
Autodirective Audio Capturing Through a
Synchronized Smartphone Array

Sanjib Sur†, Teng Wei† and Xinyu Zhang
University of Wisconsin-Madison

{sur2, twei7}@wisc.edu and xyzhang@ece.wisc.edu
†Co-primary authors

ABSTRACT
High-quality, speaker-location-aware audio capturing has tra-
ditionally been realized using dedicated microphone arrays.
But high cost and lack of portability prevents such systems
from being widely adopted. Today’s smartphones are rel-
atively more convenient for audio recording, but the audio
quality is much lower in noisy environment and speaker loca-
tion cannot be readily obtained. In this paper, we design and
implement Dia, which leverages smartphone cooperation to
overcome the above limitations. Dia supports spontaneous
setup, by allowing a group of users to rapidly assemble an
array of smartphones to emulate a dedicated microphone
array. It employs a novel framework to accurately synchro-
nize the audio I/O clocks of the smartphones. The synchro-
nized smartphone array further enables autodirective audio
capturing, i.e., tracking the speaker’s location, and beam-
forming the audio capturing towards the speaker to improve
audio quality. We implement Dia on a testbed consisting of 8
Android phones. Our experiments demonstrate that Dia can
synchronize the microphones of different smartphones with
sample-level accuracy. It achieves high localization accu-
racy, and similar beamforming performance compared with
a microphone array with perfect synchronization.

Categories and Subject Descriptors
C.3.3 [Special-Purpose and Application-based Sys-
tems]: Signal processing systems

Keywords
Ad-hoc microphone array; smartphone synchronization; acous-
tic localization; acoustic beamforming

1. INTRODUCTION
The pervasiveness of smartphones is driving a continu-

ous growth of mobile multimedia applications, which take
advantage of the microphone and camera modules for spon-
taneous audio-visual capturing. Yet such applications are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys’14, June 16–19, 2014, Bretton Woods, NH, USA.
Copyright 2014 ACM 978-1-4503-2793-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2594368.2594380.

mostly constrained to short-range individual use, undoubt-
edly because of the private nature of standalone smartphone
devices. Common smartphones are not well suited for de-
manding multimedia applications. For example, (i) A smart-
phone’s audio-capturing quality can be significantly degraded
in noisy environment, with noises coming from ambient elec-
tronic devices and interfering voices. (ii) A smartphone does
not work well in lecture recording applications, where the
lecturer may walk far away from the microphone and her
speech may be immersed in noise. (iii) A similar problem
occurs in meeting recording or teleconferencing scenarios,
where certain speakers can be far from the microphone.

Currently, such challenging audio capturing tasks require
dedicated commercial platforms. For example, Polycom CX-
5000 [1] and Microsoft RingCam [2] incorporate a micro-
phone array to enhance audio quality and locate speakers.
The location information is used to guide a steerable camera
to focus its view angle on a main speaker. Ricoh [3] devel-
oped an audio-visual recording system with a similar objec-
tive, but using video image processing to track conference
participants. These high-end systems overcome the narrow
view-angle and low audio quality of smartphones, but tend
to be expensive and lack portability. Simple solutions using
close-talking microphones may be used in lecture-recording
cases, but they are intrusive and distracting [4].

In this paper, we propose an alternative system that lever-
ages an ad-hoc group of smartphones (referred to as a smart-
phone array) to enhance audio capturing in the above sce-
narios. These smartphones may be temporarily collected
from participants in a meeting or lecture. Through tight co-
operation, their individual microphones can form a virtual
microphone array that beamforms to a main speaker, and lo-
calizes the speaker in real-time to facilitate video recorders,
e.g., a steerable camera [5]. We refer to such a system as
autoDirective audio (Dia) capturing.

The advantages of Dia are multifold. It inherits all the
benefits of a dedicated microphone array. Yet it allows spon-
taneous setup at almost no extra cost. In addition, Dia
has the potential to enable directive, portable audio-visual
recording, by aligning multiple smartphones’ cameras and
triggering each opportunistically according to speaker’s lo-
cation.

Realizing such potential entails several grand challenges,
the major one lying in synchronization of the smartphones.
Speaker tracking heavily relies on Time-Difference-Of-Arri-
val (TDOA) statistics among distributed microphones. The-
refore, the smartphones must synchronize their microphones
with sufficient precision, i.e., the audio sampling clocks must
be triggered simultaneously and tick at the same rate. Sim-

ilarly, beamforming relies on synchronization to align the
audio samples. Sampling offset may cause different micro-
phones to cancel instead of enhancing each other’s signals.

Dia meets the above challenges using a distributed two-
level synchronization framework. It first synchronizes the
CPU clocks of different smartphones, by allowing them to
timestamp the WiFi beacons overheard from a nearby access
point, and calibrate the CPU time to align with each other.
Then, with the help of a PC server, each smartphone’s audio
I/O clock gets synchronized with its own CPU clock. Con-
sequently, the sampling clocks of distributed microphones
are synchronized to a global clock, thus enabling the same
functionalities as a dedicated microphone array.

Given this synchronized array of smartphones, Dia incor-
porates two cooperative audio signal processing modules to
achieve autodirective audio capturing. First, it runs a prac-
tical beamforming algorithm that assigns weights to the syn-
chronized audio signals captured by different smartphones,
the optimal weight vector corresponding to the beam di-
rection that maximizes the speaker’s voice quality. Second,
Dia estimates the TDOA of audio signals from multiple mi-
crophones to track the speaker’s angle relative to the smart-
phone array. It employs a novel binary mapping approach to
scale the localization scheme to more than two smartphones
with unknown separation.

We have implemented Dia based on the Android platform.
Our experiments demonstrate that Dia can synchronize dis-
tributed smartphones with an accuracy of around 2 samples
at 16 kHz sampling rate. With an array of 8 smartphones,
Dia is able to boost the voice quality by 11 dB, which is
comparable to an oracle scheme with perfect synchroniza-
tion. More importantly, Dia’s performance scales as more
smartphones are put together. In addition, our field test
shows that Dia is able to track the speaker’s direction with
an error of around 10 degrees when the smartphones’ separa-
tion is known, and track the speaker’s region with more than
90% of accuracy under unknown smartphone separation.

We make the following contributions in Dia.
(i) We design a novel synchronization mechanism that can

synchronize the audio I/O clocks of distributed smartphones
at sample-level, which achieves comparable performance as
a microphone array. The synchronization algorithm is not
only a key component of Dia, but also a standalone con-
tribution. It opens up a wide range of spontaneous audio
sensing applications that used to be available only on ex-
pensive dedicated hardware platforms.

(ii) We propose a practical audio beamforming system
that leverages cooperative signal processing on the synchro-
nized smartphones to boost audio quality. Further, we de-
velop a speaker tracking algorithm on top of Dia that pro-
vides location guides to external video capturing devices.

(iii) We implement Dia on a mobile platform and con-
duct comprehensive experiments to validate its performance,
against an oracle scheme and in actual application scenarios.

The remainder of the paper is structured as follows. Sec.
2 presents an overview of Dia and its usage cases. Sec. 3
introduces the design and implementation of the two-level
synchronization algorithm, followed by the audio beamform-
ing and speaker localization/tracking algorithms in Sec. 4
and Sec. 5. Sec. 6 elaborates on the experimental evaluation
of Dia on top of our Android implementation. Sec. 7 dis-
cusses limitations and open problems in Dia. Sec. 8 surveys
related work and finally, Sec. 9 concludes the paper.

2. Dia: AN OVERVIEW

2.1 Application Scenarios
Dia enables spontaneous setup of a distributed micro-

phone array using an ad-hoc group of smartphones. It pre-
cisely synchronizes the distributed microphones to (i) en-
hance audio coverage and quality by beamforming speaker’s
voice to the embedded array of microphones, and (ii) localize
and track the speaker’s direction relative to the smartphone
array. Such functionalities are useful in a wide range of ap-
plication scenarios. We provide a few examples below.

(i) Smart conferencing. Imagine a conferencing session,
where participants intend to start an ad-hoc discussion and
spontaneously capture their speech as audio minutes. The
conference can occur anywhere and anytime, e.g., in a meet-
ing room, a company cafeteria, a picnic area in a park or a
dinning table in a restaurant. Due to lack of portability,
dedicated audio recording devices are not readily applica-
ble. Requesting each individual to use their smartphones
as close-talking microphones may ensure voice quality, but
this is obtrusive and can be distracting [4]. It is also non-
trivial to stitch the recordings of individual smartphones to
form a coherent piece of meeting record. With Dia, the par-
ticipants can simply place their smartphones together and
record high-quality audio in a similar way to a commercial
microphone array [6]. Dia automatically focuses on a main
speaker and tracks the speaker in case of movement or role
switching. It compiles the audio signals of all smartphones
into a single audio track that can also be streamed to a
remote site.

(ii) Autonomous lecture recording. In a classroom or lec-
ture hall, Dia can act as a low-cost automatic recording sys-
tem. It can run on an array of smartphones belonging to the
audience. Through synchronous, cooperative audio signal
processing, Dia will be able to maintain recording quality
even in low signal-to-noise-ratio (SNR) conditions due to,
e.g., lecturer walking away from the microphones, and noise
from electrical appliances and outside vehicles/machinery.

Dia works under several premises in the above setup. It
needs at least two smartphones each equipped with a mi-
crophone and WiFi interface. It presumes the smartphone
owners trust each other and are willing to allow tight co-
operation (exchanging messages) between their phones. In
addition, Dia relies on a back-end server to process the au-
dio signals. Thus, the smartphones need to have network
connection to the server (e.g., through WiFi or 3G).

