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ABSTRACT
The ubiquity of mobile camera devices has been triggering an out-
cry of privacy concerns, whereas privacy protection still relies on
the cooperation of the photographer or camera hardware, which
can hardly be guaranteed in practice. In this paper, we introduce
LiShield, which automatically protects a physical scene against
photographing, by illuminating it with smart LEDs flickering in
specializedwaveforms.We use amodel-driven approach to optimize
the waveform, so as to ensure protection against the (uncontrol-
lable) cameras and potential image-processing based attacks. We
have also designed mechanisms to unblock authorized cameras and
enable graceful degradation under strong ambient light interference.
Our prototype implementation and experiments show that LiShield
can effectively destroy unauthorized capturing while maintaining
robustness against potential attacks.

CCS CONCEPTS
• Computer systems organization → Special purpose sys-
tems; • Security and privacy→ Security services; Systems secu-
rity; •Human-centered computing→Ubiquitous andmobile
devices; • Computing methodologies→ Computer vision;
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1 INTRODUCTION
Cameras are now pervasive on consumer mobile devices, such as
smartphones, tablets, drones, smart glasses, first-person recorders
[53], etc. The ubiquity of these cameras, paired with pervasive
wireless access, is creating a new wave of visual sensing appli-
cations, e.g., autonomous photographer [54], quantified-self (life-
logging) [24, 95], photo-sharing social networks, physical-analytics
in retail stores [64], and augmented reality applications that navi-
gate users across unknown environment [55, 96]. Zooming in the
photo-sharing application alone, statistics report that 350 million
photos/videos are uploaded to Facebook every day, majority of
which are from mobile users [76]. Many of these applications au-
tomatically upload batches of images/videos online, with a simple
one-time permission from the user. While these technologies bring
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significant convenience to individuals, they also trigger an outcry
of privacy concerns.

Privacy is ultimately a subjective matter, and often varies with
context. Yet many of the privacy-sensitive scenes occur in indoor
environment, and are bound to specific locations. For example, re-
cent user studies [17] showed that people’s acceptability of being
recorded by augmented reality glasses has a strong correlation with
location. User studies of life-logging cameras [37] also indicate that
70.2% of the cases when the user disables capturing is associated
with specific locations. In numerous real-world scenarios, cameras
are forbidden, e.g., concerts, theaters, museums, trade shows, hos-
pitals [34], dressing rooms and exam rooms [57], manufacturing
plants [6], etc. However, visual privacy protection in such passive
physical spaces still heavily relies on rudimentary approaches like
warning signs and human monitors, and there is no way to au-
tomatically enforce the requirements. In personal visual sensing
applications like life-logging, even if a user were to disable the
camera in private space (e.g., bedroom and washroom), malware
could perform remote reconnaissance and targeted visual theft by
hijacking the victim’s camera [81, 98].

In this paper, we propose LiShield, a system that deters pho-
tographing of sensitive indoor physical space, and automatically
enforces location-bound visual privacy protection. LiShield protects
the physical scenes against undesired recording without requiring
user intervention, and without disrupting the human visual per-
ception. Our key idea is to illuminate the environment using smart
LEDs, which are intensity-modulated following specialized wave-
forms. We design the waveform in such a way that its modulation
pattern is imperceptible by human eyes, but can interfere with the
image sensors on mobile camera devices.

More specifically, our basic waveform follows an ON-OFF modu-
lation, which causes the reflection intensity of the scene to “flicker”
at high frequency. Digital cameras commonly adopt rolling-shutter
image sensors, which sample the scene row by row during cap-
turing. Consequently, LiShield will impose a striping effect on the
captured image, as long as its flickering frequency exceeds the cam-
era frame rate. To protect against a wide range of camera settings,
we build a numerical model to explore the relation between the
image quality degradation and the (uncontrollable) camera con-
figurations (e.g., exposure time). Accordingly, we derive common
guidelines to maximize the effectiveness through waveform param-
eter configurations (e.g., frequency, peak intensity, duty cycle). To
further enhance the protection, we take two measures: (i.) scramble
the color patterns, taking advantage of the array of multi-channel
RGB chips commonly available on commercial smart LEDs; (ii.)
randomize the waveform frequency to counteract exposure time
manipulation that may circumvent the striping effect, while ensur-
ing no low-frequency components are generated that affect human
perception.



