dBm ϕ 90

Table 1: Parameters of counter measures for reflective eaves-
dropping.

Reinterpolation of Non-uniform Packet Arrival: Since 802.11
MAC adopts CSMA, the timing gap between two consecutive pack-
ets is highly random. Thus, the RSS directly obtained through the
above approach has non-uniform intervals. However, basic ART
only works under uniform RSS samples. Our solution is to rein-
terpolate the audio signals based on non-uniform sampling the-
ory [16], which essentially remaps the RSS samples to a grid of
uniform intervals.

Under non-uniform sampling, the effective sampling rate is de-
termined by the maximum gap between samples. To sample the
audio from the target with frequency of 500Hz (for human speech),
we thus need a packet arrival rate of 1000 pkt/s. This rate can be
easily achieved in modern WiFi protocols and applications.

Three points are worth further discussion regarding emissive ART.
(i) We have assumed the adversary knows the target’s MAC ad-

dress. In practice, the adversary can simply attempt to overhear
packets from each MAC address nearby and run ART over it. The
one resulting in a high PSNR and meaningful speech can be identi-
fied as the target.

(ii) Beamforming is still applicable as an amplification mecha-
nism. However, in contrary to the reflective case, where beamform-
ing aims to amplify one of the multipaths, in the emissive case, the
beamforming objective is to amplify all signals sent from the target
device. Hence, this problem can be reduced to traditional receiver
beamforming [10]. We omit more details for the sake of space.

(iii) The emissive eavesdropping quality depends on the packet
rate of the victim’s smartphone. A very slow packet rate e.g., 200
pkt/s as evaluated in Section 8, cannot provide sufficient sampling
rate to recover the audio. However, this problem can be alleviated
by applying techniques such as ARP attack [17] and RTS injection
[18] that force “silent” idling WiFi device to “talk”. We leave more
exploration of such approaches as future work

6. COUNTER MEASURES
In this section, we propose counter measures that can thwart re-

flective/emissive eavesdropping in practice.

6.1 Combating Reflective ART
Distance between adversary and victim is a critical factor that

determines the capability of reflective ART. Following an empiri-
cal analysis, we can derive the safety distance dsafe, i.e., the upper-
bound distance that an adversary can sustain to launch an attack.

Our analysis extends the model in Sec. 3.1. We use free-space
propagation [10] as our pathloss model: A(d0)2 = λ2

(4π)2d20L
. Real

world wireless signals typically undergo stronger attenuation than
free-space model, and thus have a shorter dsafe. λ is the wavelength,
i.e. 12.5cm for 2.4 GHz. L(L ≥ 1) is the system loss, which is set
as 1, i.e. no loss, in our analysis. Transmit/receive antenna gainsGt
and Gr are set to typical values for high-gain WiFi antennas [19]:
Gt = Gr = 12dB. We assume the adversary needs to penetrate
through drywall, with 8 dB of round-trip loss: p = -8dB [20]. Other
parameters are optimistic values for the adversary and summarized
in Table 1.

Based on above settings and our model in Eq. (13), we can de-
rive the relation between dsafe and audio PSNR, which is plotted in
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Figure 11. Free-space model (pathloss exponent = 2) requires dsafe

to be larger than 26.5m so that audio PSNR drops below -13 dB,
i.e. the PSNR level below which even a single frequency becomes
inaudible (page 5 of [12]). For practical multipath channels with
higher pathloss (e.g. office environment with path loss exponent
3 [10]), safety distance can be reduced to 11m. It is worthy noting
that the derived dsafe is conservative, which assumes optimistic pa-
rameters for adversary. In practice, the distance an adversary needs
to recover recognizable audio has to be much smaller than dsafe.

Besides the safety distance, many other mechanical vibrations,
e.g., human activity, that have overlapping vibration frequencies
with human sound can act as interfering signals to reduce the eaves-
dropping PSNR. However, it is worth noting that human movement
does not guarantee keeping the victim from being eavesdropped.
Part of the audio may still be recovered if victim temporarily slows
down the movement. For minor human movements, e.g., breath-
ing, audio can still be recovered because they mainly cause low-
frequency vibrations, and thus can be filtered by a bandpass filter.
On the contrary, it is hard to recover audio signals when rapid move-
ments, such as walking, is taking place nearby. We quantitatively
evaluate the impact of human movement in Section 8. Overall, al-
though human activity cannot completely thwart the ART attack, it
is still a good approach to undermine the eavesdropping quality.

