Enabling High-Precision Visible Light Localization
in Today’s Buildings
Shilin Zhu and Xinyu Zhang
University of Wisconsin-Madison
{szhu,xyzhang}@ece.wisc.edu

ABSTRACT

For over one decade, research in visible light positioning
has focused on using modulated LEDs as location landmarks.
But the need for specialized LED fixtures, and the associated
retrofitting cost, has been hindering the adoption of VLP. In
this paper, we forgo this approach and design iLAMP to en-
able reliable, high-precision VLP using conventional LEDs
and fluorescent lamps inside today’s buildings. Our key ob-
servation is that these lamps intrinsically possess hidden vi-
sual features, which are imperceptible to human eyes, but
can be extracted by capturing and processing the lamps’
images using a computational imaging framework. Simply
using commodity smartphones’ front cameras, our approach
can identify lamps within a building with close to 100% ac-
curacy. Furthermore, we develop a geometrical model which
combines the camera image with gyroscope/accelerometer
output, to estimate a smartphone’s 3D location and head-
ing direction relative to each lamp landmark. Our field tests
demonstrate a mean localization (heading) precision of 3 cm
(2.6°) and 90-percentile 3.5 cm (2.8°), even if a single lamp
falls in the camera’s field of view.

1. INTRODUCTION

Over the past decade, there has been a concerted research
effort in developing an accurate, reliable, and ready-to-use
indoor localization system for smartphones. Such a system
can enable a multitude of location-based services. Some of
the use cases include: precise navigation to rooms/items of
interest in office buildings, museums, airports, and shop-
ping centers; targeted advertisement, product recommen-
dation and coupon delivery in retail stores; consumer an-
alytics through aggregated foot-traffic patterns and dwell
time; multi-players augmented-reality games, etc. To un-
leash these services and trigger wide adoption, the local-
ization technology must provide the business operators or
customers a compelling quality of experience, specifically in
terms of: high precision, high robustness, low cost (in terms
of location sensor hardware and infrastructure maintenance),
and mobile friendliness (low latency and low power consump-
tion).

Despite a wide spectrum of indoor localization technolo-
gies, there has been very limited adoption into real-world
scenarios, mainly because of the challenges in simultaneously
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satisfying the above key metrics. Mainstream approaches,
especially those based on RF signals, focused intensively
on improving the location precision. In particular, recent
multi-antenna based solutions have achieved a median pre-
cision of decimeters [1-3]. But they fall short of robustness
in real building environment—the 90% location error often
reaches 3 to 10 meters [1-3], which may jeopardize user ex-
perience. The root cause lies in the elusive nature of the
wireless channel. High precision RF localization relies on
phase or received signal strength (RSS), metrics that can be
easily affected by ambient multipath reflections. In effect,
human body blockage, reflection and even hand gestures can
significantly disturb such wireless channel profiles [4, 5].

As an alternative modality, visible light positioning (VLP)
holds potential to overcome the instability owing to the al-
most multipath-free propagation. VLP can achieve decime-
ter to centimeter precision, using specialized “beaconing LEDs”
as location landmarks, and photodiodes [6-8] or smartphone
cameras [9-11] as location sensors. However, deploying such

VLP systems at building scale entails changing the fixtures/bulbs,

at substantial retrofitting cost. To date, fluorescent lights
(FLs) occupy 85% of the commercial buildings in the US [12].
Even the basic LEDs only account for 12%, and will take
another 10 to 15 years to dominate the market [12], not
to mention the smart beaconing LEDs. A recent solution,
LiTell [13], enabled low-cost VLP by sensing FLs’ inherent
flickering frequencies. However, these frequency features are
extremely weak. They are detectable only on FLs, under
low ceilings (< 2.5 m) and with high-resolution back cam-
eras. Moreover, such features can discriminate individual
lights with only 60% accuracy, which hampers reliability.

In this paper, we propose a novel VLP system, called iL-
AMP, to fill the missing spot that meets the multi-faceted
challenges. iLAMP uses a smartphone camera to discrim-
inate existing FLs and LEDs, based on visual features ex-
tracted from a computational imaging framework. Further-
more, it can reliably derive the smartphone’s heading direc-
tion and 3D location at centimeter precision, even when a
single light landmark is visible. Leveraging the ubiquitous
lighting infrastructure, iLAMP can bring highly reliable and
accurate indoor localization to today’s buildings, at no extra
hardware cost.

The key challenge for iLAMP lies in discriminating the
incumbent lights, which have no beacon-generation hard-
ware and often come from the same model when deployed
in a building. Nonetheless, iLAMP’s computational imag-
ing solution can extrapolate hidden features from images of
the lights. It stores these features as unique signatures in
a server database during the setup phase, and uses simple
feature matching mechanism to derive a light’s identity dur-
ing the run-time localization phase. The main feature that
iLAMP harnesses is the spatial radiance pattern (SRP), de-
fined as the radiance intensity distribution across a light’s



body. This SRP feature is resilient to the camera’s viewing
angle/distance, and highly diverse among lights due to in-
evitable manufacturing variations. In addition, iLAMP em-
ploys two sets of assistant features, derived from the smart-
phone’s ambient light sensor (ALS) and camera RGB out-
put, respectively, as coarse-grained pre-filters to curtail the
computational cost in matching the main feature. Low com-
putational load in turn translates into low response latency.

Once a light landmark is identified, a camera-based VLP
system can employ the photogrammetry technique in com-
puter vision [14] to derive a smartphone’s physical loca-
tion relative to the landmarks. State-of-the-art VLP solu-
tions [6, 10] often require 3+ lights for triangulation, but
smartphone cameras typically have a narrow FoV of only
around 60° and can hardly capture more than one lights si-
multaneously in practical buildings. In contrast, iLAMP em-
ploys a sensor-assisted photogrammetry mechanism, which
harnesses the inherent spatial heterogeneity of the radiance
pattern, to estimate the phone’s azimuth orientation, and
subsequently its 3D location, even if a single light is visible.

Existing camera-based VLP [9,10,13] focused on full-operation

mode, with camera always on, consuming substantial power
(2 to 3 W [10,13]). Observing that ceiling luminaries tend
to be scattered, iLAMP turns on a camera only when it
gauges that a light falls in its FoV. The key idea is to use
the smartphone’s ALS as a gating device, and derive the
intensity correlation between the ALS and camera through
simple offline calibration. With this smart camera scheduler,
we can duty cycle the operation and substantially reduce the
power consumption.

We have implemented iLAMP as an Android application
connected to a backend database server, and evaluated its
performance against the aforementioned challenging require-
ments. Our experiments in real-world buildings show that
iLAMP achieves around 95% accuracy in identifying differ-
ent ceiling lights even when using radiance pattern alone,
and close to 100% when combining the two assistant fea-
tures. iLAMP achieves a mean location precision of 3.2 cm
and 90-percentile of 3.5 cm under a single light, and even
higher when multiple lights are visible. iLAMP also esti-
mates the phone’s azimuth (heading direction) with a small
error of 2.6° and 90-percentile of 2.8°. More importantly, the
performance remains highly stable under practical disturb-
ing factors, such as random variation of phone orientation
and phone-to-ceiling distance. Even under extremely sparse
light deployment, iLAMP can still be combined with motion-
sensor based dead-reckoning mechanisms, and maintain a
few decimeters of location precision. In addition, iLAMP is
efficient: it has a low end-to-end latency of 400-700 ms, and
total power consumption of 927 mW on a smartphone (less
than 1/2 compared with LiTell [13] or Luxapose [10]).