In addition, LiShield can tailor the waveform for two special
use cases: (i.) allowing an authorized camera, which shares secret
configuration information with the LED, to recover the image or
video frames it captures. (ii.) when strong ambient light interferes
with the smart LED, LiShield cannot ensure full protection, but
it can still emit structured light which embeds invisible “barcode”
into the physical environment. The embedded information can
convey a “no distribution” message, allowing online servers (e.g.,
from Facebook and Instagram) to block and prevent the image from
being distributed.

We have implemented LiShield based on a customized smart
LED, which allows reconfiguration of intensity modulation wave-
forms on each color channel. Our experiments on real world scenes
demonstrate that LiShield can corrupt the camera capturing to an
illegible level, in terms of the image brightness, structure, and color.
The impact is resilient against possible post-processing attacks,
such as multi-frame combining and denoising. On the other hand,
it enables authorized cameras to recover the image perfectly, as
if no modulation is present. Even under strong sunlight/flashlight
interferences, LiShield can still sneak barcode into the physical
scenes which can be decoded with around 95% accuracy.

Preventing all privacy leaks, particularly those by determined
attackers with professional global-shutter cameras, is likely im-
possible. Instead, LiShield aims for preventing ad-hoc capturing
from benign camera-phone holders, by simply installing customized
smart LEDs to fully cover the target environment. Our main contri-
butions can be summarized as follows:

(i.) Proposing a new concept of automating privacy protection
against cameras by modulating an LED’s waveforms, and deriving
general guidelines for optimizing the waveforms against possible
camera settings and image recovery.

(ii.)Designingmechanisms to authorize desired capturing, and to
embed protection information into the scene under strong ambient
light interference.

(iii.) Verifying the system through a full-fledged testbed imple-
mentation and experiments in real environments.

2 ADVERSARY MODEL AND PROTECTION
GOALS

LiShield’s end goal is to prevent camera recording in protected
indoor physical areas, without affecting normal human perception.
The scene can be static or dynamic. In either case, we assume one
or multiple LiShield-enabled smart LEDs can cover the whole area,
while providing illumination similar to normal office lighting with-
out human-perceptible flickering. Whereas conventional lighting
and sunlight may co-exist with LiShield’s smart LEDs (as to be
verified in our experiments), covering the entire target scene with
LiShield will ensure the strongest protection.

Now consider an unauthorized user (attacker) who wants to take
pictures or videos within the protected space, with cameras and
flashes embedded in smartphones, but no professional equipment
such as global shutter cameras, filters or tripods. The attacker has
full control over the camera parameters (e.g., exposure time, cap-
turing time, white-balancing), and can run any post processing on
the captured images. Nonetheless, with LiShield’s protection, the
image frames are corrupted, so that major fraction of each frame
is either blank or overexposed while colors are distorted (Sec. 3),
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Figure 1: (a)-(b) Bright, dark and transitional stripes and
their width changing with exposure time; (c)-(f) Stripe pat-
tern of image changes under different exposure times.

which deters image viewing/sharing. In addition, LiShield should
maintain its protection while allowing authorized users to cap-
ture the same scene simultaneously without distortion (Sec. 4). In
case strong ambient interference may degrade LiShield’s protec-
tion, LiShield embeds barcodes in images/videos captured by the
attacker to convey privacy policies and ensures they are detectable
even after common post-processing (Sec. 5).

3 PHYSICAL SCENE DISRUPTION
3.1 A Primer on Camera Image Disruption in

LiShield
Cameras and human eyes perceive scenes in fundamentally dif-
ferent ways. Human eyes process continuous vision by accumu-
lating light signals, while cameras slice and sample the scene at
discrete intervals. Consequently, human eyes are not sensitive to
high frequency flickers beyond around 80 Hz either in brightness
or chromaticity [4, 41, 87, 104], while cameras can easily pick up
flicker above a few kHz [44, 102]. Equally importantly, human eyes
perceive brightness in a non-linear fashion [77], which gives them
huge dynamic range, while cameras easily suffer from overexposure
and underexposure when signals with disparate intensities mix in
the same scene [66].