6.2 Combating Emissive ART
For the emissive case, the victim has a better control of the source

of information leakage, and they can combat ART using more active
mechanisms. Given this advantage, we propose a PHY layer coun-
termeasure mechanism called Transmission Power Randomization
(TPR), which randomizes the transmission power across different
radio packets transmitted by itself, so as to disturbs the RSS varia-
tion from acoustic vibration. Specifically, suppose the t-th packet
has a legitimate transmit power of P (t) (typically remaining as a
constant in WiFi [21]). We randomize its power as f(t) · P (t),
where f(t) follows a normal distributionN(1, δ2). The randomiza-
tion intensity depends on the standard deviation δ, and determines
the effectiveness of this countermeasure. δ should be kept small, so
as not to affect the normal MAC/PHY protocol. However, we find
that even a small value of δ = 0.05 can already reduce the eaves-
dropper’s PSNR by several orders of magnitude, as will be shown
in our experiments (Sec. 8.3),

Similar rationale may be applied to thwart phase-based emissive
ART. However, practical radio front-end already has a random ini-
tial phase offset for each packet, which naturally thwarts phased-
based emissive ART.

7. IMPLEMENTATION
We prototype the eavesdropper based on the WARP software de-

fined radio (SDR) [22]. The WARP radios are controlled by a laptop
PC which implements the signal processing mechanisms that con-

stitute basic/reflective/emissive ART (Sec. 3, 4 and 5). The radio
transmitter directly takes baseband signals from the PC in the for-
mat of discrete I/Q samples, and then sends them through any WiFi
channel. The receiver captures signals, converts them to baseband,
and passes to the PC for processing. In addition, each WARP radio
uses up to 4 antennas to run the RSBF algorithm in Sec. 4.2.

Our implementation of reflective ART sends/receives customized
single-tone signals at 2.485 GHz, following the algorithms in Sec. 3
and Sec. 4. To realize the emissive ART, we have implemented an
802.11g/n-compliant OFDM communication library. Its receiver
module consists of packet detection, synchronization, frequency
offset compensation, and OFDM/symbol demodulation functions.
It can directly decode OFDM symbols from legacy 802.11 packets,
and then process the symbols using the RSS extraction and ampli-
fication module (Section 5).

Besides the 2.4 GHz WiFi channels, we also pair each WARP ra-
dio with WURC [23], a third-party RF front-end that enables trans-
mitting/receiving signals over the UHF band. The UHF band ex-
periments are conducted under an FCC experimental license, which
allows us to use the vacant TV channels 40 and 41 (626 – 638 MHz)
in our area.

Due to the interface latency between the PC and WARP [24], cur-
rent WARP driver only allows transmitting/receiving bursts of I/Q
samples at 3000 bursts/second, each burst containing 210 samples.
This translates to only up to 3 KHz of audio sampling rate (Sec. 5),
and further reduces by 4 folds when using 4 beamforming antennas.
We overcome the limitation by retrofitting the WARP FPGA ker-
nel, and implementing a continuous streaming mode, which lever-
ages WARP’s internal memory to store extra data samples. This
enables continuously writing/reading of up to 228 I/Q samples, and
the audio sampling rate can be as high as 20e6

210
≈ 19.5 KHz. The

maximum time duration of a single recording can be 228

20e6
≈ 13.4s.

8. EXPERIMENTAL VALIDATION
Based on the prototype implementation, we evaluate reflective

and emissive vibrometry, each following two steps. First, we con-
duct micro-benchmark validation of different enhancement mecha-
nisms, separately. Second, we combine these mechanisms and per-
form blind-tests to demonstrate the overall eavesdropping threats
under various practical scenarios. Finally, we validate the proposed
countermeasures. Unless noted otherwise, there are working peo-
ple inside the room, sitting roughly 2m away from the antennas and
loudspeaker.