The speaker’s location information provided by Dia can
facilitate a variety of external applications. An immediate
one might be a cooperative video capturing system that uses
the smartphone array’s cameras to capture a meeting, lec-
ture, etc. The smartphones may be placed along a line or
circle, such that their view angles cover an entire area of in-
terest. At any time, only one camera is triggered that covers
the speaker according to Dia’s location information. The re-
sulting video frames can be stitched according to their times-
tamps. Alternatively, Dia can enable a commercial steerable
camera system [5] to follow the speaker in real time.

2.2 System Architecture and Basic Operations
Figure 1 illustrates Dia’s architecture and basic flow of

operations. Dia acts as a software module running on the
smartphones and a back-end server. It consists of three ma-

Audio beam
forming

Speaker
tracking

Sync

Server

Smartphone
Array

Master

Calibration
parameters

Audio signals

Figure 1: Architecture of Dia.

jor modules: two-level synchronization, audio beamforming,
and speaker localization/tracking.

Dia works as follows in a typical use case. First of all,
users collect multiple smartphones and place them along a
regular geometry shape (e.g., line or circle, to be discussed
in Section 5). After such initial setup, two-level synchroniza-
tion, a distributed I/O synchronization protocol, is triggered
and operated by both the server and smartphones. Specifi-
cally, one smartphone is arbitrarily chosen as the master and
it coordinates the other phones to collect relevant times-
tamp information from ambient WiFi beacons, and from
their own audio interface, in order to estimate a set of pa-
rameters for timing calibration. The timing calibration is
conducted jointly by the server and smartphones, which en-
ables each smartphone to calibrate its CPU clock against
a global clock, and its local audio clock against the CPU
clock. Afterwards, the smartphones will be able to start
audio capturing at the same time, and precisely align their
audio samples, even though they are driven by independent
CPU clocks and audio I/O clocks rolling at different rates.

The audio streams of all smartphones are delivered to the
server through either WiFi or cellular network. The server
then runs an audio beamforming module that processes the
synchronized audio samples to enhance audio quality and
suppress noise. The underlying rationale lies in a high level
of diversity provided by multiple microphones, similar to
multi-antenna spatial diversity in MIMO wireless communi-
cations [7]. In addition, the server runs a speaker localiza-
tion/tracking framework that leverages relative timing be-
tween the microphones’ audio samples to track the speaker’s
angle relative to the smartphones.

Both of the beamforming and speaker tracking modules
benefit from higher performance (in terms of audio SNR
and localization granularity) as the number of smartphones
increases. Such extensibility is a unique advantage compared
with dedicated microphone array hardware.

Note that audio data processed by the server can be either
recorded to a file or streamed in real-time to a remote site
(we focus on the former case in our implementation). Dia
mainly targets the case with one dominating speaker at any
time. We will discuss potential approaches to addressing
competing speeches in Section 7.

3. AUDIO I/O CLOCK SYNCHRONIZATION
AMONG SMARTPHONES

In this section, we first motivate the problem of tight audio
clock synchronization by analyzing the application require-
ment, then we introduce the design and implementation of
Dia’s two-level synchronization framework in detail.

3.1 Why Synchronization?
Microphone-array based autodirective audio capturing re-

quires tight synchronization between the microphone ele-
ments [8]. For audio beamforming, received signals of dif-
ferent microphones need to be coherently combined. Severe
timing offset will cause significant phase misalignment be-
tween the signals and hence preventing beamforming. Simi-
larly, misalignment induces ambiguities when estimating the
signal’s TDOA to different microphones, thus causing local-
ization error.

Audio devices’ synchronization errors come from two sour-
ces: initial timing offset and sampling-rate difference (clock
drift). The former is due to the devices’ CPU clock differ-
ence and timing uncertainties between CPU and audio I/O
— even if an application instructs the devices to start simul-
taneously, the actual time when they are triggered may differ
significantly. Human voices commonly fall below 2 kHz, with
up to 4 kHz in rare cases [9]. Thus, a constant initial offset
of below 1/4000=0.00025 s, or 250 µs, between the differ-
ent microphones does not noticeably affect the microphone-
array’s performance. In effect, signals with such offset can
be considered as interpolations of the original signal, which
can still be coherently combined. For speaker tracking ap-
plications, an initial timing offset of 250 µs translates into a
distance estimation error of 343 m/s × 0.00025 s=0.086 m,
which is easily acceptable in practice.

However, achieving this 250 µs timing alignment is a non-
trivial task for COTS smartphones. Due to unpredictable
jitter caused by application execution and OS scheduling,
existing signaling-based network synchronization protocols
can only achieve [10, 11] millisecond-level granularity. GPS
can provide µs level synchronization, but it does not work
well in indoor environment.

Even after perfect initial synchronization, the second source
of errors, i.e., sampling clock drift, remains a serious chal-
lenge. Driven by independent oscillators, the smartphones’
audio sampling clock rates are bound to differ and, even mi-
nor clock skew will accumulate the sampling time offset to
quickly diverge beyond the synchronization requirement.

To make the problem more concrete, we measured the au-
dio sampling offset of 5 Galaxy Nexus smartphones (3 I9250
models and 2 I515), by playing a very short ‘linear chirp’
tone from a sound source at an interval of 15 seconds. We
used chirp tones in both human audible frequency range
of 10 kHz – 10.5 kHz and inaudible range of 22.05 kHz –
22.3 kHz. To isolate the impact of propagation delay, all
the smartphones and the sound source are placed within 6
cm distance. The sampling offsets are obtained by visu-
ally checking the onset peak position offset between ‘chirp’
signals received by the smartphones. Figure 2 plots the rel-
ative sampling offset (number of samples drifted) of 4 other
phones taking one I9250 as a reference point. Clearly, the
audio sample drift between multiple smartphones increases
over time and escalates to an intolerable value of up to 22
samples (499 µs) within merely 60 seconds of recording.

Does audio-beacon based synchronization work?
At first blush, it might seem sufficient to designate one
smartphone as a master node, which periodically broadcasts
audio beacon signals as synchronization pilots. All other
nodes record the beacons along with desired voice signals.
Afterwards, a server can process the signals offline, and syn-
chronize the signals by searching for the optimal beacon-time
alignment through cross-correlation. Our earliest attempt to

-20

 0

 20

 40

 60

 80

0 60 120 180 240 300

S
a

m
p

lin
g

 o
ff

s
e

t

Recording time (sec.)

I515 - 1
I9250 - 1
I515 - 2

I9250 - 2

Figure 2: Audio sampling offset between multi-
ple distributed smart phones. Error bars represent
maximum and minimum. Sampling rate equals 44.1
kHz.

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300

S
a

m
p

lin
g

 o
ff

s
e

t

Recording time (sec.)

Figure 3: Box plot showing the minimum, first quar-
tile, median, third quartile and maximum sampling
offset calculated using audio beacon based synchro-
nization.

build Dia relied on this audio-beacon based synchronization
principle. However, two major bottlenecks corrupted the
effort.

First of all, we find that audio reverberation and fading ef-
fects distort the beacon signals significantly, causing erratic
uncertainties in the offline synchronization. We conducted
an experiment using a very short ‘chirp’ tone as beacon and
broadcast signal at an interval of 30 seconds. In ideal sce-
nario, the cross-correlation process would have shown the
same trend of linear offset increment as in Figure 2. How-
ever, we find that cross-correlation process is quite random
in nature, as plotted in Figure 3. This is also the reason
why, instead of using cross-correlation, we have to visually
check the onset peak position offset between the ‘chirp’ sig-
nals as in Figure 2, in order to gauge the sampling offset.

The second bottleneck lies in the conflict between beacons
and desired voices. Sampling rate estimation inevitably has
some residual errors that accumulate over time. Thus, syn-
chronization beacons need to be broadcast periodically for
recalibration purpose. This will interfere the actual record-
ing process, which simply defies the purpose of performing
synchronization for high audio quality in first place. Al-
though it is possible to send the audio beacons through in-
audible frequency band, the first bottleneck still persists.

3.2 Sample-level Audio I/O Synchronization in
Dia

3.2.1 System model and problem formulation
Any hardware clock module HC(·) in the smartphone can

be modelled as:

HC(t) =

∫ t

t0

r(τ)dτ + θ(t0) (1)

where r(τ) is the clock rate at time τ and θ(t0) the initial
clock offset at time t0 with respect to an oracle clock.

Ideally, r(τ) maintains a constant value of 1. In practice,
the clock drifts over time. But for bounded time interval,
the clock drift is reasonably bounded with a small drift ρ,
i.e., r(τ) = 1 + ρ.

In a typical embedded platform, there exists hardware
registers that can be probed by software to obtain logical
clock values LC(·):

LC(t) =

∫ t

t0

r(τ).p(τ)dτ + θ(t0) (2)

where p(τ) denotes the software probing interval. For the
CPU, LC(·) is simply the system timestamp, whereas for
audio I/O, it is the sample index counted from the micro-
phone’s triggering time. Henceforth, the clocks we mention
are logical clocks by default.

In COTS smartphones, it is infeasible to directly program
the audio I/O clock to achieve distributed synchronization.
Dia circumvents this barrier via a novel two-level principle:
(i) Inter-device synchronization: synchronizing the smart-
phones’ CPU clock against a global clock. (ii) Intra-device
synchronization: synchronizing each smartphone’s audio I/O
clock against its own CPU clock. We formulate this principle
in more detail below.

Suppose the logical CPU clock of smartphone i at time t
is LCcpui (t). For a bounded time interval, it can be assumed
that there exists a linear relationship between LCcpui (t) and
a global clock GC(t):

LCcpui (t) = ai(δ).GC(t) + bi(δ) (3)

where δ = (t−t0) is bounded. The timing model parameters
ai(δ) and bi(δ) are constant within δ.