Unlike professional or industrial cameras which may have global
shutters that mimic human eyes to some degree, nearly all consumer
digital cameras, pinhole cameras, and smartphones use the rolling
shutter sampling mechanism [49, 62], which is the main contributor
to their high-frequency sensitivity. When capturing an image frame,
a rolling shutter camera exposes each row sequentially.

LiShield harnesses the disparity between cameras and eyes to
disrupt the camera imaging without affecting human vision. It mod-
ulates a smart LED to generate high-frequency flickering patterns.
The reflection intensity (or brightness) of target scene also flick-
ers following the same pattern as the LED’s illumination, albeit at
reduced intensity due to reflection loss. LiShield uses the On-Off
Keying (OOK) as the basic modulation waveform (Fig. 1), which
does not require complicated analog front-ends and is widely sup-
ported by smart LEDs [25, 26]. Due to rolling-shutter sampling,
the rows of pixels that are fully exposed in the ON period will
be bright, and rows in the OFF period become dark, thus causing
striped patterns on the captured image (Fig. 1(a)(b)). Partially ex-
posed rows experience moderate brightness. Meanwhile, human
eyes can only perceive the smooth averaged intensity, as long as
the OOK frequency goes beyond 80 Hz [4, 41, 87, 104].



In addition, commercial LED fixtures often comprise multiple
LED bulbs/chips, and sometimes separate RGB channels to allow
color adjustments [60]. LiShield can turn different numbers of LED
bulb/chip on to generate different intensities, and control the RGB
channels of the LEDs to vary the color. Therefore, LiShield’s flick-
ering waveform is staircase-shaped on-off patterns, running inde-
pendently in 3 color channels. In what follows, we will show how
such flickering corrupts the spatial patterns captured by a camera.

3.2 Maximizing Image Quality Degradation
LiShield aims tominimize the image capturing quality by optimizing
the LED waveform, characterized by modulation frequency, intensity,
and duty cycle. To explore the optimization space and to provide
guidelines for designing the basic waveform, we derive a model to
predict the image quality as a function of the LiShield’s waveform
and attacker’s camera parameters. For simplicity, we start with
monochrome LED (equivalent to one with a single color channel)
that illuminates the space homogeneously. We denote P as the
reference image taken under a non-flickering LED, andQ as the one
taken under LiShield’s LED with the same average brightness. We
assume each image hasm rows and n columns, and the light energy
received by each pixel is denoted by P (i, j ) and Q (i, j ), respectively.
Our model focuses on two widely adopted image quality metrics:
PSNR, which quantifies the disruption on individual pixel intensity
levels; and SSIM [91], which measures the structural distortion to
the image (i.e., deformation effects such as stretching, banding and
twisting). In general, the minimum PSNR and SSIM corresponding
to acceptable viewing quality are in the range of 25∼30 and 0.8∼0.9,
respectively [3, 5, 12, 29].

3.2.1 Decomposing the Image. To compute the image quality,
we need to model the intensity and width of each stripe caused by
LiShield. As illustrated in Fig. 1, we use ton, toff , Ip to denote the
on/off duration and peak intensity of the flickering light source,
and te , ts are the exposure time (controllable by software) and
sampling interval (fixed in hardware) of the rolling shutter camera.
For convenience, denote the period of the light source as tl = ton +
toff , and duty cycle as Dc = ton/tl . For pixel j in row i which starts
exposure at time ti , its light accumulation would be:

Q (i, j )=αi, j

ti+te∫
ti

πl (τ )dτ (1)

where αi, j is the aggregated path-loss for pixel (i, j ), including
attenuation and reflection on the photographed object, and πl (τ )
represents the illumination waveform of the LED:

πl (τ )=



Ip , 0<τ mod tl ⩽ ton
0, ton <τ mod tl ⩽ tl

(2)