Despite more than one decade of research [15], VLP has
not been widely adopted. The main contribution of iLAMP
is to fill the sweet spot between accuracy, cost and reliabil-
ity, and enable a VLP system that is immediately usable in
today’s buildings. More specifically,

(i) We design novel computational imaging mechanisms
to extrapolate intrinsic visual features from incumbent FLs
and LEDs, allowing them to be distinguishable at no extra
hardware cost. We further introduce simple feature compres-
sion and matching schemes to make the light identification
computationally efficient and robust to image distortion.
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Figure 1: iLAMP system workflow.

(i) We introduce a sensor assisted photogrammetry tech-
nique which can precisely locate a smartphone’s 3D position
and heading direction, even when a single light landmark is
available.

(i3i) We design a camera scheduling mechanism that duty
cycles the power hungry camera based on its correlation with
the low-power ALS. The mechanism can be generalized to
all camera-based VLP systems.

2. iLAMP OVERVIEW

Main challenges and design goals. iLAMP builds its
components around four major design goals: (i) Reliably
discriminating existing ceiling lights with close to 0 confu-
sion probability under a wide range of usage scenarios (vari-
ous light models, ceiling heights, phone orientation, sunlight
interference, etc.). (#) Accurately estimating heading direc-
tion and 3D location with centimeter precision even under
a single light. (44i) High computational efficiency, and real-
time response to localization requests with sub-second end-
to-end latency. (iw) High energy efficiency for continuous
location tracking. Finally, iLAMP aims for an immediately
usable localization system that is compatible with typical
smartphone hardware.

System workflow. iLAMP comprises three main mod-
ules: light identification, phone location/heading estimation,
and camera scheduling. Fig. 1 illustrates their work flow.

To bootstrap the system, we need to take a benchmark
image for each light, extract its visual features, and register
the (feature vector, location) pair in a server database. This
landmark registration procedure only needs to be done once
for each light. The light fixtures’ locations are usually known
at installation time; even manual survey of the locations
is simple as the lights tend to be deployed regularly over
space. Registering the lights’ locations is also the minimal
bootstrapping effort needed for all other VLP systems.

At run-time, the smartphone takes an image, preprocesses
it to eliminate camera artifacts and remove background pix-
els (Sec. 3.1). It then extracts the main feature (i.e., spa-
tial radiance pattern) from pixels representing the light’s
body, and compresses the feature into a small-sized array
(Sec. 3.1). Meanwhile, iLAMP computes two assistant fea-
tures: the color pattern based on the image’s RGB val-
ues, and the infrared to visible light intensity ratio (I2V ra-
tio) based on the smartphone’s ambient light sensor (ALS)
(Sec. 4.1). These three features form a vector and are sent to
the server. The server runs a hierarchical light identification
algorithm: It uses the assistant features to narrow down the
search space, and then looks up the database to identify the
landmark whose main feature best matches the current light
(Sec. 3.2).
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Figure 2: Physical principle of visible light emis-
sion of LED and fluorescent.

Once the light landmark is identified, iILAMP uses its sen-
sor assisted photogrammetry to compute the phone’s 3D lo-
cation relative to the landmark, based on the camera image
and the phone’s gravity sensor output (Sec. 5.1). This ap-
proach also estimates the azimuth (heading direction) of the
phone to substitute the notoriously inaccurate smartphone
compass [16] (Sec. 5.2).

Both the light identification and location/heading estima-
tion modules need the camera image as input. To curtail the
camera’s power consumption, iLAMP executes its camera
scheduler to adaptively turn on the camera (Sec. 4.2). To en-
sure reliability of light identification, iLAMP only proceeds
with those images containing at least one full light. When
no light is visible, iLAMP uses the conventional motion-
sensor based dead-reckoning method [17] to keep track of
the phone’s movement.

3. DISCRIMINATING LIGHTS USING HID-
DEN VISUAL FEATURES

3.1 The Hidden Fingerprints of Incumbent Lights

3.1.1 Understanding the Optical Properties of LEDs
and Fluorescent Lights

To understand the origin of the visual features in conven-
tional FLs and LEDs, we first explain their working princi-
ples (Fig. 2). Light-Emitting Diodes (LEDs) generate light
through a semiconductor chip (a p-n junction diode). Under
a suitable voltage, the electrons within the chip will fall into
a lower energy level when meeting a hole, emitting energy
in the form of photons. An LED lamp typically comprises
multiple LED chips, and integrates with optical lenses/glass-
walls to reshape its radiation pattern. The wavelength of
the light emitted, and thus its color, depends on the mate-
rials forming the LED chip. Most commercial white LEDs
are formed by coating blue-color (or ultraviolet/RGB) LED
chips with multiple phosphor layers of different colors [18,19].
Due to inevitable manufacturing variations, e.g., phosphor
thickness/composition and non-uniformity of the glass-wall,
different areas of an LED lamp may manifest different opti-
cal properties (radiant flux, color temperature, etc.).

Fluorescent lights (FLs) use an electronic ballast to excite
mercury vapor inside a lamp tube, which produces short-
wave ultraviolet light that then causes a phosphor coating to
radiate visible light. In FLs, characteristics of electrons and
Mercury atoms traveled inside vapor gas can bring different
radiance power and spatial pattern across the light tube’s
body. Non-uniformity of the phosphor coating and the glass
wall further varies the emission characteristics, even among
FLs of the same model.

Although the variations of optical properties are invisible
to human eyes, they can be revealed by the computational
imaging mechanisms in iLAMP, which we detail below.

3.1.2  Extracting a Lamp’s Spatial Radiance Pattern
We now introduce how iLAMP extracts the hidden visual
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features from a light (lamp), based on the principle of camera
image formation (Fig. 3).

Radiance characterizes the radiation property of a surface
patch (either on a light source or a reflecting surface). It
corresponds roughly to the brightness, and is defined as the
amount of light radiated from the surface patch per solid
angle per unit area (expressed in Watts per m? per stera-
dian) [20]. Radiance is an intrinsic property of the light
emitter. By definition, it is independent of viewing angle.
It is also independent of distance, because the sampled sur-
face area increases quadratically with the viewing distance,
canceling the inverse-square path loss of optical signals [20].

On the other hand, a camera quantizes the irradiance F,
defined as the light power per unit area (W/m?) captured
on its image sensor, and bears the following relation with
radiance Rs:

l?

E= fRSF cos o’ (1)
where lp and f denote the camera lens’ diameter and focal
length, respectively. « is the incidental angle from the emit-
ter to the camera. If emitter tilts away from light, the same
amount of light strikes bigger sensor area which decreases E.
But in practice, most cameras have a small FoV of around
60°, corresponding to o = 30° and cosa® = 0.997 ~ 1.

Therefore, the irradiance of a camera image only depends
on the intrinsic radiance property of the scene, and is inde-
pendent of the scene-to-camera distance/angle. This should
not be confused with the light intensity, which is known to
be affected by the distance/angle factors.

Ultimately, the camera electronics post-process the image
and convert the matrix of irradiance values (representing the
whole scene) into a matrix of pizel values. This conversion
follows a camera response function which should ideally be
linear. Different camera models often use different gamma
correction into their image processing pipeline which may
make the response function non-linear. Nonetheless, the lin-
earity can be restored by a standard one-time camera re-
sponse calibration procedure [21], which only requires using
the camera to capture the same scene under multiple expo-
sure settings.

In iLAMP, we use the spatial radiance pattern (SRP) to
characterize a lamp, which is defined as the distribution
of radiance values across the lamp’s body. Owing to the
aforementioned linear relation, we can use the 2D matrix
of pixel values as feature, which is independent of orien-
tation/distance just like radiance itself. Although SRP is
invisible to human eyes, it can be revealed by looking into
values of all pixels of two-dimensional image. Fig. 4 plots
the SRP of a set of ceiling-mounted LEDs (FLs) of the same
model, which clearly shows distinguishable spatial patterns.