8.1 Validating Reflective Eavesdropping

8.1.1 Micro-benchmark of Diversity Mechanisms
We first verify the effectiveness of the diversity mechanisms in

Sec. 4.2. By default, the loudspeaker plays a single-tone 400 Hz
audio. Besides LOS, we create NLOS test case by separating the
adversary and loudspeaker using an office partition. For each test
case, we try 10 different eavesdropper locations 1 m away from the
loudspeaker, and then measure the decoded PSNR.

Impact of blind beamforming: Recall the blind beamforming
comprises 3 steps (Sec. 4.2.1): (i) Rx beamforming; (ii) Tx beam-
forming guided by Rx weights; (iii) TxRx beamforming. We first
investigate the Rx beamforming performance as the number of an-
tennas increases. From the experiments (Figure 12), we observe
obvious improvement when the number of antennas increases from
1 to 2, but the gain saturates quickly. This is consistent with the log
scale beamforming gain in traditional communications [10]. It also
implies that the adversary can harness the majority of beamforming
gain even with a small number of antennas.
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Figure 15: ART hardware platform. Test-
ing ART outside a conference room.
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Figure 16: Testing ART performance.
Loudspeaker is inside a soundproof room.
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Figure 17: Through-wall recognition accu-
racy of ART compared with a microphone.

Figure 13 depicts the eventual PSNR after the 3-step beamform-
ing described in Sec. 4.2.1. we have two observations. First, the ef-
fect of beamforming is location-dependent: the beamforming gain
ranges from 3 to 13.5 dB across the 10 locations. This is a direct
consequence of the location-dependent property in single-antenna
ART (Sec. 3.3): when the multiple antennas all have strong PSNR
and are uncorrelated, beamforming leads to highest amplification.

Secondly, there are more substantial benefits of beamforming at
NLOS scenarios. On average, the NLOS beamforming gain is 8 dB
across 10 locations, in contrast to 5.6 dB in LOS. This is because
in NLOS, multipath diversity becomes dominant, leading to highly
uncorrelated channel across antennas, which boosts beamforming
gain.

Impact of channel selection: We run the two-level channel se-
lection mechanism (Sec. 4.2) for each of the adversary location and
plot the CDF of PSNR gain in Figure 14. As expected, channel
selection plays a significant role in improving eavesdropping per-
formance. We also observe that the average improvement ratio un-
der LOS (i.e., 60% and 9.5dB) is larger than that under NLOS (i.e.,
40% and 2.9dB), which is different from the beamforming case.
Still, the reason is that when multipath diversity becomes dominant
in NLOS, all channels degrade significantly. Moreover, the better
channels under LOS have a larger deterioration since their domi-
nating LOS paths with stronger signal are blocked. In consequence,
channel selection yields a lower gain in NLOS.

8.1.2 Overall Eavesdropping Threat Analysis.
We now combine all the diversity mechanisms, and evaluate the

overall eavesdropping threat under realistic settings.
Through-wall eavesdropping threats: We perform experiments

in two closed rooms. The first is a typical conference room with
drywalls all around, located in our office building (Figure 15). The
second is a specialized soundproof room for conducting children
behavior research (Figure 16). In both scenarios, we place a loud-
speaker (for the reflective cases) and a smartphone (for the emissive
cases) inside the room. The eavesdropper Tx/Rx are deployed out-
side.

To quantify the eavesdropping threat, we set up a blind test to
evaluate the quality of recovered audio in comparison to a iPhone
microphone. Specifically, the loudspeaker plays human speech sounds
that pronounce random numbers between “zero” to “nine”. Mean-
while, the microphone is placed at the same location as the eaves-
dropper and records the sound. We permute the numbers in each
experiment, and invite 6 users to listen and transcribe the numbers
recorded by the microphone and diversity-enhanced ART, respec-
tively. We use the percentage of correctly-transcribed numbers as
evaluation metric, referred to as recognition accuracy.

Figure 17 plots the recognition accuracy as we increase the dis-
tance between eavesdropper radios and the loudspeaker (with wall
in between). Human ear can recognize the sound recovered by ART
with almost 100% accuracy when the distance is less than 1 m out-
side conference room. Moreover, ART can keep a high recognition
accuracy of more than 80% for up to 4 m. In contrast, the micro-
phone recorder can only recover around 50% even below 2 m dis-
tance. Beyond that, the microphone cannot record any sound from
the loudspeaker. For the purpose of experimental contrast, we cap
the accuracy to 10% by assuming all testers randomly guess one
out of ten numbers. For the sound-proof room, the experiment re-
sults are more interesting: while the microphone cannot capture any
sound at all, ART can easily penetrate the sound-proof obstruction
and still achieve high recognition accuracy.