Since both the audio I/O clock and CPU clock advance
linearly over time, there is an implicit linear relation between
them:

LCaudioi (LCcpui (t)) = αi(δ).LC
cpu
i (t) + βi(δ) (4)

with timing model parameters αi(δ) and βi(δ) being con-
stant within δ. Here, LCaudioi (LCcpui (t)) is the audio sample
index at CPU clock LCcpui (t).

Given the above two timing models, the problem of syn-
chronizing the audio samples between multiple smartphones
can be formulated as calculating GC(LCaudioi), i.e., the
global timestamp of audio samples LCaudioi , and compen-
sate for the differences across multiple devices. Said differ-
ently, if we know the global clock value corresponding to
an audio sample of one smartphone, we can use Eq. (3)
and (4) to calculate the audio sample number of a different
smartphone at that global clock value, and compensate for
the differences. Dia’s two-level synchronization algorithm is
built atop this principle.

3.2.2 Two-level synchronization algorithm
Illustrative example. Figure 4 showcases an example of

how Dia synchronizes two smartphones with 1 sample offset.
For simplicity, let us assume the timing model parameters in
Eq. (3) and (4), i.e., ai(δ), bi(δ), αi(δ) and βi(δ), are known
for both smartphones. For a given audio sample s1 in smart-
phone 1, it knows its local timestamp lt1 following Eq. (4).
It can further infer the corresponding global timestamp gt
following Eq. (3). This global time stamp can be passed
to smartphone 2, who infers its own local time stamp lt2
following Eq. (3) (with different timing model parameters).
Then, it uses Eq. (4) to calculate the corresponding audio
sample number s2. In this way, both the smartphones know
the exact audio sample index corresponding to a particular

Audio
samples

CPU clock

CPU clock

Audio
samples

Global clock

Slave

Master

s1

lt1

gt

lt2

s2

Figure 4: An example timing diagram showing, the
audio sample synchronization between two smart-
phones, having 1 audio sample offset.

global timestamp gt, which in turn synchronizes the audio
samples.

The key problem in realizing Dia’s principle is to estimate
the CPU and audio timing models. In Dia, the smartphones
leverage a WiFi AP’s beacon messages to estimate parame-
ters for the CPU timing model following Eq. (3) , and then
each smartphone locally infers the audio timing model based
on CPU/audio timestamps following Eq. (4). This requires
each smartphone to obtain highly reliable logical timestamps
for the WiFi beacons and audio samples.

Probing logical clock timestamps. Unavailability of
hardware timestamps forces us to resort to software prob-
ing of timestamps. The software probing interval must be
constant across multiple devices (Eq. (2)). This is hard to
achieve if we probe the timestamps directly from application-
level. We analyze this problem in Figure 5, which shows
the processing diagram of the network I/O path in a typical
smartphone1, comprised of 3 stages:

Stage 1. The input data are digitized and partially pro-
cessed in hardware. The Direct Memory Access (DMA) en-
gine transfers the data to an OS buffer and generates an
Interrupt ReQuest (IRQ). In devices with similar hardware,
this takes an approximately equal amount of time.

Stage 2. The Programmable Interrupt Controller (PIC)
registers the IRQ in an interrupt service queue, and the OS
kernel schedules itself to call the Interrupt Service Routine
(ISR) of the particular device driver, and then serve the
interrupt. Since PIC handles IRQ from multiple hardware
modules, a variable amount of delay is introduced here.

Stage 3. Once the interrupt is serviced, the OS delivers
the data to the user space. The variable delay in this step
is significantly higher than that in Stage 2, as it depends on
many factors including but not limited to, priority of the
application in a multi-processing environment, CPU utiliza-
tion, etc.

Clearly, to fix the software probing interval to a constant
value, we should probe in Stage 1. Unfortunately, there is
no scope of CPU to register the timestamp before the IRQ
is serviced by the OS. Thus, in Dia, we aim to achieve a
reasonable determinism by probing the hardware clocks only
at the ISR (Stage 2). However, there could still be jitters,
the root cause emerging from the fact that the core OS in
today’s smartphones is not a real-time. In what follows, we
will show how we overcome this jitter in Dia.

Estimating timing parameters under timestamp
jitters. Modern 802.11 APs embed a 64-bit timestamp in
each broadcast beacon (so called TSF timer), which can be

1The processing diagram of the audio I/O path is similar,
except that the data comes from the microphones.

AP
Wireless card

DMA

OS buffer

PIC

Service
queue

Wireless
driver

Application

OS
scheduler

Kernel space

User space

H/w space

IRQ
ISR

Stage 1 Stage 2

Stage 3

tchan

Data

Control

Figure 5: Network I/O control and data flows in
smartphone.

captured by smartphones as global timestamp. For each
Wi-Fi beacon packet j containing timestamp GC(tj), smart-
phone i keeps a tuple 〈GC(tj), LCcpui (tj)〉 where, LCcpui (tj)
denotes the arrival CPU timestamp of the beacon packet j.

Given n sets of observation tuples 〈GC(tj), LCcpui (tj)〉
for j = 1, 2, . . . n, we want to estimate the parameters âi(δ)

and b̂i(δ) for bounded δ, following Eq. (3). This is a classical
problem of linear curve fitting which can be solved using a
linear regression method [12]. However, the jitters in times-
tamps statistics, obtained by software probing, might reduce
the goodness of fitting and hence the reliability of estima-
tion.

We solve this problem by using a least trimmed square
(LTS) regression model [13], which removes outlier observa-
tions with large residual errors and then computes a least
mean square regression model for rest of the observations.
This is particularly suitable in reducing the dependency on
the OS jitter in serving the ISR.

We apply a similar method to estimating the audio timing

model parameters, α̂i(δ) and β̂i(δ) following Eq. (4). Cor-
responding to the audio sample index k, we have the CPU
timestamps LCcpui (tk). This gives a set of observation tu-
ple 〈LCcpui (tk), k〉. Now, given m sets of observation tuple
〈LCcpui (tk), k〉 for k = 1, 2, . . .m, the problem of estimating

timing models α̂i(δ) and β̂i(δ) is solved again by using LTS
regression.

Reliable relationship between logical clocks. A lin-
ear relationship between global ↔ local logical clock and
local ↔ audio I/O logical clock is assumed across the above
two-level synchronization algorithm design. We now present
an empirical evidence to show this relationship holds in prac-
tice for bounded time interval δ.

To this end, we used the same 8 Galaxy Nexus smart-
phones mentioned in Section 3.1 and register beacon packet
arrival times from a single WiFi access point. The times-
tamps are registered inside the ISR of the Broadcom WiFi
driver [14]. We also register the original timestamps that
were embedded into the beacon packets which act as the
global logical clock of that particular access point.

Table 1 shows the regression results of inter-device syn-
chronization for different smartphones. R2 is the Coefficient
of Determination, a widely used measure of how well the
result of linear regression method is [12]. We can see that
the R2 values are well above 0.999 for all the smartphones,
which indicates very good fitting results. We also performed
similar experiment to find the regression results on the re-
lationship between audio sample number to the local CPU

Slave1
beacon

collection

audio record
starts

Initial set-
up time

Upload data
to server

2

convert global
to local time

stamp

Master
start

broadcast AP
MAC address

notify done

notification
from all
slaves

broadcast
start global
time stamp

wait

stoprecording
stop

inter-device
timing model

estimation

intra-device
timing model

estimation

1

2

5
6

7

6

4

1

3 4

5

7

Figure 6: Space-time diagram of the signaling pro-
tocol between smartphones.

clock and achieve similar fitting result. We omit this in the
interest of space.

Smart
Phone Slope a Intercept b R2

1 0.99998 -34111970 0.99968
2 1.00020 -12020470 0.99962
3 0.99967 18574170 0.99982
4 1.00005 -23536980 0.99977
5 1.00006 -33825370 0.99977
6 1.00008 -46648270 0.99979
7 1.00010 56972960 0.99970
8 1.00010 -55440930 0.99976

Table 1: LTS regression results between the global
logical clock and CPU logical clock of 8 smart-
phones, in the form of LCcpui (t) = ai(δ).GC(t) + bi(δ),
where i is the smartphone index. R2 is the metric
indicating the goodness of fitting.

3.3 Implementing Two-Level Synchronization
Dia’s implementation of two-level synchronization involves

a PC server and multiple smartphones. It extends the prior
example of two-smartphone synchronization to multiple smart-
phones, by designating one of them as master, to whom oth-
ers (slaves) need to synchronize their audio samples. The
master communicate with the slaves through WiFi network.

Signaling protocol. Figure 6 shows the signaling pro-
tocol between the master and each of the slave smartphones.
When Dia is launched, the master broadcasts a wireless AP
MAC address, whose beacons will be monitored by all smart-
phones. During the beacon capturing process, the smart-
phones store the timestamps tuple 〈GC(tj), LCcpui (tj)〉. Af-
ter receiving a sufficient amount of beacons, each smart-
phone runs the inter-device CPU timing model estimation
as in Eq. (3). Upon completing this procedure, each slave
smartphone sends a notification message to the master.

Once the master has received notifications from all the
slaves, it broadcasts a future global triggering timestamp
at which all the smartphones should start audio capturing.
Note that, by this time a slave already knows the inter-
device timing model parameters and thus can convert the
global triggering timestamp to its local timestamp following

Eq. (3). Each smartphone, including the master and slaves,
waits till its clock hits the local triggering timestamp before
it turns on the microphone and starts audio capturing.