Since an image can contain millions of pixels, directly us-
ing the pixel-by-pixel SRP is computationally intensive. We
thus employ a simple feature compression mechanism that
abstracts the 2D SRP matrix into a small array. Consider
the most commonly adopted linear light fixtures in com-
mercial buildings. iLAMP first fits the image of such a light
fixture in the Cartesian coordination. It then computes each
row’s and column’s average radiance and standard deviation
(std.), which compactly represents the spatial distribution
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of radiance. Therefore, we can reduce a radiance pattern of
M x N pixels to a vector of size M + N, where M and N rep-
resents the number of rows and columns, respectively. For
round shaped lamps, we use the polar coordinates, i.e., radi-
ation distribution along radial and angular directions w.r.t.
the center of the lamp. Fig. 5 plots the compressed SRP
of 4 FLs of the same model, which clearly demonstrate dis-
tinguishable patterns. Note that the small-scale fluctuation
and variation are quite different.

3.1.3 Overcoming Camera Artifacts

We now describe the preprocessing needed before feeding
a camera image into the aforementioned SRP extraction.
Fig. 6 illustrates these operations.

Contour extraction. By default, iLAMP sets the cam-
era’s exposure time to its minimum to maximize the con-
trast, which renders the background pixels almost dark. Given
an image, iLAMP runs a contour extraction to obtain the
pixels belonging to the lamp’s body, and remove the back-
ground. Direct contour extraction needs to involve millions
of pixels. To reduce the computational cost, we first sub-
sample the image, and then run the classical edge-detection
based contour extraction algorithm [22] on this sub-sampled
image. To reduce the dark noises within the image, we con-
figure the ISO to the minimum value. Sub-sampling does not
corrupt the contour extraction since most of the lights inside
modern buildings have regular shapes. We eventually scale
up the extracted contour to fit the original image and use
this contour as a mask to filter out background pixels. Given
the contour, we then run a shape similarity check against a
benchmark image in the database to determine if a full lamp
is captured.

Compensating the Color Filter Array (CFA). Cam-
eras commonly use a two-dimensional CFA to collect pho-
tons. Each array element corresponds to a particular R,
G, or B pixel sensor, interleaved across rows and columns.
The heterogeneous distribution of RGB sensors may distort
the SRP, because different color pixels may scale the ra-
diance differently, depending on the color spectrum of the
light emission. We thus normalize the RAW value of each
pixel output, by the average value of all pixels with the same
color, so as to compensate for the CFA distortion caused by
existence of different colors.
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Compenstating the vignetting effect. Vignetting is
a natural artifact of the imperfect camera lens, which causes
lower brightness at peripheral pixels than at the center of
the image. To prevent vignetting from distorting the SRP,
we run a one-time camera calibration following [23], which
fits each row/column of an image with a 6-th order polyno-
mial curve. At run-time, we normalize the pixels along each
row/column by its corresponding fitting curve.
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Compensating the heterogeneity among camera mod-

els. Different smartphones may have different camera mod-
els with different color and intensity responses. We thus
normalize the camera’s average RGB and luminance values
by a fixed proportion (corresponding to this specific camera)
to match the standard ones stored in the database, for all
the images taken by this camera. Note that different camera
models may have different proportions for normalization and
this one-time calibration has low overhead for each camera
model. This ensures the light identification works even if the
features in the server database are captured using a different
camera model.

3.2 Robust SRP Matching Under Distance/
Orientation Distortion

After extracting the SRP from the current light’s image,
iLAMP needs to find the best matching light inside the server
database. Using the Euclidean distance as a matching metric
is feasible but highly vulnerable to image distortions. De-
pending on the phone’s holding position, the run-time phone-
to-ceiling distance may differ from that when the ground-
truth SRPs are created for the database. Longer distances
lead to fewer pixels that portrait the light, hence fewer el-
ements in the SRP array. The phone’s orientation change
may also cause phase shift and deformation effect on the
SRP.

DTW formulation. In iLAMP, we use the dynamic time
warping (DTW) to deal with such distance/orientation dis-
tortions. DTW has been widely adopted in measuring sim-
ilarity between two time series (e.g., sequences of speech),
owing to its robustness against signal compressing, stretch-
ing, and phase shift. Given an SRP array of length C ob-
tained by camera and a candidate array of length D in our
database, DTW first constructs an C' x D matrix, with each
element (c, d) being the distance between corresponding ele-
ments ¢ and d in the two arrays. To find the best way to align
these two arrays, DTW needs to retrieve a path through the
matrix with the minimum cumulative distance, referred to
as the warping cost or DT'W distance. When the two arrays
are exactly the same, the path simply traverses the diagonal
of the matrix. In more general cases, DTW can be solved
using a known dynamic programming formulation [24].

iLAMP uses the DTW distance to measure the similarity
between each pair of SRP arrays. Recall that an SRP array
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concatenates two sequences: the mean values (S1) and std.
values (S1), respectively, which may have different ranges.
We thus compute the total DTW distance as: DTW(S1) +
DTW(S2) - mean(S1)/mean(S2), where the scaling is used
to make the two distances addable. Finally, the candidate
with the minimum total DTW distance will be used as the
best match.

Microbenchmark verification of light identification.
We now use the DTW metric to benchmark the uniqueness
and temporal stability of the SRP feature. Fig. 7 plots an
example of DTW distances among 100 lights in our office
building using one light. All DTW distances have been nor-
malized by the minimum one (i.e., DTWy,in). We observe
that the DTW distance between images of the same light is
obviously the smallest, implying the SRP feature is highly
unique. The DTW distance with others is much larger, due
to manufacturing variations among the same light model,
and physical appearances (cover, shape, etc.) among differ-
ent models.

To simplify the evaluation of uniqueness, we introduce a
metric called normalized tolerance gap, defined as
Drwr . — DTW!"

smin min

G =

(2)

where DTW,;,, denotes DTW distance between an image
and the benchmark image of the same light (in the database).
DTW¢, ., denotes the minimum DTW distance with all
other lights in the database. Here the superscript ¢ repre-
sents variable conditions such as time, distance, orientation
etc. DTW ., and DTW] ., represent counterpart defini-
tions for an image taken under similar condition as when the
database benchmark (normal condition) was created.

This G factor essentially represents a microscopic metric
to study the DT'W matching alone. Note that a series always
matches best with itself, i.e., DTW,,, < DTW., ;. There-
fore, G > 0 iff DTW¢,,in, — DTW,;,, > 0. In other words, a
light’s image can be correctly matched to its database image
iff the G metric is a positive number. Normally, G should
be close to 1. A close-to-zero G implies that the light identifi-
cation may fail under minor disturbances. Occasional wrong
light identification may confuse the location with a light that
is far away. Such errors can be easily corrected using spatial
smoothing as in [13].

Figure 8 plots the G metric of a randomly selected light
across 9 weeks. Since we cannot exactly reproduce the con-
dition when the database image was create, G varies across
measurements, but it always stays around 1 and well above
0, implying that the light identification is stable over time.

4. EFFICIENT FEATURE MATCHING

4.1 Improving Computational Efficiency

In this section, we introduce how the two assistant features
help reducing the computational cost in light identification.
Color pattern. An FL or LED lamp’s color temperature
rating reflects the power spectrum distribution of the optical

100

frequencies that it emits, which manifests through the “soft-
ness” of its white color. The exact color temperature pattern
is determined by the dominant wavelength of the LED chip
(or FL vapor), as well as the composition/thickness of the
phosphor layers with different colors.