When the camera’s exposure time is equal or shorter than the
LED’s OFF period (te ⩽ toff ), the image will contain rows that are
completely dark (Fig. 1(c)). On the other hand, when te > tl , one row-
exposure period of the camera will overlap multiple ON periods
of the LED, accumulating higher intensity (Fig. 1(f)). The special
case happens when te = tl where the integration of LED waveform
and exposure has fixed value, which eventually smooths out dark
stripes (Fig. 1(e)). Without loss of generality, assume the exposure
starts right at the beginning of the ON period. LetN = ⌊te/tl ⌋ which
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Figure 2: PSNR and SSIMwith respect to exposure time, LED
intensity, duty cycle, and modulation frequency.

is the number of whole flicker cycles covered by exposure time, and
trem = (te mod tl ) which is the remaining duration after multiple
whole cycles, the light accumulation of the brightest rows QB is:

QB (i, j )=



αi, j Ip (Nton + trem), 0< trem ⩽ ton
αi, j Ip (N + 1)ton, ton < trem ⩽ tl

(3)

Since the brightest rows appear when the exposure captures most
ON periods possible (e.g., row 2 to row u in Fig. 1 (a)), and rolling
shutter effect converts temporal variation into pixels with sampling
interval ts , the width of QB is:

WB = |trem − ton |/ts (4)
Likewise, when the exposure captures least ON periods possible
(e.g., from row v to row w in Fig. 1 (a)), we get the darkest rows
with light accumulation QD :

QD (i, j )=



αi, j IpNton, 0< trem ⩽ toff
αi, j Ip (Nton + trem − toff ), toff < trem ⩽ tl

(5)

and the width of QD is:
WD = |trem − toff |/ts (6)

We refer to a collection of consecutive brightest rows as “bright
stripe” and consecutive dark rows as “dark stripe”, as shown in
Fig. 1(b). In addition, there exist intermediate rows containing lin-
ear intensity transition between dark and bright, referred to as
“transitional stripe”.

Meanwhile, if the LED were not flickering and provided the same
average brightness, the pixel intensity would be:

P (i, j )=αi, j Ip · Dc · te (7)
SinceDc ·te remains constant within each frame, the image captured
under LiShield is equivalent to the original image multiplied by a
piecewise function (cf. Eqs. (3) and (5)).

Other common camera parameters (i.e., ISO, white balance, and
resolution) do not affect the structure of the stripe pattern, since
they are unrelated to rolling shutters and they only affect the aver-
age pixel intensity. By default, we assume the attacker sets the ISO
to its minimum (usually 100) to maximally suppress noise.

3.2.2 Optimizing the LED Waveform. Since the stripe pattern
follows a piecewise function, a closed form expression of PSNR
and SSIM becomes infeasible. We thus use numerical simulation
to evaluate the impact of LiShield, based on the above model. We
generate the piecewise function withQB (i, j ),WB ,QD (i, j ),WD and
multiply it on a reference image to obtain the disrupted imageQ just
like the process inside real cameras. We use the well-known Lena
image as a reference, and stitch the original 512 × 512 version into
a 3264× 2448 (8-mega-pixel) image, assuming ts = 1/75000 s, which



matches the capability of a Nexus 5 camera. The quality metrics are
calculated between the reference image P and LiShield-corrupted
image Q , which are set to the same average intensity by scaling
pixel values inQ . Note that if P andQ are both overexposed into the
same white image, PSNR =∞ and SSIM = 1 can no longer reflect
image quality. Thus, we make P ’s pixel intensity range infinite,
which allows quantifying quality loss caused by overexposure.

By default, we use OOK waveform with frequency f =100 Hz,
peak intensity Ip =10 kLx and duty cycle Dc =0.5. We vary one
parameter while keeping others to the defaults. Note that the typi-
cal light intensity is ∼700 Lx in office environments (considering
energy efficiency), ∼ 5, 000 Lx for overcast sky and ∼ 100, 000 Lx for
sunny days [33]. Our numerical results (Fig. 2 show a few general
trends, which lead to the following design choices for LiShield.