During audio capturing, the smartphones keep track of the
tuple 〈LCcpui (tk), k〉 to prepare for the intra-device audio-
CPU synchronization. On receiving sufficient number of
CPU timestamps corresponding to audio samples, each smart-
phone runs the intra-device timing model estimation (Eq.
(4)). The audio recording runs in parallel to this process.
Note that, the intra-device timing model estimation could
also be done in the server side. However, this induces tedious
message exchanges between the server and the smartphones,
who need to send all the CPU timestamps corresponding to
each audio samples.

When the user terminates Dia, the master smartphone
broadcasts a stop command to all slaves. Each smartphone
i then uploads the recorded audio samples Ai along with
the inter- and intra-device timing model parameters to the
PC server. The server runs Algorithm 1 to synchronize the
audio samples of all the slaves with respect to the master
smartphone. Specifically, the server first finds out all the
global timestamps corresponding to the audio samples of
the master smartphone using the timing model parameters.
Then, it uses each slave’s own timing model parameters to
convert the previous global timestamps to the audio sam-
ple index. In this way, the audio samples from each slave
smartphone get aligned with the master.

Algorithm 1 Audio I/O synchronization: Server

1: foreach smartphone i

2: Receive 〈Ai, âi(δ), b̂i(δ), α̂i(δ), β̂i(δ)〉
3: end foreach
4: foreach audio sample j in Amaster
5: Calculate LCcpumaster(j) such that,

j = α̂master(δ).LC
cpu
master(j) + β̂master(δ)

6: Calculate GC(j) such that,

LCcpumaster(j) = âmaster(δ).GC(j) + b̂master(δ)
7: end foreach
8: foreach smartphone i \master
9: Calculate all LCcpui (·) such that,

LCcpui (·) = âi(δ).GC(·) + b̂i(δ)
10: Calculate all sample indices Si(·) such that,

Si(·) = α̂i(δ).LC
cpu
i (·) + β̂i(δ)

11: Extract samples from Ai using indices from Si(·)
12: end foreach

Practical issues. There are a number of additional is-
sues we have addressed in implementing the two-level syn-
chronization algorithm.

(i) Obtaining WiFi beacon timestamps. We register the
beacon arrival times from a single Wi-Fi AP on smartphones,
by adding flags inside the smartphone’s Wi-Fi driver. In
particular, for Galaxy Nexus, we register the timestamps
inside ISR of the Broadcom Wi-Fi driver [14] to reduce the
extraneous jitters introduce in further OS processing. How-
ever, registering CPU timestamps inside ISR triggers a se-
vere software bug inside the driver, which was eventually
fixed by applying software patches and driver modifications.
We also register the original timestamps that was embedded
into the beacon packet which acts as the global logical clock
of the AP.

(ii) Obtaining fine-grained audio sample timestamps. Au-
dio hardware does not give interrupt until a sufficient amount
of audio samples are received. For example, we found out
that in Galaxy Nexus, which uses audio hardware of OMAP-
4460 [15], the audio driver gets interrupt after every 1056
audio samples, irrespective of the sampling frequency used.
Hence, we only receive local CPU timestamps per 1056 au-
dio samples. However, the samples between two CPU times-
tamps are equally spaced and therefore, to obtain more fine-
grained audio sample timestamps, we perform a linear inter-
polation of the timestamps within the 1056 samples.

(iii) Scanning a fixed wireless channel for beacons. The
WiFi driver of the smartphones are pre-programmed to scan
all available channels (14 in 2.4 GHz range) for AP discov-
ery. We found that this causes excessive latency for Dia
to collect beacons from the target AP. We further modified
the wireless driver inside the smartphone’s Linux kernel, to
scan only on a fixed channel over which the AP transmits
beacons.

(iv) Unavailability of beacon timestamps. Some wireless
drivers in smartphones hide the WiFi beacon timestamps
from user level programs. Few wireless devices for smart-
phones are implemented as FullMAC 2, and therefore does
not even forward the beacon timestamps received from the
wireless access point to the kernel driver. In this extreme
situations, the master smartphone itself can act as a source
of global timestamps and broadcast periodic packets con-
taining global timestamps.

4. ENHANCING AUDIO QUALITY WITH
BEAMFORMING

In this section, we introduce how Dia leverages the syn-
chronized smartphone array to develop a beamforming frame-
work for audio enhancement.

4.1 MVDR Beamforming Algorithm
We adopt the state-of-the-art Minimum Variance Distor-

tionless Response (MVDR) [16] algorithm to realize audio
beamforming. In theory, MVDR can achieve a high spatial
resolution and large SNR improvement with a few number
of microphones.

To understand how MVDR works, consider an array of
M smartphones. Without loss of generality, we assume each
smartphone has one microphone, denoted by P1, P2, · · ·PM .
Due to spatial separation, the signals from the desired sound
source arrive at the microphones with different delays. We
can construct a delay vector T = [t1,2, . . . , t1,i, . . . , t1,M]T

representing the relative TDOA between P1 and all other
microphones, e.g. Pi. Then the spatial signature, C =
[1, e−jωt1,2 , . . . , e−jωt1,M]T can represent the phase differ-
ence between one smartphone and others at frequency ω.
Such signature can be straightforwardly translated from TDOA.

The MVDR algorithm applies complex weight w∗i to smart-
phone Pi’s audio signals in each frequency bin. The weight
will change the phase and amplitude of the signals. If a
weight vector W = [w1, w2, . . . , wM]T for the M smart-
phones is properly selected, the desired sound signals can be
maintained in the output of summed signals from different
smartphones, whereas the noise can be mutually canceled.

2A wireless device is called FullMAC, when the MAC layer
management functionalities, e.g., beaconing, association etc.
are implemented in h/w to reduce processing latency.

Framing Hanning DFT

Noise
Correlation
Estimation

Spatial
Signature

Beamforming
Weights

IDFTSynthesize

TDOA
Estimator

Audio
Signals

Enhanced
Signal

Figure 7: Audio beamforming module in Dia.

To attain such a goal, the weight vector W has to satisfy
two conditions:

(i) It must steer the audio capturing “beam” to the de-
sired direction, i.e., keeping the gain of the signal strength
from that direction to be a constant value 1. This gain con-
straint can be expressed mathematically as WHC = 1. In
this way, the desired signals can be mutually constructive
without loss. This is where the term “distortionless” comes
from – to preserve the quality of the desired signals (in both
amplitude and phase).

(ii) Meanwhile, it should minimize the output energy of
noise signals. Intuitively, the weights in W can be tuned
such that the majority of noise can cancel each other. To this
end, W must capture some statistical information — delay
spread and energy distribution in frequency domain — from
the noise. The statistical information can be characterized
by noise correlation matrix Rn, which describes the phase
and amplitude relation among noise signals from different
smartphones. Detailed steps to obtain the noise correlation
matrix will be introduced in Section 4.2.

The above two conditions in MVDR can be jointly for-
mulated as an optimization problem. The optimal weight
vector W has been proven in closed-form [16] as:

W = Rn
−1C(CHRn

−1C)−1 (5)

Below we describe how we incorporate the MVDR theory
into Dia’s practical beamforming module.

4.2 Audio Beamforming System Design
After synchronizing the audio samples from all smart-

phones, Dia’s server coherently combines the samples to re-
alize MVDR, in order to suppress noise and interference.
This is realized in Dia’s beamforming module, as shown in
figure 7, which comprises the following steps.

(i) Framing the audio signals. Dia processes audio signals
on a per-frame basis. A larger frame improves the precision
of statistical parameters (e.g., noise correlation) in MVDR,
but will incur greater computational complexity and higher
latency. In Dia, we choose an empirical frame length of 40
ms, which is found to strike a good balance. To smooth
their transition, the frames are partially overlapped by 20
ms and regulated by a Hanning Window. Then, Discrete
Fourier Transform (DFT) is applied to the framed signals
to split them into frequency bins.

(ii) Estimating noise correlation matrix. The estimation
of noise correlation matrix Rn requires a period that only
contains the ambient noise and interference sound. This can
often be done prior to the actual audio recording. Let vector
Xik denote the noise signal of frame k from smartphone Pi
for one frequency bin (index omitted). The noise correlation
matrix can be calculated as:

Rn =

 R11 · · · R1M

...
. . .

...
RM1 · · · RMM

Framing
Hanning

& DFT
Bandpass

Filter
GCC-PHAT

Smoothing
Filter

Phase
Shifter

MaxTDOABinary
Mapping

Direction

Audio
Signals

Phase

Figure 8: Speaker tracking module in Dia.

where Rij = 1
L

∑L
k=1 XikX

H
jk. L is the number of frames

for noise estimation, default to 60 (or 2.4 s) in Dia.
In our current implementation, Dia only tackles relatively

stationary noises, e.g., those from electrical appliances, out-
door machinery and vehicles. Suppressing bursty interfer-
ence requires adaptive estimation of Rn, which we leave for
future work.

(iii) Calculating beamforming weights. Given the esti-
mated TDOA vector T (to be discussed in Section 5), Dia’s
server calculates the spatial signature C. Then, using Eq.
(5), it computes the beamforming weights. These weights W
are applied into each of the original frames. The weighted
frames are converted back to time domain, thus obtaining
signals with enhanced quality.

5. SPEAKER TRACKING AND LOCALIZA-
TION

Dia’s localization module tracks the speaker’s angle rel-
ative to the smartphones, based on the TDOA between all
the microphones. It can deal with both continuous locations
(e.g., a walking lecturer) and discontinuous locations (e.g.,
role switching in a round-table discussion). Below we detail
the components in this module, as shown in Figure 8.