Color temperature can be characterized by chromaticity
and luminance [18], representing color quality and bright-

ness. Both metrics are almost unaffected by distance/orientation,

but manufacturing variations inevitably deviate them from
their nominal ratings. To capture such variations, we first
compute Pr,Pg,Pp, i.e., the average value of the R, G,
and B channel, respectively, across all pixels inside the im-
age of the lamp. We then use the value ratio Pr/Pg and
Pc/Pg to represent the lamp’s chromaticity. On the other
hand, the luminance Y follows a linear relation with the
RGB values [25] and it is directly related to radiance:

Y = A[Pgr, Pc, Ps]" (3)
where A is a vector of Color Space Transform (CST) Ma-
trix [26]. CST is camera-specific (which maps from camera
color space to CIE XYZ) and this is why we need to com-
pensate the heterogeneity among camera models after RGB
and luminance extraction as mentioned in Sec. 3.1.3.

We note that the RGB values are interleaved in a RAW
image due to the use of CFA (Sec. 3.1.3). Thus, assume CFA
outputs a matrix of m x n pixel values, JPEG’s interpolation
effect will fill each pixel with all 3 RGB values, expanding
the matrix to m x n x 3. Different models of smartphone
cameras may have different color configurations, and hence
different RGB readings even when capturing the same scene.
We thus need a one-time calibration of a camera, so that its
RGB readings become consistent with the camera that was
used to create the feature database. Since the main fea-
ture (SRP) alone has high confidence in identifying a light
(albeit at high computational cost), iLAMP runs the SRP
matching once, to identify one light that the user’s camera
captured. Suppose the mean power of the captured R chan-
nel is Pr, and that of the database is Pro. Then, iLAMP
scales the user camera’s subsequent R channel measurements
by Pr/Pro, when computing the chromaticity and bright-
ness. The same scaling process is used on the other two
channels. To prevent unnecessary twisting of the colors, we
set the camera’s white balancing to a fixed mode (e.g., day-
light).

Infrared to visible intensity ratio (I2V ratio). The
visible light wavelength ranges from 400 nm to 700 nm, but
an FL and LED’s emission spectrum can go up to 1000
nm [27] and 800 nm [19]. Optical signal leakage beyond 700
nm falls in the infrared spectrum, and the signal intensity
depends on the heat generated inside the light, subject to
manufacturing variation. Smartphone cameras have built-in
infrared filters and cannot directly estimate the infrared in-
tensity. Fortunately, we can repurpose the smartphone ALS
as an infrared intensity sensor. Mainstream smartphones’
ALS comprises two photodiodes: CHO, used primarily for
sensing ambient light intensity (for adjusting screen bright-
ness); and CHI1, an infrared sensor originally used to de-
tect proximity between the phone screen and user’s cheek.
One can directly measure infrared intensity using CH1, yet
the measurement will vary wildly as the phone-to-light dis-
tance/orientation changes. To make the infrared intensity
a stable feature, iLAMP normalize the CH1 reading by the
CHO. Since the two photodiodes’ frequencies are close and
their FoVs are designed to cover similar range, the impact of
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distance/orientation on them is similar and can be canceled
out after normalization.

It is also worth noting that sunlight has a wide optical
spectrum and may interfere the I2V ratio. But such inter-
ference can be easily detected because sunlight has a much
stronger Infrared emission. Fig. 9(a) shows the infrared in-
tensity (“LB/UB” means lower/upper bound) and 12V on
incandescent, LED, fluorescent and sunlight that we mea-
sured under a variety of conditions. For artificial lights, LB
and UB are determined by distance (from 2 meters to close
to 0 meter) and for natural sunlight, they are determined
throughout an entire sunny day from early morning to late
night. We see that the absolute values of infrared inten-
sity is at least an order of magnitude higher than that of
FLs and LEDs, even in a partially shaded region with indi-
rect sunlight (the “LB” case), and sunlight’s 12V is an order
of magnitude lower than that of incandescent. Therefore,
whenever iLAMP detects an ultra-strong infrared value and
small 12V, it degrades to a fail-safe mode, disabling 12V ra-
tio computation and instead uses the color pattern alone as
assistant feature.

Hierarchical feature matching using assistant fea-
tures. Computing the DTW distance between two main
feature arrays involves quadratic complexity w.r.t. the ar-
ray size which equals (M + N). This translates into tens of
ms computation time for a million-pixel image, but the com-
putation cost increases linearly with the number of lights. To
curtail the cost, iLAMP uses the assistant features to pre-
filter the candidate lights before running the DTW over the
main feature. Note that the assistant features may be af-
fected slightly by random factors, e.g., distance/orientation
and ambient interference. We thus empirically set an upper-
bound drift for each of the assistant features to guarantee
we do not filter out the correct light. For the pre-filtering,
we rule out the lights whose feature values deviate beyond
the bound, which only requires a linear comparison across
all lights in the database.

To get an intuitive understanding of the feature stabil-
ity, Fig. 9(b) plots the color pattern and I2V ratio across
9 weeks, measured on a randomly selected FL in our office
building, and normalized w.r.t. the first-day measurement.
We can see that the assistant features are highly stable over
time, with a maximum deviation of +0.26% for the chro-
maticity (RGB ratio), +3.2% for the luminance, +1.3% for

101

the 12V ratio, and the error is unbiased. We further evaluate
the stability over usage behaviors/scenarios, by varying the
distance (£1m from holding position), angle (£45°), sun-
light intensity (direct sunlight from glass window on a side
wall) and walking speed (0 to 2 m/s). From the results
(Fig. 9)(c), we observe that the features are almost unaf-
fected, with maximum deviation of £7%, +0.5% and +4%
(shown in error bars), for luminance, RGB ratio and 12V,
respectively.

We thus set a conservative threshold of +14%, +1% and
+8% as the upper-bound drift for these three sets of fea-
tures, respectively. For different light models, these thresh-
olds can be calibrated a priori; but even without calibration,
a conservative threshold can be used at the expense of lower
discrimination (and less saving in computation).

Note that the RGB ratio is much more stable compared
with luminance, as it only depends on the physical properties
of the lights, such as phosphor thickness/composition.

Microbenchmark verification of computational cost.
To verify the effectiveness of hierarchical feature matching,
we first examine how distinguishable the assistant features
are among different lights, under the same experimental setup
as in Sec. 3.2. We use confusion rate as a metric, defined for
each light £, as the fraction of candidate lights whose fea-
ture are indistinguishable from L, i.e., the feature difference
is smaller than the aforementioned upperbound threshold.

The results in Fig. 9(d) show that, although these assis-
tant features are not as unique as the SRP, they can filter out
majority of the lights. In particular, the Pr/Pg, Pc/Ps,
luminance Y and 12V features have a mean confusion rate
of 65%, 78% , 48%, 23%, respectively. This means on av-
erage, these assistant features can narrow down the search
space to a small fraction (0.65 x 0.78 x 0.48 x 0.23 = 6%) of
the light candidates, assuming the features are independent
across lights.

The effectiveness of discrimination in turn translates into
a smaller search space for the SRP, and lower computational
cost. To verify this, we use a server machine (i7-4770, 3.9
GHz) to run the light matching over 550 lights in our office
building. We found that, to identify one light, a brute-force
DTW matching over the million-pixel images of all light can-
didates takes almost 2.5 hours. Our SRP compression re-
duces the computation time to about 5 seconds. Fig. 9(e)
shows how the hierarchical feature matching further reduces



this value. We see that the color pattern or 12V ratio alone
reduces the latency to below 30%, and together cut it down
to around 10.6% (0.53 second), which enables real-time lo-
calization response.