(i) A single frequency cannot ensure robust protection. Fig. 2(e) and
(f) show that for a given waveform frequency f , there exist several
exposure time settings that lead to high-quality images. This is
because when te ≈Ntl , the stripes become smoothed out (Fig. 1(e)).
Although the waveform parameters are unknown to the attacker,
a determined attacker may launch a brute-force search for the te
that satisfies this condition, thus circumventing the protection. To
counteract such attackers, LiShield includes a countermeasure called
frequency randomization, which we discuss in Sec. 3.3.1.

(ii) LiShield must prevent attackers from using long exposures. The
image quality increases with exposure time te , until overexposure
happens (Fig. 2(a) and (b)), because longer exposure leads to more
waveform cycles being included as a constant base in the brightness
of the stripes (larger N in Eqs. (3) and (5)), making the contrast of
stripesQB/QD lower and weakening the quality degradation. Since
overexposure limits the maximum exposure time, LiShield should
leverage overexposure to limit attacker’s exposure time.

(iii) LiShield should keep a high peak intensity to expand the over-
exposure zone. We observe that when te falls below a threshold
(≈1/100 s in Fig. 2(c) and (d)), the image is always corrupted due
to the dominance of dark stripes (Fig. 1 (c)). On the other hand,
when te goes beyond a threshold, the image always suffers from
overexposure. A larger Ip leads to a smaller overexposure threshold
for te , which limits the attacker’s ability to tune te to improve im-
age quality. When Ip ≥ 10 kLx (Fig. 2(c)), there almost exists only a
single te setting (te ≈ 1/100 s) that can avoid overexposure and dark
stripes simultaneously. But even this setting fails under LiShield’s
frequency randomization mechanism (Sec. 3.3.1). With power effi-
ciency and eye health in mind (Sec. 8), LiShield sets Ip to 20 kLx by
default.

(iv) Duty cycle should be kept at a moderate level.Without overex-
posure, a lower Dc yields lower PSNR and SSIM (Fig. 2(a) and (b)),
as it widens the dark stripes (Eq. (6)). On the other hand, a largerDc
means more light accumulation, resulting in overexposure across
a wider range of te settings. Since higher Ip has the same impact
given a fixed Dc , we design the LED waveform to have maximum
peak intensity with moderate duty cycle, empirically set to Dc =0.5.

The above conclusions hold for all scenes since the trend of
quality does not vary with scenes (Sec. 7). Optimal parameters may
vary slightly across different scenes (e.g. different reflectivity), and
can be easily obtained by taking one photo of the scene and running
the aforementioned simulation.
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Figure 3: Decomposition of frequency randomization wave-
form and modulation generating side lobes.

3.2.3 Adding Color to the Model. Occasionally sensitive infor-
mation is in the color channel of images, which requires LiShield
to distort color for protection. LiShield extends to multi-channel
setup by generating waveforms for each of the RGB channels inde-
pendently, turning white stripes in the previous model into colored
ones. To compensate the intensity loss compared with the white
stripes, we need to make the new peak intensity I ′p = 3Ip , assuming
R, G and B appear with equal probability.

3.3 Circumventing Potential Attacks
Based on the foregoing analysis, we identify the following potential
holes that can be exploited by attackers to overcome the striping
effect. (i) Manual exposure attack. If an attacker can configure the te
to satisfy te ≈Ntl , it can guarantee every row receives almost the
same illumination, thus eliminating the stripes during a capture
(Fig. 1(e)). In practice, tl is unknown to the attacker, but it can try
to capture images with different te , until seeing a version without
obvious stripes1. (ii) Multi-frame attack.When the scene is static,
an attacker may also combine multiple frames (taking a video and
playback) to mitigate the stripes with statistical clues, e.g. by aver-
aging or combining rows with maximum intensities from multiple
frames. Note that the attacker must keep the camera highly stable,
otherwise even pixel-level shift will cause severe deformation when
combining multiple frames. (iii) Post-processing attack. Common
post-processing techniques (e.g., denoising and de-banding) might
be used to repair the corrupted images.

In what follows, we introduce countermeasures to the first two
attacks. In Sec. 7.4, we will verify that LiShield’s distortion does
not fit empirical noise or banding models, so the common post-
processing schemes become ineffective.