Framing audio signals. Dia’s voice tracking scheme
frames and windows the audio signals in a similar way to
beamforming. The key difference is that TDOA estima-
tion is extremely sensitive to multipath reflections. A larger
frame size can amortize the impact but it incurs longer la-
tency for voice tracking. In Dia, we use an empirical frame
size of 200 ms — 5 times that of the beamforming frame size
— to balance this tradeoff.

Estimating the TDOA. To estimate the TDOA of each
slave relative to the master, we adopt the generalized cross
correlation with phase transform (GCC-PHAT) algorithm
[17], which has been shown to be effective in practical en-
vironment. GCC-PHAT computes the cross-correlation be-
tween the audio frames of two microphones in frequency do-
main, and shifts the relative phase between the two frames.
The phase that maximizes the cross-correlation corresponds
to the time offset between the frames and hence the TDOA.
Before running GCC-PHAT, we apply a bandpass filter to
attenuate the signals outside the voice frequency range.

Enhancing robustness of TDOA estimation. In im-
plementing GCC-PHAT, we found the discontinuity of hu-
man speech induces significant error. Figure 9 shows the
GCC-PHAT based TDOA estimation over 20 seconds. Two
speakers speak consecutively, each for 10 seconds. Short
pauses are intentionally added between speech. The first
speaker sits in between two microphones, and thus the TDOA
should always equal 0. However, the actual GCC-PHAT
estimation varies significantly during the speech gap. We
found that speaker movement, ambient noise and the de-
structive effects of multipath reflections also causes small
variations.

-100

-50

 0

 50

 100

 150

 200

 0 5 10 15 20

T
D

O
A

 (
u
s
)

Recording time (second)

Before filter
After filter

Figure 9: TDOA over time with speaker switching.

To resolve these challenges, we introduce a time-domain
linear filter, inspired by the Kalman filter, which removes
TDOA outliers via smoothing:

Ti+1 = αDi+1 + (1− α)Ti (6)

where Di is the GCC-PHAT based TDOA estimation for
frame i and Ti the filtered TDOA estimation.

A smaller smoothing factor α can better eliminate outliers,
but will cause larger latency during speaker role switching.
To balance stability and latency, we adapt α according to
the type of TDOA outliers. For minor variation, we choose
a larger αH to reduce latency, because such variations are
mostly generated by speaker’s movement. Those large varia-
tions are incorrect estimations caused by speech gaps. Thus,
a smaller value αL is used for better stability. Formally,

α =

{
αH

Di+1

Ti
< Tresv

αL
Di+1

Ti
>= Tresv

where Tresv is the threshold determining the type of vari-
ation. In Dia, we choose αH , and αL to be 0.2 and 0.02
respectively. For the lecture room scenario, Tresv is chosen
to be 0.3 as there is only one target speaker. For conference
room case, Tresv is set to be 0.8 because the audio-beam
has to switch among multiple speakers.

Binary mapping: Mapping TDOA to speaker di-
rection. Given TDOA between microphones, a simple and
widely used approach for speaker angle estimation is based
on the following relation: TDOA = d sin θ

c
, where d is the dis-

tance between two microphones and θ the speaker’s direction
relative to the line segment between them. Dia leverages this
approach as a basic speaker tracking mechanism.

However, this approach cannot readily take advantage of
the availability of more than two smartphones to improve
tracking performance. Also, it assumes known distance be-
tween the microphones, which is not always feasible to ob-
tain, considering the fact that Dia’s smartphones are placed
manually and spontaneously. We have experimented with
existing audio-based ranging methods like BeepBeep [18]
to estimate the distance, but found the blockage between
smartphone bodies caused large estimation errors.

In Dia, we design a novel method called binary mapping
that leverages multiple smartphones to find the speaker di-
rection without knowing the distance between smartphones.
Dia’s speaker location information is intended for steerable
cameras, which has a view angle of tens of degrees [4]. Thus,
it is sufficient to divide the area of interest into fan-shaped
regions, and estimate the speaker location on a region basis.

Consider a round-table conference scenario, as shown in
Figure 20, where M smartphones are placed in the middle
to form a circular array, facing M fan-shaped regions. For
each region Ri, there exists a unique TDOA signature vector

 0

 20

 40

 60

 80

0 60 120 180 240 300

S
a

m
p

lin
g

 o
ff

s
e

t

Recording time (sec.)

only inter-device sync
inter- and intra-device sync

Figure 10: Audio sampling offset between two
smartphones. Error bars denote maximum and min-
imum.

Si = [si1,2, s
i
1,3, . . . , s

i
1,M], where si1,j = sign(ti1,j), and ti1,j

is the TDOA between microphone P1 and Pj when they re-
ceive signals from region Ri. This TDOA signature is unique
regardless of the distance between smartphones or between
speaker and smartphones. It can be directly computed with-
out any offline training. The TDOA signature for all regions
can be presented in a matrix S = [S1; S2; . . . ; SM].

At run-time, Dia computes the speaker’s signature, and
matches it to that of different regions. Specifically, taking
microphone P1 as reference, we can obtain a TDOA vec-
tor T1 = [t1,2, . . . , t1,M]. Then, we map the signed vector
Tsign

1 = sign(T1) to a region by finding the minumum Eu-

clidean distance between Tsign
1 and Si.

Ri = arg
i

min(Tsign
1 − Si)

2 (7)

The Hamming distance of the TDOA signatures is 2 when
M = 8. Thus, it can tolerate up to two bits of errors in
Tsign

1 . Occasionally, imperfect TDOA estimation and syn-
chronization may induce more than 2 bits of errors. We
adopt two approaches to improve the robustness of our track-
ing algorithm under such cases.

(i) In order to mitigate the impact of flipped bit from
synchronization offset, we normalize the TDOA vector by
its maximum absolute value Ti = Ti

max(abs(Ti))
, and set ti,i+1

to zero if it is smaller than an empirical value of 0.15. This
neutralizes the impact of those small TDOA values.

(ii) Instead of only taking one smartphone as reference,
we choose multiple smartphones as references, and estimate
the region under each reference. Then we run a majority
vote to finalize the estimation result.

The above binary mapping algorithm can be applied sim-
ilarly when the smartphone array is placed in a linear topol-
ogy. We omit the details due to space constraint.

6. SYSTEM EVALUATION
In this section, we first evaluate the individual modules

of Dia, including synchronization, beamforming and local-
ization. Then, we conduct a field trial of Dia in conference
round-table and lecture room scenarios.

6.1 Synchronization Performance
To evaluate the accuracy of our two-level synchronization

algorithm, we use a smartphone speaker to repetitively play
a short ‘chirp’ tone. Two other smartphones (Galaxy Nexus
I9250 & I515) run the synchronization algorithm and record
the chirp signals. To isolate the impact of propagation de-
lay, all the phones are placed within 6 cm distance. Unless
noted otherwise, both the testing smartphones run at 16 kHz
sampling rate and record the chirp tone for 300 seconds.

 0

 4

 8

 12

 16

0 180 360 540 720 900

S
a

m
p

lin
g

 o
ff

s
e

t

Recording time (sec.)

w/o recalibration

w/ 100 sec. recalibration

w/ 400 sec. recalibration

w/ 800 sec. recalibration

Figure 11: Audio sampling offset with and without
periodic recalibration.

 0

 10

 20

 30

 40

 50

50 100
500

600
700

800
900

1000
1500

2000

S
a

m
p

lin
g

 o
ff

s
e

t

Number of Wi-Fi beacons used

Figure 12: Synchronization accuracy between two
distributed smartphones w.r.t. number of initial Wi-
Fi beacons collected.

The separation of onset peaks of their received chirps rep-
resents the residual sampling offset after synchronization
(same as our measurement in Section 3.1).

Synchronization accuracy. Figure 10 plots the sam-
pling offset between two smartphones over time while per-
forming inter-device and two-level synchronization, respec-
tively. With inter-device (CPU clock) synchronization alone,
the synchronization offset is around 2 samples in the begin-
ning, but quickly grows to 20 samples after only 60 seconds
of recording. With two-level synchronization, the offset is
bounded to 2∼3 samples even after 300 seconds.

However, our synchronization algorithm is not perfect.
Figure 11 shows that it may slowly accumulate the residual
sampling offset over time. Fortunately, smartphones run-
ning Dia can always collect fresh CPU/audio timestamps
and periodically request the server to recalibrate the sam-
pling offset without disrupting ongoing recording. With a
recalibration period of 100 seconds (default value in Dia),
the sync error can be kept at 2 to 3 samples. This translates
to a timing error of 187.5 µs, easily satisfying the 250 µs
requirement mentioned in Section 3.1.

Impact of initialization time on synchronization.
Recall that Dia needs to collect WiFi beacons for inter-
device synchronization. An immediate question is: how
many beacon packets are needed to achieve the desired syn-
chronization accuracy? Figure 12 evaluates the relation-
ship between number of initial Wi-Fi beacons against the
sampling offset after running the two-level synchronization
algorithm. A larger number of initial beacons allow us to
estimate the timing model parameters with better accuracy,
thereby increasing the synchronization accuracy. However,
beyond 500 beacons, the improvement is marginal. With the
default beacon period of 100 ms, this translates to a short
initial setup time of 50 s. After the initialization, the two-
level synchronization and recalibration runs in background,
along with the audio recording, thus eliminating waiting
time.

Impact of audio sampling frequency. Ideally, the
sampling offset should decrease when decreasing the sam-

 0

 5

 10

 15

0 120

S
a

m
p

lin
g

 o
ff

s
e

t

Recording time (sec.)

44.1 KHz
32 KHz

22.05 KHz
16 KHz

Figure 13: Sampling offset over time between two
distributed smartphones w.r.t. audio sampling fre-
quency.