4.2 Camera Scheduling

To save power, iLAMP duty-cycles the camera and turns
it on only if it is likely to capture a full lamp. Note that the
smartphone’s camera and light sensor have comparable FoVs
and the same orientation, ¢.e., the same norm vector with
respect to phone’s screen surface. Therefore, the ALS ambi-
ent light intensity should be proportional to the fraction of
lamp body captured by the camera. To test this hypothesis,
we walk below a light many times and intentionally vary the
phone’s holding position/orientation to its extremes. The
scatter plot in Fig. 9(f) shows the normalized ALS ambient
light intensity (w.r.t. the case with no light) vs. lamp frac-
tion across 300 samples, which clearly shows a quasi-linear
relation. We thus use a least square method to approximate
the statistical relation, so that we can predict the availability
of a full lamp by just reading the low power ALS.

More specifically, let C}, € [0, 1] be the fraction of the lamp
captured by camera at a random position/orientation p. Let
I, be the corresponding ALS reading. Then,

Co=1I,-¢p+6 (4)

where the unknown parameter ¢, is a linear coefficient and €,
represents errors which are assumed to be zero-mean Gaus-
sian. To materialize this linear relation, we need to train the
camera scheduler by randomly changing the phone orienta-
tion/distance, just as in real use cases. This will generate
a random set of samples, corresponding to measured values
I = [Ip7 [P*h ce ,]0]/ and C = [CP7 Cpfl, e 7C’()}’. This
dataset is created within the regarded light area. We then
use the least square method [28] to solve for the parameter

i ¢ = (I'1)' I'C (5)

At run-time, given an ALS measurement [,, we estimate
Cp = ¢plp and turn on the camera if C, > 0.5. Here we
set a conservative threshold of below 1, because the camera
has a setup latency of around 0.2 s, and needs to be trig-
gered slightly ahead of time. Note that strong sunlight may
mislead the camera scheduling. Thus, we switch to a fail-
safe mode and keep the camera on when sunlight is detected
based on ALS’s infrared reading (Sec. 4.1).

The parameter training procedure can be done by each
user at run-time, as iILAMP collects more and more ground-
truth samples. Inside one building, different types of lamps
may be deployed, corresponding to different ¢,. Yet iLAMP
can choose the parameter that is likely to fit the nearby
lights. In the worst case, iLAMP can choose the parameter
so as to turn on the camera aggressively — this may re-
duce the power saving from camera scheduler but does not
compromise the localization accuracy of iLAMP.

S. SENSOR ASSISTED PHOTOGRAMME-
TRY

Once a light landmark is identified and its location ob-
tained from the database, iLAMP pinpoints the phone’s lo-
cation relative to that light landmark, which also provides
the phone’s global location within the building map. ilL-
AMP further computes the phone’s horizontal orientation,
i.e., heading direction, based on a geometrical model.
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Figure 10: Geometrical model to locate a phone un-
der a single light.
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5.1 Estimating 3D Location

Our geometrical model analyzes the phone-to-light dis-
tance/orientation based on how the light’s body is projected
into the phone camera. The model also takes as input the
standard gravity sensor output [29] from the phone’s ac-
celerometer/gyroscope. The gravity reading, unlike com-
pass, is known to be accurate and unaffected by ferromag-
netic interferences [16]. Our model abstracts a tube light as
a line segment with known physical length L..;. Later we
will generalize it to arbitrary light shapes (Sec. 5.2).

Fig. 5.1 illustrates the geometrical model. Here L3 is the
intersection line between the ceiling plane, and the phone’s
virtual surface plane (a plane parallel to the phone surface
but intersects with the lowest points on the lamp). Without
loss of generality, we assume the ceiling to be perpendicular
to the gravity. L is perpendicular to the virtual surface
plane. Ls is a line segment within the ceiling plane and
Ls 1 Ls. Lproj is the projection of the light tube onto
the virtual surface plane. «, 8, 8 and v are various angles
between the line segments.

Following these definitions, the following geometrical rela-

tions are straightforward: Lor; = /L2 + L2, Lpro; = /L3 + L2,

L3 = Lyrojcosa, Ly = LscosS = Lyprojsina. Here 3 rep-
resents the angle between the ceiling surface and virtual
plane, which can be obtained from gravity sensor (cosf =
G, . .
7\/(;3#(;75*(;3 where G represents the earth gravity projected

to the *-axis of phone). « is the phone’s azimuth angle rel-
ative to the light which will be computed following Sec. 5.2.
We can then obtain a shrink factor F between the original
length of light tube L..; and the length of its projection

Lp'roj:
Lori i 2

F=" — CosQaJr(Sma) (6)

Lyroj cos 3

Further, we can compute the angle v as:

Ls cosa

_ 1 _ -1

v = cos = cos ( 7 ) (7)

ori

Suppose the camera has a focal length f and size of a
single pixel Lp;., and the light’s long side has Np;, pixels on
the image. Following the camera imaging principle (i.e., the
pinhole model) [20], we have:

ggoj _ pix ° Lpi:c (8)
!
From which we obtain the phone-to-light distance D, i.e.,
distance between the camera and the light tube’s projection
on the virtual surface plane. We further obtain the distance
projection on each of the 3D axes as:
Dy =D -sinf' -cosy,Dy =D -sinf -siny,D, =D - cos 8
9)




Here the angle 8’ = 3 if the center of the light aligns with
the center of the image (because the gravity and D are per-
pendicular to Ls and Lo, respectively). But this no longer
holds when the user does not perfectly point the camera to
the light. In such general cases, the deviation angle can be
approximated as § = (dl-S)/D (Fig. 5.1), where S is the scal-
ing factor between the physical length of the lamp with that
measured on the image. dl is the horizontal or vertical (on
image’s coordination) pixel distance from the light’s center
to image center, which is scaled to a physical distance by S.
The angular approximation holds since typically D > dl - S
given the narrow FoV of camera. We then compensate the
deviation angle as: 3’ = 8—4 if § is clockwise and 3’ = B+6
if § is counterclockwise (Fig. 5.1). This approximation and
compensation of § is done twice, for pitch and roll angle,
separately.

5.2 [Estimating Heading Direction

In iLAMP, the server database stores not only the loca-
tion, but also azimuth direction of each light landmark rel-
ative to the north. We then compute the phone’s azimuth
angle relative to the landmark’s direction.

We observe that the SRP is typically distributed non-
uniformly across a lamp’s body (see, e.g., Fig. 4). Therefore,
we can define the azimuth direction even for symmetrically
shaped lamps. When a smartphone changes its azimuth ori-
entation, the SRP it measures should be rotated accordingly.
So the run-time SRP of a light is a rotated version of the
database version (w.r.t. the x-axis in the Cartesian coordi-
nates or the 0-degree vector in the polar coordinates). The
rotation angle is a direct output of the DTW matching pro-
cedure.

The above heuristic works straightforwardly when the phone

is held flat, i.e., the phone’s azimuth plane is parallel to the
ceiling and hence the pitch/roll angle equals 0 (this is also the
way when the database image was taken). Under arbitrary
roll/pitch/yaw angles, the light’s contour may be distorted
slightly, and the ratio between its width/length may deviate
from the database version. But we can still fit the contour to
the most similar shape in the database. Without loss of gen-
erality, consider the most commonly used rectangular lamp.
Suppose P and @ are midpoints on the edges of the best-fit
rectangle (Fig. 11). Then the relative azimuth between the

hone and the light is:

P ¢ 9 = arctan 22— Y9
Tp —xQ
where the coordinates of P and ) on the image are available
after contour extraction (Sec. 3.1.3). Note that fitting the
original contour to a rectangle may inject some errors but we
will show the resulting heading estimation error is still quite
small. For non-rectangular shaped lights, we can define a
virtual rectangle (Fig. 11) corresponding to the north, and
execute the same model. After obtaining heading estimation
6, we first subtract the yaw angle (i.e., rotation angle with z-
axis) and then obtain « in Sec. 5.1 to realize 3D localization
as we mentioned previously.