To sum up, an ART-enabled eavesdropper can indeed penetrate
conventional sound isolators like walls and sound-proof windows.
Naturally, the attack may fail if the isolator (e.g., metal walls) blocks
radio signals completely. However, the above experiment already
demonstrates alarming threat in the real-world.

From our extensive experiments, we also establish empirical re-
lation between PSNR and recognition accuracy. When PSNR is
above 15dB, testers typically can recognize words with close to
100% accuracy. When PSNR> 10dB, most words can be recog-
nized (>60% accuracy). The testers fail to recognize any words
when PSNR falls below 6dB. In what follows, we continue with a
more microscopic examination of other factors that may affect the
threat level.
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Figure 19: Testing 5 loudspeakers of dif-
ferent size and shape.
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Eavesdropping using different carrier frequencies: It is known
that lower-frequency radio signals experience less propagation loss
and penetration loss through obstacles. We now run the basic ART
algorithm over the 626-638 MHz UHF band and compare it with
the 2.4 GHz WiFi band. For a fair comparison, the transmit power
and RF gains of corresponding radios are calibrated such that, for
the same link distance, the received signal power levels’ difference
follows the free-space model. The results in Figure 18 show that
low-frequency UHF band presents a much higher level of PSNR in
sound recovery. The gain ranges from 7.5dB in LOS and 7 to 9 dB
with wall or sound-proof window in between.

Impact of physical properties of loudspeaker: We have also
evaluated ART’s performance among 5 different commodity loud-
speakers (Figure 19): Insignia, iHomeL, iHomeS, Sony and UE.
The loudspeakers’ volume is set to their largest level. Figure 20
shows that ART has high PSNR of recovered sound across all loud-
speakers, and those with larger size tend to have higher PSNR due
to stronger vibration.

Frequency fidelity of recovered audio: A common metric for
evaluating the fidelity of sound acquisition system is the frequency
response. We now test ART against this metric, in comparison
with the microphone of a smartphone. The eavesdropper and mi-
crophone are both placed 1 m away, and within LOS of the loud-
speaker. Figure 21 plots the PSNR across 140 Hz to 1900 Hz, cover-
ing the frequency range of human voice. ART’s frequency response
is relatively flat (std. 1.96 dB) and comparable to the microphone
recorder ( std. 1.77dB), which shows that the ART can achieve
high-fidelity sound recovery, and does not distort audio differently
across different frequencies.

Impact of environment dynamics: We next evaluate how nearby
human activities affect ART. We test 5 different cases: (i) Human
Absence: no human activity. (ii) Nearby Breath: a human stands
40cm away from the Tx (without blocking) and breaths normally.
(iii) Walk Far and (iv) Close: a human randomly walks at a distance
around 4m and 40cm to the Tx. (v) Human Block: a human blocks
the LOS path between Tx and the loudspeaker. In all cases, the

Tx is 1m away from the loudspeaker which plays a 400Hz sound.
Figure 22 plots the recovered sound PSNR and audio noise floor.

We see that Human Breath and Walk Far almost have no impact
on the PSNR or audio noise floor. Walk Close and Human Block
decrease the audio PSNR by around 10dB. However, the root causes
for the decrease differ in the two cases. For Walk Close case, human
motion acts like a strong noise source to loudspeaker vibration, thus
lowering the PSNR. In the Human Block case, the noise floor re-
mains similar to the Human Absence, but the human body blockage
significantly reduces the reflection signal strength.

From the test result, we conclude that ART can tolerate minor
human movement, like breathing, or large motion, but not being
too close to the loudspeaker or eavesdropper.