3.3.1 Frequency Scrambling. To thwart the manual exposure
attack, we design a frequency scrambling2 mechanism, which packs
multiple waveforms with randomly selected frequencies within
each image frame duration. Since the camera exposure time te is
always fixed within each frame, no single te can circumvent all the
frequency components.

However, we cannot choose and switch the flickering frequencies
in an arbitrary manner, for three reasons. (i) Multiple frequency
values that share a common divisor can satisfy te =Ntl under the
same te (recallN can be an arbitrary integer). We need to ensure the
common divisor is small enough (i.e., least common multiplier of tl
large enough), so that overexposure occurs even for the smallest N .
(ii) Frequencies should be kept low to maximize image corruption,
1Digital camera’s exposure time cannot be set arbitrarily due to hardware limitation.
On Nexus 5, the granularity is around 13µs, e.g., the actual exposure time is 1/1950
when the attacker needs 1/2000. Note that exposure time must be fixed within each
frame.
2Scrambling and randomization are exchangeable in this paper.



0

10

20

30

40

50

0 50 100 150 200 250 300

M
ax

im
um

 P
SN

R
 (d

B)

Δf (Hz)

f1=200 Hz
f1=300 Hz

f1=400 Hz
f1=500 Hz

0

10

20

30

40

50

0 50 100 150 200 250 300

M
ax

im
um

 P
SN

R
 (d

B)

Δf (Hz)

temax=1/100 s
temax=1/200 s

Figure 4: Worst-case PSNR with different frequency incre-
ment ∆f under different (a) f1 (b) temax .

as evident in Fig. 2(e) and (f), since camera’s analog gain decreases at
high frequencies [102]. (iii) Switching between different frequencies
may create an additional level of modulation, which will spread the
spectrum and generate unexpected low frequency components that
become perceivable by eyes.

To explore the design space under these constraints, suppose we
switch amongM frequencies f1, f2, . . . , fM (in ascending order) at
a switching rate fB . The whole pattern thus repeats itself at rate
fp = fB/M . To pack at least M different frequencies in an image
frame, we need fB > (M −1) fr , or preferably, fB >Mfr , where fr is
the frame rate, typically around 30 Hz (fps). Note that the switching
rate cannot be higher than the lowest scrambling frequency, i.e. fB ≤
f1, otherwise the waveforms of f1 will be truncated. To maximize
image corruption, we choose the smallest value for f1 (i.e., f1 = fB ),
and empirically set fn = fB + (n − 1)∆f ,n ∈ 2, 3, . . . ,M , where ∆f
is frequency increment, set to ∆f , fB to lower the common divisor
frequency.

The frequency scrambling can be considered as an M-FSK mod-
ulation: essentially, we multiply the waveform corresponding to
each frequency with a rectangular wave of frequency fp and duty
cycle 1/M , which convolves harmonics of the pattern repetition
frequency fp to the spectrum, creating side lobes around each scram-
bling frequency, spacing fp apart, as shown in Fig. 3. These side
lobes might appear at low-frequency region and become perceptible
by human eyes.

To tackle this challenge, note that for waveforms with frequen-
cies f2, f3, . . ., their side lobes are dampened more at lower frequen-
cies compared with f1, so we only need to focus on f1. The side
lobes of f1 are located at f1 + k fp , where k is an integer. For the
side lobe with the lowest frequency, k = ⌊ f1/fp ⌋. Since we selected
f1 = fB =Mfp , the lowest non-DC side lobe is at fp = fB/M . There-
fore, to ensure no side lobe exists below the perceivable threshold
fth ≈80 Hz, we need a small M and large fB , and hence higher
flickering frequency components fn . Yet increasing the flickering
frequencies may weaken LiShield’s protection. Fortunately, since
LiShield does not require largeM (which leads to high fM ) to cir-
cumvent the manual exposure attack, the degradation should be
tolerable.