5.3 Blind Area Tracking

In the “blind” area with no light coverage, alternative lo-
cation tracking strategies can be employed to complement
iLAMP and fill in the gap. We choose the classical motion-
sensor based dead-reckoning as it is ready to use on most
mobile devices. Specifically, we implement dead-reckoning
following FootPath [17], which counts steps based on sharp

(10)
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Figure 11: Heading estimation of rectangle light
tube and circular bulb.

drops of phone acceleration, and uses the compass azimuth
reading as heading direction. FootPath assumes a fixed
stride length. In iLAMP, we estimate a user’s average stride
length based on the ground-truth distance between two lamps.
This estimation is run between consecutive lamps, and used
subsequently to translate step counts into walking distance.
Dead-reckoning is known to suffer from drift, due to the
inaccurate compass and noise accumulation of the accelerom-
eter over time [30]. Fortunately, whenever the user moves to
a new light from blind area, iLAMP automatically runs the
light matching and localization to correct the drift. Most
indoor environment has densely deployed luminaries with a
few meters of separation. Hence the blind area tends to be
small and the dead-reckoning error can be well confined.

6. IMPLEMENTATION

We implement iLAMP based on a simple client-server ar-
chitecture. The client side is an Android application that
captures and preprocesses the images. More computation-
ally intensive tasks are offloaded to the server which also
hosts the light landmark’s location database. Given an im-

age input, the client executes the contour extraction (Sec. 3.1.3),

extracts and compresses the SRP (Sec. 3.1.2). Meanwhile,
it also computes the assistant features, i.e. RGB color pat-
tern and 12V ratio, from the image and light sensors, respec-
tively. The light intensity is measured by the smartphone’s
ALS based on an open-source driver [31], which streams the
sensor readings to the user-space through SYSFS interfaces.
Both the SRP and assistant features are subsequently sent
to the server for matching.

The server executes the light matching mechanisms (Sec. 3.2
and Sec. 4.1) and returns the matching light landmark’s
global location on the floor map. Meanwhile, the client com-
putes its 3D location and azimuth relative to the light land-
mark (Sec. 5), and converts the result into its own global
location once it gets the server feedback. To prompt the
landmark database, we have implemented a graphical user
interface, which takes the building floor plan as input, and
allows a user to mark a landmark’s position within and as-
sociate it with a sample image of the light. We use a mobile
laser ranger to measure the landmark location w.r.t. the
floor map. We emphasize that such landmark registration
procedure is needed for all infrastructure based localization
schemes. For VLP systems, registering each light only takes
tens of seconds, given that most of the lights in a build-
ing have similar shapes and have regular geometrical sepa-
rations.

7. EXPERIMENTAL EVALUATION

7.1 Effectiveness of Light Identification

We first evaluate the accuracy and robustness of iLAMP
in identifying light landmarks.



Figure 12: Field test in large buildings.

Accuracy. To represent typical use cases of indoor lo-
calization/navigation, we choose 4 different environments
(Fig. 12): office 1 (588 FLs, 2.5 m ceiling), office 2 (a mix
of 190 LEDs and 129 FLs, 3 m ceiling), semi-open parking
ramp (232 FLs, 2.5 m ceiling) and retail store (330 FLs, 6
m ceiling). Except in the parking ramp, all the ceiling lights
have plastic covers/decorators and multiple lights may be co-
located inside the same house. By default, we use a Nexus
5X phone, held comfortably at around 1.2 m above the floor,
capturing RAW image from its front camera. Robustness of
iLAMP across different configurations will be tested subse-
quently.

Fig. 13(a) plots the fraction of lights that are correctly
identified without any confusion with any other one inside
the same building. We observe that the main feature alone
can achieve more than 96% identification accuracy for typ-
ical buildings with up to 3 m ceilings, and more than 82%
accuracy even for a 6 m ceiling. When combining the main
and assistant features together through hierarchical feature
matching (Sec. 4.1), the accuracy is boosted to above 95% for
all the buildings. Therefore, the assistant features not only
reduce computational cost, but also bring the light matching
accuracy close to 100%.

The results also show that JPEG images have relatively
lower discrimination accuracy when JPEG images are cap-
tured by user as well as stored in database. This is because
JPEG compression processes the RAW pixels through non-
linear operations, which may distort the SRP. However, the
assistant features are unaffected and can still bring the ac-
curacy above 90%. The minor residual error can be easily
eliminated by combining two consecutive lights’ features as
the user moves as in [13]. Therefore, even for those phone
models that do not support RAW output, iLAMP can still
achieve much higher accuracy in light identification than the
most advanced VLP system LiTell [13].

Robustness. Multiple factors in practical usage scenarios
may disturb the light identification. In the following micro-
benchmarks, we test the sensitivity of the SRP features to
such factors, using the G metric defined in Sec. 3.2. We
randomly pick one light and find its best DTW match in the
database, under various disturbing factors'. Here we vary
each following variable while keeping others fixed to their
typical values.

(i) Phone orientation and height variation. The images in
iLAMP’s database are captured when holding the phone flat
at a certain height. But the run-time images may differ as
users’ height and holding position varies. We first test the
impact of height deviation inside Office 1, by deviating the
phone from 0 m to 1.2 m relative to the height when creating
the database image. We adjust the height using a tripod.

!We use office building 1 and Nexus 5X as the representative
testbed and device for the rest of the experiments, unless
otherwise stated.
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As shown in Fig. 13(b), the DTW tolerance gap G de-
creases with height deviation, since distance affects the num-
ber of pixels of a light’s image. Fortunately, the main fea-
tures are diverse enough, and DTW can tolerate the miss-
ing/addition pixels (i.e., contraction and stretching) due to
image distortion. Consequently, G is still well above 0 even
if the height deviates from the database benchmark by 1.2
m (typically from the holding position to the ground). We
further rotate the phone around the axial direction of the
tube, so that the relative orientation (radiation angle from
the lamp and incidental angle into the phone) changes by
up to 45° (maximum deviation to ensure the entire light
can still be captured). Fig. 13(c) shows that the G metric
deviates slightly, but remains well above 0 even with 45°
angular deviation. These two experiments verify that iL-
AMP can maintain high light identification accuracy even if
the run-time capturing height/orientation deviates from the
database benchmark by a practical offset. Note that severe
distortion may happen under certain cases, e.g., when the
phone rotates its pitch angle which results in perspective
changes. Such effects can be compensated through classical
computer vision techniques, but are beyond the scope of the
present work.

(ii) Image resolution and ceiling height. To further test
iLAMP’s robustness against JPEG compression, we adjust
the JPEG’s resolution of Nexus 5X from its default 5MP
to lower than 1.3MP, while using the same 5 MP images
in the database for light matching. From Fig. 13(d), we
can see that a more aggressive JPEG compression reduces
the diversity of visual features among lights. But even at
a low resolution of 1.56 MP, the G metric remains above
0. When the image resolution degrades to below 1.3MP, G
becomes close to 0, implying that confusion among lights oc-
curs. Nonetheless, today’s mainstream front-cameras mostly
have higher than 2 MP resolution, which ensures iLAMP’s
robustness. Note that the RAW image quality is unaffected
by the JPEG resolution. It only depends on the size of the
image sensor within the camera. On the other hand, increas-
ing the ceiling height has the same effect as reducing the
image resolution. Fig. 13(e) quantifies the effects by pro-
portionally sub-sampling the image, which shows that the
accuracy remains above 70% even under the extreme case
with 10 m height ceiling. In contrast, alternative solutions
that leverage frequency features [13] can only correctly dis-
criminate individual lights with 40% accuracy even at a low
ceiling height of 2.5 m.