 0

 5

 10

 15

 20

10 20 30 40

S
a

m
p

lin
g

 o
ff

s
e

t

Additional CPU load (%)

Figure 14: Sampling offset when one smartphone is
subject to additional CPU loads. Error bars repre-
sent std.

pling frequency, to keep the time delay between the sam-
ples constant. Figure 13 verifies this property by showing
the sampling offset variation across different sampling fre-
quencies. We see that as sampling frequency decreases, the
sampling offset decreases proportionally, and the absolute
synchronization time error is almost a constant.

Impact of background CPU load. As mentioned in
Section 3.3, the jitters in timestamps collected by smart-
phones depends on the CPU load. We quantify this effect
by adding artificial CPU load on top of running Dia, using an
open source program, called cpuloadgen [19]. This program
generates a precise background load on the ARM processor
inside the smartphones based on the well-known dhrystone
[20] benchmark program. Figure 14 shows the resulting sam-
pling offset when one smartphone’s CPU load varies. Within
20% of additional CPU load, our synchronization algorithm
is virtually unaffected. Beyond that point the sampling off-
set increases by 4× for only 10% increase in CPU load. The
variance also increases significantly. However, we found that
background CPU load when running Dia remains at approx-
imately 2∼3%, which is far below the critical load of 20%. In
addition, when Dia is running and recording (e.g., during a
lecture or meeting), it is highly unlikely that the user will be
doing any significant background tasks on the smartphones.

6.2 Audio Beamforming Performance
We evaluate Dia’s audio beamforming module when run-

ning on a synchronized smartphone array. The experiments
are conducted in an office environment with ambient noise
coming from desktop PCs, servers, and air conditioner. A
smartphone playing human voice audio track is used to act
as the desired sound source. An additional smartphone gen-
erates noise sound with variable power. By default, the
smartphones record at 44.1 kHz sampling frequency. We
use the conventional peak signal to noise ratio (PSNR) [21]
as performance metric. Noise power is measured when the

 0

 2

 4

 6

 8

 10

 12

 14

2 3 4 5 6 7 8

P
S

N
R

 i
m

p
ro

v
e

m
e

n
t

(d
B

)

Number of smartphones

Oracle
Phone Array

Figure 15: Beamforming gain from Dia’s smart-
phone array, compared with a perfectly synchro-
nized microphone array. Average PSNR of each in-
dividual smartphone is 15.73 dB.

noise source presents alone. Peak signal power is computed
by the maximum total power (measured over consecutive
frames containing desired signal and noise) minus noise.
PSNR is known to eliminates artifacts caused by speech gap
and power variation [21].

Beamforming gain from a smartphone array. We
compare Dia’s beamforming performance with an oracle mi-
crophone array with perfect synchronization. The oracle
case is created via a trace-driven approach, which represents
the best beamforming performance that can be achieved by
smartphones. Specifically, we use one smartphone to em-
ulate multiple smartphones by putting it in different but
close-by locations and collect the audio data it captures from
the same sound source. We play a short chirp at the begin-
ning of each trace, and manually synchronize the trace data
offline. Besides, as we use the same smartphone, there is no
sampling rate offset in the audio signals.

Figure 15 shows the resulting beamforming gain, i.e., PSNR
improvement w.r.t. a single microphone case. We observe
that the beamforming gain of both Dia and oracle scales with
the growing number of microphones. Dia’s beamforming
gain is 6.01 dB with 2 smartphones, and escalates to 11.14
dB with 8. More importantly, Dia’s performance closely ap-
proximates the oracle, with a maximum difference of 1.83 dB
and below 1 dB in most cases. This is mainly attributed to
the small residual synchronization error, which remains al-
most constant within each calibration period, and thus does
not affect Dia’s performance in a noticeable way.

Impact of separation between speaker and micro-
phones. We examine the impact of distance between speaker
and microphone on the beamforming gain. We consider a
simple topology of two smartphones separated by 16 cm.
The desired sound source is located in the middle of two
phones moving 20 cm to 260 cm away from the smartphones,
representing decreasing PSNR. Figure 16 shows the resulting
beamforming gain. We can see that as speaker walks away,
even though both original PSNR and beamforming PSNR
decrease, the beamforming gain can still sustain at a high
level – around 6dB. In fact, it increases slightly, from 6.31dB
at 20 cm to 7.79dB at 260 cm. Note that, even when the
original PSNR is high, Dia can still boost the audio quality
by 6+ dB.

Impact of sampling offset on beamforming gain.
To verify the necessity of Dia’s audio I/O synchronization
algorithm, we study the impact of sampling rate offset on
beamforming gain. We choose a pair of unsynchronized
smartphones which has a sampling rate offset of 0.317 sam-
ple/second. We manually align the starting time of their

 0
 5

 10
 15
 20
 25
 30
 35

20 60 100
140

180
220

260

P
S

N
R

(d
B

)

Distance to the smartphones (cm)

Beamforming
Phone 1
Phone 2

Figure 16: PSNR vari-
ation as speaker walks
away.

 0

 2

 4

 6

 8

 10

0 3 6 9 13 16 19 22 25

P
S

N
R

 i
m

p
ro

v
e
m

e
n
t
(d

B
)

Time (seconds)

Figure 17: Impact of
sampling rate offset on
beamforming gain.

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

T
ra

c
k
in

g
 e

rr
o
r

(d
e
g
re

e
)

Direction (degree)

One speaker
Two speakers

Figure 18: Voice tracking accuracy when the speaker
is located in different directions.

recorded audio signals to isolate the impact of CPU time
offset. From Figure 17, we can see that sampling rate offset
degrades beamforming gain significantly over time. After 16
seconds of recording, the beamforming gain drops below 0.12
dB. This experiment stresses the importance of the intra-
device synchronization scheme in Dia. It also implies the
infeasibility of the audio beacon alignment approach due to
the existence of residual sampling rate errors (Section 3.1).

6.3 Accuracy of Voice Tracking
In this section, we present voice tracking accuracy when

running Dia with two smartphones. We use the basic ap-
proach introduced in Section 5 that translates TDOA into
the angle of the speaker. The two smartphones are placed
16 cm apart and their middle line is the 0 angle reference.
We test the system under two scenarios: (i) One speaker
who moves from 0 to 90 degrees. (ii) Two speakers — one
as interferer located at 0 angle, the desired one moving from
5 to 90 degrees.

Figure 18 shows the voice tracking accuracy when the
desired speaker is located at different angles. For single-
speaker case, the tracking error increases as the speaker’s
angle increases from 0 to 90 degrees. This is mainly due to
multipath reflections: At 0 degree, the speaker is facing both
microphones, whereas for 90-degree case, one smartphone is
partially blocked by the other, which weakens the line-of-
sight path, causing the increased uncertainty of TDOA esti-
mation. Besides, when translating TDOA to speaker angle,
the angle estimation θ becomes more sensitive to Ti when θ
is near 90 degrees (Section 5).

For the case with an interfering speaker, voice tracking
can achieve the best accuracy when the two speakers are
separated by an intermediate value of around 35 degrees.
This is because when two speakers are close to each other,
e.g., 5-degree separation, voice tracking cannot reliably dif-
ferentiate the TDOAs for two speakers. On the other hand,
when the speaker is close to 90 degrees, similar tracking error
occurs as in the one-speaker case.

1

3

4

5

6

7

8

Phone 1

Speaker

15 cm.

80 cm.

Region

2

Figure 19: Experimental setup in a typical round-
table conference scenario.

1
2
3
4
5
6
7
8

0 50 100 150 200 250 300

S
p

e
a

k
e

rs
’
p

o
s
it
io

n

Recording time (sec.)

Actual Estimated

Figure 20: Speakers’ position estimation within 8
regions in a typical round-table conference scenario.

In all the cases shown in Figure 18, the basic voice tracking
module in Dia can differentiate two simultaneous speakers
with granularity of smaller than 10 degrees in most cases.
However, this module assumes the smartphones’ separation
is known. In what follows, we evaluate Dia’s tracking perfor-
mance in two field trials, where the smartphone separation
may be unknown.

6.4 System-Level Testing of Dia
In this section we evaluate the performance of Dia in two

application scenarios as proposed in Section 2.

6.4.1 Round-table conference meeting
We first evaluate Dia in a typical round-table conference

scenario. Here, the whole conference room is divided into 8
regions as shown in Figure 19. We place 8 smartphones in
the middle of the table in a circular fashion. The distance
between the smartphones’ microphones is approximately 15
cm (note that Dia is unaware of this distance value). The
speaker is 80 cm away from the smartphone array. A region
is randomly selected from those 8 regions and the smart-
phone plays a speech for 10 seconds therein. Since Dia’s
beamforming performance has been investigated comprehen-
sively, we only focus on its speaker tracking module, partic-
ularly the binary mapping algorithm.

Speaker tracking. Figure 20 shows the true and esti-
mated positions. We test our binary mapping algorithm for
50 times and observe an average accuracy of 90%. Also, we
find that the regions for which the mis-detection occurs is
always the adjacent region of the true region (e.g., region 1
w.r.t. 8). When four smartphones are used to cover four re-
gions (each 90 degrees), we observed zero region estimation
error.

1
2
3
4
5
6
7
8

 0 10 20 30 40 50

S
p

e
a

k
e

r’
s
 p

o
s
it
io

n

Time (seconds)

Actual Estimated

Figure 21: Switching latency in tracking one speaker
to another.

1
2
3
4
5
6
7
8

0 50 100 150 200 250 300

S
p

e
a

k
e

rs
’
p

o
s
it
io

n

Recording time (sec.)

Actual Estimated

Figure 22: Speaker’s position estimation within 8
linear regions in a typical lecture room scenario.