To find the optimal ∆f and showcase the effectiveness of the
frequency scrambling, we choose the case M =2 and f1 = fB un-
der 20 kLx peak intensity (to be consistent with our testbed setup
in Sec. 6). We then repeat the numerical simulation (Sec. 3.2) to
evaluate the attacker’s maximum image quality. Fig. 4(a) shows
that the quality has two peaks at ∆f =0 and 100 Hz, as well as a
valley at ∆f = 50 Hz. Note that the positions of these peaks/valleys
are independent of f1 andM , because quality always reaches the
maximum at the longest te before overexposure happens (denoted
as temax in Fig. 4(b)). Thus, we set ∆f = (1/2)/temax =50 Hz to

maximize image disruption. The optimal ∆f for other peak inten-
sity settings can be obtained following a similar procedure. Fig. 4
also shows that, once set to the optimal ∆f , frequency randomiza-
tion can significantly improve LiShield’s robustness against manual
exposure attacks. Sec. 7 will show more evidence through testbed
experiments.

3.3.2 Illumination Intensity Randomization. If attackers repeti-
tively capture a static scene for a sufficiently long duration, they
may eventually find at least one clean version for each row across
all frames, thus recovering the image. LiShield does not guarantee
complete protection against such brute-force attacks. However, it
can increase the number of frames needed for image recovery, so
that the attack becomes infeasible unless the camera can stay per-
fectly still over a long period of time, during which the attackers
may have already been discovered by the owners of the physical
space. LiShield achieves the goal by employing illumination inten-
sity randomization, where it randomly switches the magnitude of
each ON period across multiple predefined levels, which extends the
attacker’s search space. We note that the intensity randomization
adds another level of modulation, but similar analysis in Sec. 3.3.1
still applies and can ensure imperceptible operation.

To understand the effectiveness of this scheme, we build a statis-
tical model to estimate the number of frames needed to perfectly
recover the image, as if LiShield did not function at all. Suppose the
LED waveform has K intensity levels, and the camera hasm rows.
For simplicity, we assume the intensity levels of each row become
uncorrelated after the randomization. Then the probability that one
row gets any illumination is p= ton/(ton + toff )=Dc . Observe that
on average same intensities would reappear approximately every
K frames, the possibility of combining L frames to fully recover an
image of the static scene is thus:

Prec =



[
1 − (1 − Dc )

L/K
]m

(monochrome)[
1 − (1 − Dc )

L/K
]3m

(RGB)
(8)

Therefore, achieving a given level of Prec becomes increasingly
difficult as Dc and K increases, and for higher camera resolution
(largerm). For example, to have Prec = 90% forDc = 0.5 andm= 2448
for 8-mega-pixel cameras, the attacker needs L= 300 frames under
K =10, and ∼3000 frames under K =100. For lower duty cycles,
recovery becomes even more challenging (e.g., ∼7000 frames are
needed for Dc =0.2, K =100). As we will show later (Sec. 7), in
practice, the attackers cannot keep cameras completely still and all
frames aligned at pixel level, even with a tripod and across a short
duration. So Eq. (8) gives the best performance for such attacks.
Note that if the target scene is mobile, then the multi-frame attack
becomes impossible, as long as the scene has certain variation acrossK
frames. The effectiveness of intensity randomization will be further
justified in our testbed experiments (Sec. 7).

4 SCENE RECOVERYWITH AUTHORIZED
CAMERAS

To allow authorized users to capture the scene while maintain-
ing protection against unauthorized attackers, we need to impose
additional constraints on the LED waveform. LiShield’s solution
leverages a secure side channel (e.g. visible light communication
[16] or Wi-Fi) between authorized users and the smart LED, which



Figure 5: Enabling authorized users to capture dynamic
scenes while corrupting unauthorized users.

conveys secret information such as frame timing and waveform
parameters3.

A naive solution is to stop flickering when authorized users are
recording. However, since attackers may be co-located with the
authorized users, this enables them to capture one or more frames
that have part of the clean scene, which compromises privacy and
security. To counteract such cases, we design special waveforms
for the LED to minimize the flicker-free duration.