(#4i) Partial light distortion. Although iLAMP invokes
light matching only if a full light is captured, it can also
run in an aggressive mode and responds even if a partial
light is visible. Fig. 13(f) plots the light matching accuracy,
where we intentionally vary the fraction of a light inside the
camera FoV (an entire light fixture includes 2 to 3 tubes, oc-
cupying 1.2 m x 0.6 m in Office Building 1). The resulting G
degrades only slightly even when only 1/2 of the light is vis-
ible in common office buildings. Besides the SRP itself, the
resilience is also attributed to the assistant features, which
capture the average color pattern or 12V ratio and remain
stable even with a partial light image.

(iv) Ambient sunlight interference. Certain buildings may
install sidewall windows through which sunlight can peek in
and interfere the camera imaging. We verify the impact by
placing the smartphone 1.5 m under an FL immediate to a
window in Office 1. Fig. 13(g) plots the measured G metric
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the sunlight has the smallest

incidental angle of approximately 30°, which results in the
lowest G, but still well above 0. Therefore, t1LAMP’s light
discrimination mechanism s robust against normal indoor
sunlight interference. Although the sunlight may slightly
reduce the image contrast, the scaling effect can be easily
counteracted by the DTW matching. In case when there is
strong direct sunlight with incidental angle close to 0 (i.e.,
coming from the same angle as the lamp), the camera tends
to be saturated and the lamp’s image is no longer viable for
feature extraction. But such cases rarely occur in practice.

(v) Device heterogeneity. To test how iLAMP works across
different camera hardware, we create the database using
Nexus 5X (5 MP, 1.4um sensor), and then test the light
discrimination accuracy using calibrated LG G4 (8 MP, 1.2
um), Nexus 5 (8 MP, 1.4um). The Nexus 5 front-camera
cannot output RAW image, so we use its rear camera in-
stead. We use these phones to capture the same light, and
then compute the corresponding G metric. Fig. 13(h) shows
that the G metric varies negligibly and well above 0 across
phone models, implying that iLAMP’s light identification ac-
curacy is almost unaffected even if the run-time images are
captured using different phones than the database images.

(vi) Walking speed. The user’s walking speed may affect
the image quality because most front-cameras do not have an
optical image stabilizer. To measure the impact, we walk and
hold the phone in stable at slow (=0.5 m/s), medium (=1
m/s) and fast (= 2 m/s) speed across one light. Fig. 13(i)
shows that the G metric remains around 1, implying iL-
AMP’s light discrimination mechanism is robust against the
walking patterns.

7.2 Precision of Location and Heading Esti-
mation

To verify the sensor-assisted photogrammetry, we place

the phone under a tube FL at 25 random spots, with hor-

izontal displacement up to 1.6 m, and vertical up to 2 m.
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At each spot, we randomly rotate the phone at 3 differ-
ent roll/yaw/pitch angles. Fig. 14 plots the mean and 90-
percentile (error bars) accuracy. We observe that iLAMP
achieves a mean localization precision of around 3.2 cm and
90-percentile of 3.5 cm across all axis, and mean heading es-
timation error of 2.6° and 90-percentile of 2.8°. Further, we
repeat the experiment by mounting multiple lamps closely
on the ceiling, and take a simple average of the location esti-
mation w.r.t. each lamp. Fig. 15 further shows that, as the
number of lights increases to 4, the 3D localization error (90-
percentile) drops to 1.7 cm, implying that i{LAMP’s accuracy
further improves under densely deployed light fixtures.

We further conduct field tests and use iLAMP to navigate
across two environments (Fig. 16): (i) a 9 x 9m? research lab
with densely deployed ceiling FLs which ensures 1 or 2 lights
are always visible to the phone and thus no blind area track-
ing is needed); (i) a 90 x 70m? office building corridor with
sparse light deployment (3 m separation). Thus both room
and corridor are included. In both scenarios, ground-truth is
created by placing markers with different colors along a pre-
defined track. We use Google Tango [32], which is known to
have centimeter precision. We stick it with the smartphone
so that it runs spatially in sync with iLAMP. Here we fol-
low the best-practice guideline of Google Tango to ensure a
highly accurate ground truth trace assisted by these unique
markers on the floor [32]. A user walks across the track while
naturally holding the phone with Tango and sends a local-
ization request through iLAMP when passing each marker
position.

Fig. 16(a) shows that the location trace measured by il-
AMP is highly consistent with the ground truth. For clarity,
Fig. 17 further plots the error vector on the horizontal plane
across all the sampled spots. iLAMP demonstrates a 90-
percentile precision of around 2.7 cm, which is consistent
with the previous controlled test.

Fig. 16(b) and Fig. 18 plot the localization traces and error
vectors inside the large office environment. Since lights are
visible intermittently, iLAMP invokes the blind area tracking
(Sec. 5.3) occasionally. When the dead-reckoning (DR) is
used alone, the mean error is around 3 m, consistent with
state-of-the-art evaluation [17]. iLAMP can intermittently
correct the DR drift, reducing the mean error to 0.18 m and
90-percentile to 0.44 m. Therefore, iL AMP not only provides
absolute position fixes to DR, but also enhances its precision
by an order of magnitude in environment with sparse light
installation.
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tors under sparse light
deployment (with blind
area tracking).

7.3 System Efficiency

Latency. iLAMP’s end-to-end operations can break down
into 3 steps: local processing (feature extraction) on the
phone, phone-to-server data transmission, and light match-
ing on the server. We time-stamp these operations and plot
the latency in Fig. 19. The measurement is done on a Nexus
5X client and an Intel i7-4770 3.9 GHz server. We observe
the end-to-end latency takes 0.37 to 0.7 s per localization op-
eration, and is roughly proportional to the number of lights
inside a building. The local processing and transmission
takes only around 160 ms on the smartphone, and is in-
variant across environment. Remarkably, the light matching
procedure on the server dominates the computational cost,
taking almost 0.6 s inside the large Office 1 with 588 light
fixtures. This latency can be reduced substantially through
several measures: (i) An optimized C-based DTW imple-
mentation which replaces our current Matlab implementa-
tion on the server. (ii) A multi-thread implementation that
harnesses the server’s multiple CPU cores. In addition, iL-
AMP can easily scale to a large number of clients, because
the clients’ DTW computation and database lookups are in-
dependent and can be easily distributed across many servers.

Energy efficiency. We use the Monsoon power monitor
[33] to measure the smartphone’s power consumption when
running iLAMP on Nexus 5X inside the Office 1 (Fig. 12).
Fig. 20 plots the real-time power consumption as the user
walks across 7 lights, which demonstrates that the camera
scheduler can judiciously turn off the camera in the blind
region. We further run the test across 100 lights and exam-
ine the average power consumption. Fig. 21 further plots
the fraction of camera-on time, verifying that setting the
Cp threshold to an intermediate value makes a balanced
tradeoff: it is more responsive compared with an aggressive
strategy (i.e., camera on if Cp, ~ 1), yet saves more power
compared with a conservative strategy (i.e., camera on if
Cp > 0).

tor in environment with
densely deployed lights.
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Fig. 22 provides a breakdown analysis of the power con-
sumption. Even without running iLAMP, the camera alone
escalates the system power consumption to 2.5 W (“CAM
on”). Turning on iLAMP’s processing only adds less than
100 mW (“Sched off”). With the camera scheduler activated
(“Sched on”), iLAMP can effectively reduce the power con-
sumption to 0.93 W — a 62% reduction. For buildings with
dense light deployment, the power saving will be smaller,
but iLAMP can still duty cycle the camera based on how
frequently the localization is needed.