8.2 Validating Emissive Eavesdropping

8.2.1 Micro-benchmark Test
In the following experiments, the target is a smartphone (Moto

X XT1053) with internal loudspeaker playing audio. Meanwhile,
it sends packets through its WiFi interface to a nearby commer-
cial access point Belkin N150. We do not modify any hardware
or software on either the smartphone or the access point. Thus,
their communication completely follows the IEEE 802.11g proto-
col. The adversary SDR works on the sniffer mode, which only
captures raw signal samples overheard from the smartphone. We
decode the WiFi packets on a PC using our software 802.11g de-
coder and then reconstruct the audio signals. Since the adversary
has no control of the target smartphone, we evaluate the eavesdrop-
ping performance when the smartphone generates different traffic
patterns. Note that due to 802.11’s CSMA contention mechanism,
the transmission time of packets is non-uniform, and we handle this
problem using the re-interpolation designed in Sec. 5.

First, the smartphone initiates a TCP file transfer at 10 Mbps
traffic rate, but with different packet lengths. Meanwhile, it plays
a 400 Hz audio. Figure 23 shows that the decoded audio PSNR
is logarithmically proportional to packet length. This is consistent
with our asymptotic analysis in Sec. 5, which showed that the RSS
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Figure 26: TPR’s effect on Audio PSNR.

amplification algorithm can effectively improve PSNR by accumu-
lating energy across each packet duration.

We have a similar observation for the impact of packet rate (Fig-
ure 24): the PSNR improves by about 8dB as the packet rate in-
creases from 1100 pkt/s to 1900 pkt/s.

The experiments clearly reveal alarming threats in today’s wire-
less communications systems that strive for speed. Modern wireless
standards like 802.11n/ac widely adopt packet aggregation to im-
prove transmission efficiency (e.g., 802.11ac allows for up to 5.5ms
of packet duration). Meanwhile, packet rate is escalating owing
to high PHY-layer bit-rate (e.g., 802.11ad enables up to hundred-
Mega per second of packet rate). Riding on these trends, an adver-
sary with wireless vibrometry can easily launch eavesdropping with
ultra-high PSNR.

8.2.2 Overall Threat Analysis
Threats from through-wall emissive eavesdropping: To eval-

uate the practical threat, we use a similar blind-test setup as in the
reflective vibrometry, except that the target is a smartphone playing
the number sounds while running a file uploading application (with
a mean packet duration of 0.25 ms and 1900 pkt/s). Figure 25 plots
the blind-test results. We can see that emissive ART achieves al-
most 100% accuracy when eavesdropper is less than than 3 m away
from the target with drywall or sound-proof window in between.
In contrast, a microphone can barely recognize anything at all dis-
tances. Interestingly, the eavesdropping has good performance in
spite of the low volume. The is attributed to the more “pure” vibra-
tion in the emissive case, where the radio signals come exclusively
from the smartphone, whereas the irrelevant reflections in the re-
flective case contaminate radio signals.

To sum up, emissive vibrometry constitutes a higher level of threat
due to strong signals directly emitted by the target. Considering the
wide penetration of mobile devices that co-locate loudspeaker with
radios, emissive ART can easily impinge on private communica-
tions over such devices.

Threats under real traffic patterns: Above we have tested emis-
sive ART when the target is running file-uploading applications
through WiFi. We have also tested other upload-traffic-dominated
applications including FTP and Skype video call. We found FTP
results in similar eavesdropping audio quality as above. Yet Skype
call has a packet rate below 200 pkts/second, which is insufficient
to provide usable audio sampling rate (Sec. 5). However, as cam-
era resolution on smartphone increases along with WiFi bit-rate, we
expect the packet rate of such applications will eventually reach the
threat level. Besides, we also tested the emissive ART under envi-
ronment dynamics, with similar observations as the reflective ART.
We thus omit the details for the sake of space.

8.3 Validating TPR as a Counter Measure

In this section, we validate the TPR approach against emissive
eavesdropping (Sec. 6). Since off-the-shelf smartphone’s WiFi
chipset cannot be modified to vary transmit power on a fine-grained
way, we conduct trace-driven simulation instead. We collect the
packet RSS traces following similar setup as in the micro-benchmark
test, with default packet length 400 bytes and rate around 1900
pkt/s. Then, we enforce the RSS randomization mechanism on each
of the collected packet, and inject the resulting packet trace into
ART decoder. Figure 26 plots the decoded audio PSNR. We ob-
serve that PSNR is logarithmically proportional to randomization
intensity δ, i.e., it drops quickly as δ increases. Even with a small
value δ = 0.05, TPR reduces the PSNR from 14 dB to -7 dB (more
than 2 orders of magnitude reduction), rendering the decoded sound
inaudible. This δ value translates into a variation of transmit power
by only 5%, which is unlikely to affect normal wireless communi-
cations. Therefore, once TPR is deployed on WiFi firmware, it can
effectively counteract the emissive ART.