Switching latency. We now consider a scenario where
multiple people around the table speaks consecutively. There
voices are created by placing 8 smartphone as speakers in
the different regions and randomly triggering one at differ-
ent times. Under this challenging scenario, Figure 21 shows
that Dia’s binary mapping algorithm tends to lag behind
sudden speaker switching by 1 to 2.5 seconds, with mean of
1.7 seconds. This latency may be acceptable if the external
video capturing system (e.g., a steerable camera) does not
have stringent real-time requirement, but still leaves room
for improvement.

6.4.2 Lecture room
Similar to 6.4.1, we measured the performance of Dia

in typical lecture room environment. We place 8 smart-
phones in a linear array, with adjacent separation of 7 cm.
The speaker is 70 cm away from the array. We divide the
whole lecture stage into 8 partially overlapped regions. The
speaker moves from one region to another linearly. Each
speech lasts for about 10 s and we measured accuracy of
the estimated region from the smartphone array. Figure 22
shows the true and estimated speaker position in one ex-
perimental run, lasting 300 seconds. We repeat the exper-
iment 8 times and obtained an average accuracy of 93% in
speaker region estimation. In addition, we observed similar
tracking latency as in the round-table case. However, note
that tracking latency occurs only when the speaker crosses
the boundary of two regions, which happens less frequently
than the previous case.

7. DISCUSSION
As an early prototype, Dia leaves a number of problems

that deserve further investigation.
I/O synchronization in heterogeneous platforms.

We have evaluated our I/O synchronization scheme in Galaxy
Nexus phones. Even with similar hardware, individual phones
exhibit non-trivial CPU timing and audio sampling clock off-
set. Since Dia’s synchronization framework does not rely on

any hardware dependent model, we speculate Dia can be
easily migrated to other smartphone platforms. A detailed
verification will be left as our future work.

Latency when switching between speakers. As men-
tioned in Section 6.4.1, Dia’s speaker tracking algorithm
tends to lag behind sudden speaker switching in a confer-
ence room scenario by 1 to 2.5 seconds. As future work,
we will improve Dia’s tracking algorithm to strike a better
balance between accuracy and responsiveness.

Dealing with competing speeches. As shown in Sec-
tion 5, Dia is able to accurately identify speaker’s relative
position even when there are two simultaneous speakers.
Dealing with more than two speakers is a more challeng-
ing scenario. In fact, determining who is the main speaker
alone requires human intervention. One possible approach
is to degrade Dia to omni-directional recording in this case.
This is a matter of our future investigation.

Real-time audio streaming. Currently, the synchro-
nized audio samples recorded by Dia’s smartphone array are
processed by a server offline. An immediate extension is to
enable real-time processing, which will be amenable for tele-
conferencing scenarios.

Impact of imperfect alignment. As mentioned in Sec-
tion 2.1, the application scenarios require the smartphones
to be grouped together in regular geometry shapes (i.e.,
line or circle) to run the beamforming and localization algo-
rithms. However, a small misalignment will not reduce the
performance of beamforming, because the MVDR can calcu-
late the TDOA and hence beamforming weights irrespective
of the smartphone alignment. Also, Dia localizes the sound
source in a coarse-grained, region-basis. The accuracy of the
region estimation algorithm is unaffected by small changes
in alignment or orientation.

Multiple microphones on the smartphone. Certain
smartphones like Galaxy Nexus have two microphones, one
of which is usually used for noise cancellation. Dia does
not leverage the dual microphone capability in its audio
capturing. However, we can potentially collect the audio
signals from both the microphones (which are synchronized
at hardware level) for MVDR beamforming. Dual micro-
phones would not help in Dia’s localization algorithm, be-
cause they are usually fixed at bottom/back of the smart-
phones, whereas Dia requires flexible placement of micro-
phones to cover a given region.

Energy overhead. The main step of the synchronization
algorithm is to collect the beacon timestamps from an AP at
periodic intervals and report it to the application. The bea-
con packets are by default received by the smartphones for
AP discovery and thus require no overhead. Only the inter-
device synchronization runs locally in the smartphones and
the run time is extremely small compared to the actual audio
recording process and thus will consume negligible amount
of energy. On the other hand, the beamforming and local-
ization algorithms run only on server side and thus will not
consume any extra energy in the smartphones. The main
energy cost of Dia thus comes from the continuous opera-
tion of microphones and transmission of audio samples to
the server through WiFi. Such cost is the same as in typical
mobile VoIP applications.

8. RELATED WORK
Autodirective audio-visual capturing. Autodirective

audio-visual recording systems have been extensively ex-

plored for group meeting, collaborative teleconferencing, and
lecture room scenarios [22]. Smart Room technology [23]
adopt vision-based algorithms for participant tracking and
identification. High-end video-based telepresence systems
[4] are able to sense activities through cameras. In many
product-oriented systems, panoramic or steerable cameras
are combined with microphones for spatial-aware audio-video
capturing [3, 24]. Such systems are becoming increasingly
important in this era when spontaneous multimedia captur-
ing and distribution becomes prevalent. However, high-cost
and lack of portability limits their usage cases. Our Dia
system is designed to cover similar application objectives by
simply assembling multiple smartphones.

Audio beamforming using microphone arrays. Mi-
crophone arrays are often used to emulate the effects of close-
up microphones or highly directional microphones to achieve
high-quality voice recording. Their unique advantages in-
clude hands-free operation and scalable performance with
array size. In fact, many contemporary smartphones (e.g.,
Galaxy Nexus) are equipped with a dual-microphone ar-
ray for noise cancellation in adverse acoustical environment,
e.g., in a cafeteria, on a busy street or in a running vehi-
cle. More powerful microphone array with a large number
of elements have been developed. In [25], a 16-microphone
array is placed in an office environment for speech enhance-
ment. The LOUD project [21] developed a 1020-microphone
array to achieve substantial noise/interference suppression.
Adaptive noise suppression and audio beamforming algo-
rithms are studied in [25, 26] and [27] provides an informa-
tive survey. Such audio-enhancement algorithms have been
applied to in acoustic sensor networks [28] that form a micro-
phone array. Compared with existing work along this line,
the main contribution in Dia’s beamforming module is the
design and implementation of an ad-hoc smartphone array
that can serve as a substrate for any acoustic beamforming
applications.

Sound source localization. Sound source localization
has diverse applications including, e.g., animal population
measurement, vehicle speaker tracking, and commercial sys-
tems in support of smart spaces. These applications heavily
rely on microphone arrays for estimating TDOA. Various
microphone array platforms have been developed for such
acoustic sensing applications [29,30]. Chen et al. [31] used a
distributed microphone array [30] to localize speakers. The
algorithm works well when each speaker is close to one mi-
crophone element. Since the microphones are separated by a
large distance, localization error caused by synchronization
offset becomes negligible. However, sampling-rate offset can
still become overwhelming and destroy the accuracy. In [32],
multiple microphone arrays are used to estimate the direc-
tion of animal sounds. Similar architectural concept has
been adopted in [33], where an FPGA based 4-channel mi-
crophone array is used to localize shooters. We believe Dia
can significantly ease the development and deployment of
such sound source localization applications.

Network synchronization algorithms. Synchroniza-
tion is a classical problem for distributed systems and net-
works. Existing solutions mostly focused on synchronizing
the nodes’ CPU clocks. In particular, extensive research
has been devoted to synchronization in sensor networks (see
[34] for a comprehensive survey). The intuition lies in cali-
brating the CPU clocks through lightweight wireless packet
exchanges, in order to achieve network-wide time consis-

tency. Standard synchronization solutions with application-
level message exchange (e.g., NTP) can only achieve a gran-
ularity of several milliseconds [10]. In Dia, we need to syn-
chronize not only CPU, but also the I/O clocks of different
nodes. Distributed synchronization algorithms for micro-
phones on desktop PCs have been proposed in [35,36], yet a
practical, quantitative evaluation of the algorithms are still
lacking. To our knowledge, Dia represents the first realiza-
tion of sample-level I/O synchronization between modern
smartphones.

Cooperation between mobile devices. Current smart-
phones are designed as standalone personal devices. Emerg-
ing device-to-device communications technologies, such as
WiFi-direct, create new opportunities for cooperative mobile
wireless systems. For example, MicroCast [37] allows closely
located smartphones to aggregate the cellular bandwidth,
and share downloaded data through WiFi-direct to improve
video streaming quality. Recent work, like CWC [38], pro-
posed to harness the computational power of many smart-
phones to establish a distributed computing platform that
offload tasks from costly infrastructures. MobiUS [39] split
one video frame between two nearby smartphones to en-
able better-together viewing experience. Many participatory
sensing applications [40] have been developed to collect data
and reveal interesting context patterns from a large number
of distributed smartphones. Compared with the above re-
search, a key distinguishing challenge in Dia is the granular-
ity of cooperation — it requires tight I/O synchronization
between close-by smartphones. To our knowledge, Dia rep-
resents the first system to tackle this challenge.

9. CONCLUSION
In this paper, we have designed Dia, a novel system that

leverages ad-hoc smartphone cooperation to achieve autodi-
rective audio capturing. Dia employs a two-level synchro-
nization framework that can synchronize the audio I/O of
distributed smartphones with sample-level accuracy. With
this framework, we develop a practical speaker tracking and
audio beamforming module that achieves similar performance
as a perfectly-synchronized microphone array. Since Dia
runs on COTS smartphones and supports spontaneous setup,
it has potential to enable a wide range of distributed acoustic
sensing and microphone-array based signal processing sys-
tems. Our immediate next step to explore Dia’s potential is
to expand it into a cooperative audio and visual recording
system as proposed in Section 2.