8. DISCUSSION

Bootstrapping overhead. The landmark survey is a
critical bootstrapping step in all infrastructure based local-
ization systems. Specific to iLAMP, it requires capturing the
features of each lamp and marks the lamp on a floor plan.
This procedure only needs to be done once. It involves much
less overhead compared with traditional WiFi fingerprinting,
which requires surveying each location spot instead of land-
mark. iLAMP’s sensor-assisted photogrammetry technique
needs to know the physical size (edge width and length) of
each light fixture, but the measurement needs to be done
mostly only for a few representative lights because most of
the lights in a building come from the same hardware model.
As a contrast, the WiFi APs’ locations can be much harder
to identify because many of the APs are hidden from users
and are accessible only to building managers.

Robustness under various lamp shapes and image
distortions. Most of the large commercial buildings we
observed and experimented with embed their light fixtures
inside the ceiling. Or they house the light bulbs/tubes with
a cover that reshapes majority of the light beam towards
the floor. Therefore, a 2D camera image mainly captures
the azimuth cross-section of the light fixtures. Changing the
imaging perspective, or cutting/distorting part of the im-
age (or equivalently adding certain non-cross-section parts)
does not affect the light identification in a noticeable way
(Sec. 7.1). However, certain pendant lamps or chandeliers
may largely expose the side fractions of their bodies. To
deal with such cases, iLAMP can fall back to a conservative
mode, and trigger light identification only if the image shape
matches cross-section of the light taken in the database.

Our current implementation of iLAMP captures the ceil-
ing light fixtures’ tubes as well as covers to extrapolate unique



features. Whereas ambient physical accessories may enrich
a light’s feature, they may also make the light identifica-
tion sensitive to phone orientation or perspective changes.
For example, the partition structures in certain FL fixtures
may occupy different fraction of the image depending on the
phone’s horizontal position relative to the light. As men-
tioned in Sec. 7.1, such artifacts can be reduced by using
proper structural analysis and computer vision techniques,
but the solution is beyond the scope of this work.

Integration with alternative localization modali-
ties. RF localization can be an alternative to dead-reckoning
in iLAMP’s blind area tracking. But to achieve high accu-
racy, RF localization schemes often require dense AP deploy-
ment, known AP locations, and CSI readings [1-3], which are
not readily available for most of today’s buildings and smart-
phones. Yet simple AP identities can inform iLAMP of the
building or section it is in, which can become assistant fea-
tures to help iLAMP narrow down its search space. iLAMP
works best when the phone is held with camera facing up.
RF localization may complement the cases when the phone
is not exposed to LoS lights (e.g., in user’s pocket). Existing
system’s light features such as flickering frequency [13] can
also be introduced as one assistant feature of iLAMP.

Privacy issues. iLAMP sets the camera exposure time to
a very small value to make the ceiling light stand out of the
background. In fact, the background is rendered black in all
the indoor environment we have tested. Moreover, iLAMP
compresses the image features into a single row and column,
so no visible information will be leaked to the server. Over-
all, iLAMP easily preserves user privacy, unlike other visual
localization approaches such as SLAM [34] which needs to
capture physical scenes.

9. RELATED WORKS

Over the past two decades of research in indoor local-
ization, RF based approaches garnered the most attention
due to the wide adoption of WiFi. RF localization falls
in two general categories: fingerprinting and model-driven.
The fingerprinting method associates each location with the
RSS [35] or channel state information (CSI) [36,37] mea-
sured w.r.t. multiple access points (APs). Such RF met-
rics are known to be unreliable due to the small-scale fading
effects, caused by multipath reflections, device movement,
and human activities. Also, the fingerprinting procedure is
labor intensive, requiring a blanket survey of all location
spots [36,37] This should not be confused with the much
simpler landmark registration procedure which marks land-
mark (e.g., WiFi APs or ceiling lights) positions within a
floor map.

Model-driven RF localization can directly compute the
line-of-sight distance/angle between APs and the mobile de-
vice, based on propagation time [2,38] or angle-of-arrival
(AoA) [1,3]. However, due to the intrinsic instability of the
wireless channel, the reliability of such approaches remains
an issue: despite the decimeter-level median precision, the
90-percentile error remains at 2 to 10 meters when tested in
real buildings [1-3]. Hence, they may suffice for long-term
navigation, but will impair user experience in other appli-
cations that require instant and precise location fix, such as
item localization and targeted advertisement in retail stores.

Since the early conceptual development in 2004 [15], ex-
isting VLP research focused intensively on two issues: light
identification and device localization. Almost all the VLP so-
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lutions in the past decade used modulated smart LEDs that
send digital identification beacons [7-11]. Although LiTell
[13] obviates the need for such specialized LEDs, it only
works for FLs with natural flickering frequencies. LiTell’s
frequency-based features have high confusion rate (60% even
when discriminating a small population of 100 lights). So
it has to combine multiple lights sequentially to enrich the
feature, resulting in longer latency. Its limitation to low
ceilings and back-cameras also hampers its real-world us-
age. In contrast, iLAMP reduces the confusion rate close
to 0, and works readily with low-resolution front-cameras
and high ceilings. As for device localization, PD based VLP
systems follow the Lambertian radiation model to compute
distance using RSS, and location using trilateration. But the
RSS-distance model no longer holds for tube lights [7], and
when collimating or diffusing covers/lenses are used for uni-
form illumination [39]. Camera based VLP [10,11] overcomes
the limitation using AoA-based photogrammetry. LiTell [13]
builds on this approach and transforms the distortion of
lamp shape into camera position. Yet its model is appli-
cable only for tube lights, and when the camera is held flat
(Sec. 5). Besides, LiTell cannot identify the phone’s azimuth
orientation.

Motion sensors can track a user’s relative movement via
dead-reckoning [17, 40, 41], but need to be calibrated by
other approaches that provide absolute location fixes [30].
State-of-the-art vision-based robotic systems integrate mo-
tion sensors with a camera to realize visual-inertial odometry
(VIO) or SLAM [34], which tracks user movement continu-
ously via image differential [42]. But the performance suf-
fers in environment with uniform visual features (e.g., office
hallways) or dynamic scenes (e.g., retail stores) while requir-
ing both specific camera and continuous power consumption
by video recording [34]. iLAMP hints to a new principle
that can benefit the vast research in VIO and SLAM: using
a computational imaging approach, many of the seemingly
homogeneous scenes can become distinguishable, and hence
contribute to higher precision in VIO and SLAM with com-
modity smartphones. Using lights instead of the ambient
scenes also brings several key advantages. In particular, the
lights have high contrast from the background, and are de-
ployed regularly at discrete points. These properties simplify
landmark registration and lower the image processing over-
head, thus enabling accurate, real-time, and energy efficient
localization.

10. CONCLUSION

Despite decades of research, accurate, robust, and low-cost
indoor localization is still recognized as a grand challenge in
mobile computing [43]. In this paper, we proposed iILAMP
as a novel visible light localization system to confront this
challenge. iLAMP uses a smartphone to efficiently extract
the intrinsic visual features in unmodified LED/FL lamps,
and identify each lamp as landmark with close to 100% con-
fidence. iLAMP further introduces a sensor assisted pho-
togrammetry technique to estimate the smartphone’s 3D lo-
cation (heading direction) with a small 90-percentile error
of 3.5 cm (2.8°). Our Android implementation also demon-
strated iLAMP as a low-latency and energy efficient local-
ization system readily usable in today’s buildings. Future
research is also required to improve the robustness and ex-
tendability of our prototype and combine with other VLP or
RF localization schemes.
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