9. RELATED WORK
Our work is most closely related with prior art in the following

domains:
Remote vibration detection. Microwave-based sound recovery

was reported early in [25]. We differ from [25] in multiple as-
pects. First, our system builds on closed-from analysis, together
with testbed experiments to demonstrate that both RSS and phase
can be effectively used for audio-radio transformation. Second,
whereas [25] works in LOS with directional antennas, we lever-
age the widely available MIMO radios for NLOS sound recov-
ery. Third, we propose a novel emissive attack model that imposes
emergent threats on ubiquitous WiFi devices.

Our work has also been inspired by the LADAR concept [5], con-
ventionally used for inspecting structure safety (e.g., bridge shak-
ing under strong wind) and verifying rotational speed of mechani-
cal vibration systems. A LADAR based laser microphone [26] can
“hear” sound by measuring the vibration of a window. Recently,
Davis et al. [9] showed that LADAR can be realized by directly
monitoring and computing the vibrating spectrum of target using a
high-speed camera. Limitations of such laser or vision based vi-
brometry systems are discussed in Section 1. WiFi-based vibrome-
try is less likely to be suspected by a victim, compared with laser or
high-speed camera. It can exist in a tampered WiFi device near the
victim, or even outside the sight. It is, however, more challenging,
as WiFi signals are much less sensitive due to longer wavelength,
omni-directional nature, and vulnerability to fading effects.

Radar based activity sensing. The reflective vibrometry fol-
lows a similar paradigm in radar sensing. Conventional military
radar systems are used for ranging and moving target tracking [27].
Periodic human body activities, such as heart-beat, breathing, and
walking, can cause an outstanding Doppler shift in the reflected



signal [28, 29], which can be discerned by a radar receiver. But
such detection systems require high frequency resolution, with mul-
tiple GHz of receiver sampling rate. Recently, substantial work has
focused on realizing radar-like functions for mobile applications
simply using WiFi signals. WiSee [7] can discriminate the fine
Doppler patterns of 9 gestures by transforming WiFi signals into
ultra-narrow-band pulses with high frequency resolution. WiVi [30]
tracks human walking and gestures by creating a virtual antenna
array, and improving spatial resolution using the inverse synthetic
aperture radar (ISAR) technology. WiHear [8] aims to detect hu-
man speech by analyzing radio reflections from mouth movements.
It builds on a supervised learning framework, requires individual
user to train the system extensively, and can recognize only a lim-
ited number of words (6 words) with high accuracy.

Acoustic eavesdropping. Auditory surveillance on human con-
versations is a common practice in espionage, mostly realized in
practice using high-sensitivity microphones with wireless transmis-
sion capability. Modern acoustic eavesdropping techniques begin
targeting electronic apparatus. For example, it is well established
that keys on a keyboard can be distinguished by their sound, due to
minute differences in mechanical properties such as their position
on a slightly vibrating circuit board [2, 31]. Vibrations from key
presses can also leak keystroke identities [32]. Remarkably, human
speech can also disturb a nearby gyroscope’s readings [33], which
can in turn infer coarse information about the speaker (e.g., gender).

10. CONCLUSION
We have presented ART, a new acoustic eavesdropping method

that penetrates conventional sound-proof isolators using reflective
or emissive wireless signals. The key principle and challenge lies
in recovering and strengthening the loudspeaker’s subtle vibration
from the radio signal strength variation. Through an analytical
framework and extensive experiments, we distill the key factors
that enable highly sensitive ART, and enhance it with diversity-
harnessing mechanisms that requires no training preambles from
the information source (i.e., the loudspeaker). We implement the
ART eavesdropper on a software-radio platform and demonstrate its
effectiveness in decoding high-quality audio even through sound-
proof walls, showing its severe threat in practice. We have also in-
troduced pragmatic countermeasures in response to this new threat.
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