10. ACKNOWLEDGMENT
We sincerely thank Dr. Wen Hu for shepherding our pa-

per, as well as the anonymous reviewers for their valuable
comments and feedback. This work was partly supported
by NSF grant CNS-1318292 and CNS-1350039.

11. REFERENCES
[1] Polycom Inc., “CX5000,” 2013. [Online]. Available:

http://www.polycom.com/products-services/
products-for-microsoft/lync-optimized/
cx5000-unified-conference-station.html

[2] Microsoft Corporation, “Microsoft RingCam / Roundtable,”
2006. [Online]. Available:
http://microsoft.blognewschannel.com/2006/05/18/
microsoft-ringcam-microsoft-roundtable/

http://www.polycom.com/products-services/products-for-microsoft/lync-optimized/cx5000-unified-conference-station.html
http://www.polycom.com/products-services/products-for-microsoft/lync-optimized/cx5000-unified-conference-station.html
http://www.polycom.com/products-services/products-for-microsoft/lync-optimized/cx5000-unified-conference-station.html
http://microsoft.blognewschannel.com/2006/05/18/microsoft-ringcam-microsoft-roundtable/
http://microsoft.blognewschannel.com/2006/05/18/microsoft-ringcam-microsoft-roundtable/

[3] D.-S. Lee, B. Erol, J. Graham, J. J. Hull, and N. Murata,
“Portable Meeting Recorder,” in Proc. of ACM Multimedia,
2002.

[4] Z. Yu and Y. Nakamura, “Smart Meeting Systems: A
Survey of State-of-the-Art and Open Issues,” ACM
Computing Survey, vol. 42, no. 2, 2010.

[5] Ingeniero Marketing Tecnologia, “Fully Steerable Wireless
Micro-Camera,” 2013. [Online]. Available:
http://www.imtsrl.it/wireless.html

[6] Polycom Inc., “Eagle Eye Director Datasheet,” 2013.
[Online]. Available: http:
//www.polycom.com/content/dam/polycom/common/
documents/data-sheets/eagleeye-director-ds-enus.pdf

[7] D. Tse and P. Viswanath, Fundamentals of Wireless
Communication. Cambridge University Press, 2005.

[8] J. Benesty, J. Chen, and Y. Huang, Microphone Array
Signal Processing. Springer, 2008.

[9] M. Vorlander, Auralization: Fundamentals of Acoustics,
Modelling, Simulation, Algorithms and Acoustic Virtual
Reality. Springer, 2008.

[10] M. Laner, S. Caban, P. Svoboda, and M. Rupp, “Time
Synchronization Performance of Desktop Computers,” in
IEEE International Symposium on Precision Clock
Synchronization for Measurement Control and
Communication (ISPCS), 2011.

[11] The NTP newsgroup, “Network Time Protocol,” 2013.
[Online]. Available: http://www.ntp.org/

[12] R. Myers, Classical and modern regression with
applications. Duxbury Press Belmont, CA, 1990, vol. 2.

[13] P. J. Rousseeuw, “Least median-of-squares regression,”
American Statistical Association, vol. 79, 1984.

[14] Broadcom Corporation, “brcmfmac (sdio) drivers,” 2013.
[Online]. Available:
http://wireless.kernel.org/en/users/Drivers/brcm80211

[15] Texas Instrument Inc., “OMAP4460 Multimedia Device -
Technical Reference Manual,” 2013.

[16] J. J. M. V. de Sande, “Real-time Beamforming and Sound
Classification Parameter Generation in Public
Environments,” Master’s thesis, Delft University of
Technology, 2012.

[17] “A High-Accuracy, Low-Latency Technique for Talker
Localization in Reverberant Environment,” Ph.D.
dissertation, Brown University, 2000.

[18] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan, “BeepBeep:
a High Accuracy Acoustic Ranging System Using COTS
Mobile Devices,” in Proc. of ACM SenSys, 2007.

[19] Texas Instruments Inc., “cpuloadgen,” 2013. [Online].
Available: http://github.com/ptitiano/cpuloadgen

[20] “Dhrystone Benchmarking for ARM Cortex Processors,”
2011. [Online]. Available: http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.dai0273a/index.html

[21] E. Weinstein, K. Steele, A. Agarwal, and J. Glass, “A
1020-Node Modular Microphone Array and Beamformer for
Intelligent Computing Spaces,” 2004.

[22] Y. Rui, A. Gupta, J. Grudin, and L. He, “Automating
Lecture Capture and Broadcast: Technology and
Videography,” ACM Multimedia Systems Journal, vol. 10,
2004.

[23] C. Busso, S. Hernanz, C.-W. Chu, S. il Kwon, S. Lee,
P. Georgiou, I. Cohen, and S. Narayanan, “Smart Room:

Participant and Speaker Localization and Identification,” in
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2005.

[24] R. Cutler, Y. Rui, A. Gupta, J. Cadiz, I. Tashev, L.-w. He,
A. Colburn, Z. Zhang, Z. Liu, and S. Silverberg,
“Distributed Meetings: a Meeting Capture and
Broadcasting System,” in Proc. of ACM Multimedia, 2002.

[25] T. Takagi, H. Noguchi, K. Kugata, M. Yoshimoto, and
H. Kawaguchi, “Microphone Array Network for Ubiquitous
Sound Acquisition,” in Proc. of IEEE ICASSP, 2010.

[26] M. Jeub, C. Herglotz, C. Nelke, C. Beaugeant, and P. Vary,
“Noise Reduction for Dual-Microphone Mobile Phones
Exploiting Power Level Differences,” in Proc. of IEEE
ICASSP, 2012.

[27] Y. Huang, J. Benesty, and J. Chen, Acoustic MIMO Signal
Processing. Springer, 2006.

[28] H. Luo, J. Wang, Y. Sun, H. Ma, and X.-Y. Li, “Adaptive
Sampling and Diversity Reception in Multi-hop Wireless
Audio Sensor Networks,” in IEEE International Conference
on Distributed Computing Systems (ICDCS), 2010.

[29] D. Sun and J. Canny, “A High Accuracy, Low-latency,
Scalable Microphone-array System for Conversation
Analysis,” in Proc. of ACM UbiComp, 2012.

[30] L. Girod, M. Lukac, V. Trifa, and D. Estrin, “The Design
and Implementation of a Self-calibrating Distributed
Acoustic Sensing Platform,” in Proc. of ACM SenSys, 2006.

[31] M. Chen, Z. Liu, L.-W. He, P. Chou, and Z. Zhang,
“Energy-Based Position Estimation of Microphones and
Speakers for Ad Hoc Microphone Arrays,” in IEEE
Workshop on Applications of Signal Processing to Audio
and Acoustics, 2007.

[32] A. M. Ali, K. Yao, T. C. Collier, C. E. Taylor, D. T.
Blumstein, and L. Girod, “An Empirical Study of
Collaborative Acoustic Source Localization,” in Proc. of
ACM/IEEE IPSN, 2007.

[33] J. Sallai, P. Völgyesi, A. Lédeczi, K. Pence, T. Bapty,
S. Neema, and J. R. Davis, “Acoustic Shockwave-Based
Bearing Estimation,” in Proc. of ACM/IEEE IPSN, 2013.

[34] F. Sivrikaya and B. Yener, “Time Synchronization in Sensor
Networks: a Survey,” IEEE Network, vol. 18, no. 4, 2004.

[35] D. Budnikov, I. Chikalov, I. Kozintsev, and R. Lienhart,
“Distributed Array of Synchronized Sensors and
Actuators,” in Proc. of European Signal Processing
Conference (EUSIPCO), 2004.

[36] Y. Jia, Y. Luo, Y. Lin, and I. Kozintsev, “Distributed
Microphone Arrays for Digital Home and Office,” in Proc.
of IEEE ICASSP, 2006.

[37] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and
A. Markopoulou, “MicroCast: Cooperative Video Streaming
on Smartphones,” in Proc. of ACM MobiSys, 2012.

[38] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha,
K. Sundaresan, and S. V. Krishnamurthy, “Computing
While Charging: Building a Distributed Computing
Infrastructure Using Smartphones,” in Proc. of ACM
CoNext, 2012.

[39] G. Shen, Y. Li, and Y. Zhang, “MobiUS: Enable
Together-viewing Video Experience Across Two Mobile
Devices,” in Proc. of ACM MobiSys, 2007.

[40] D. Estrin, “Participatory Sensing: Applications and
Architecture,” IEEE Internet Computing, vol. 14, no. 1,
2010.

http://www.imtsrl.it/wireless.html
http://www.polycom.com/content/dam/polycom/common /documents/data-sheets/eagleeye-director-ds-enus.pdf
http://www.polycom.com/content/dam/polycom/common /documents/data-sheets/eagleeye-director-ds-enus.pdf
http://www.polycom.com/content/dam/polycom/common /documents/data-sheets/eagleeye-director-ds-enus.pdf
http://www.ntp.org/
http://wireless.kernel.org/en/users/Drivers/brcm80211
http://github.com/ptitiano/cpuloadgen
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0273a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0273a/index.html

	Introduction
	Dia: An Overview
	Application Scenarios
	System Architecture and Basic Operations

	Audio I/O Clock Synchronization Among Smartphones
	Why Synchronization?
	Sample-level Audio I/O Synchronization in Dia
	System model and problem formulation
	Two-level synchronization algorithm

	Implementing Two-Level Synchronization

	Enhancing Audio Quality with Beamforming
	MVDR Beamforming Algorithm
	Audio Beamforming System Design

	Speaker Tracking and Localization
	System Evaluation
	Synchronization Performance
	Audio Beamforming Performance
	Accuracy of Voice Tracking
	System-Level Testing of Dia
	Round-table conference meeting
	Lecture room

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	References