4.1 Authorized Video Recording
To authorize a camera to capture a dynamic scene, each individual
frame within the video must be recoverable. To achieve this, the
authorized camera needs to convey its exposure time setting tue to
the smart LED via the secure side channel, and synchronize its clock
(for controlling capturing time) with the smart LED’s clock (for
controlling the waveform), so the smart LED can send recoverable
waveforms precisely during the capture of the authorized camera.
State-of-the-art time synchronization mechanisms through visible
light [48] or wireless side-channels [23, 69, 74] can already achieve
µs of accuracy, sufficient to synchronize the LiShield smart LED
with camera at a resolution that is finer than the rolling shutter
period (typically tens of µs).

Recall that the camera can evade the striping effects if te =Ntl
(phase does not matter, see Sec. 3.3). So to authorize the user
with exposure tue , LiShield simply needs to set its flickering fre-
quency fa =1/tl =N /tue (N =1, 2, . . .) and maintain its peak inten-
sity within each frame. In addition, the tue and corresponding flick-
ering frequency fa can be varied on a frame by frame basis, making
it impossible for an attacker to resolve the correct exposure time
by trial-and-error (Sec. 3.3).

Meanwhile, when the authorized camera is not recording at its
maximum possible rate (e.g., a 30 fps camera recording at 25 fps),
there will be an interval (i.e., inter-frame gap) where the camera
pauses capturing. LiShield packs random flickering frequencies
other than fa into the inter-frame gap, so as to achieve the same
scrambling effect as described in Sec. 3.3.1, without compromis-
ing the authorized capturing. Fig. 5 depicts one example, where
fintra and finter denote intra-frame and inter-frame frequencies,
respectively.

3 Such information can be protected by existing encryption algorithms and systems,
which are already mature and thus beyond the scope of this paper.

Figure 6: The impact of multi-frame recovery on authorized
user and attacker, respectively.

4.2 Static Scene Recovery
When the target scene is static, the authorized user may capture a
few complementary frames at a specific time to recover the scene
as depicted in Fig. 6, where frequency and intensity randomiza-
tion (Sec. 3.3) are employed in each frame to ensure robustness.
While it does require recording a very short video, the process is
extremely short (200ms at most) and barely noticeable to the au-
thorized user. Meanwhile, an out-of-sync attacker will still receive
corrupted images that cannot reconstruct the original scene even
after combined.

Suppose a static scene is to be recovered using Lf frames, re-
ferred to as critical frames. To prevent attackers from launching the
multi-frame attack, the timing of the critical frames is negotiated
only between the smart LED and the authorized user through the
secure side channel. These Lf frames together must contain the
information of the entire scene, i.e. they must be complementary, as
shown in Fig. 6. Meanwhile, all other frames will follow the normal
flickering pattern as discussed in Sec. 3. Since the attackers cannot
identify nor predict the timing of the critical frames , the best they
can do is to launch the brute-force multi-frame attack, which has
been discussed in Sec. 3.3.2.

5 AUTOMATIC PHYSICAL WATERMARKING
FOR PRIVACY ENFORCEMENT

High-intensity ambient light sources (e.g. sunlight, legacy lighting,
flash lights) can create strong interference to LiShield’s illumination
waveform, degrading the contrast by adding a constant intensity
to both the bright and dark stripes, which may weaken LiShield’s
protection. In such scenarios, LiShield degrades itself to a barcode
mode, where it embeds barcode in the physical scene to convey
privacy policies. The barcode forms low-contrast stripes, which
may not fully corrupt the images of the scene, but can still be de-
tected by online photo-distributing hubs (e.g., social website servers)
who automatically enforce the policies, without cooperation of the
uploader or evidence visible by naked eye. LiShield forms the wa-
termark with just a single light fixture, instead of active displays
(e.g., projectors) that are required by conventional systems. The key
challenge here is: how should LiShield encode the information, so
that it can be robustly conveyed to the policy enforcers, despite the
(uncontrollable) attacker camera settings? We now describe how
LiShield’s barcode design meets the challenge.

Embedding. LiShield’s barcode packs multiple frequencies in
every image (or in every frame of a video) following Sec. 3.3.1, but
aims to map the ratios between frequencies into digital information.
Suppose LiShield embeds two waveforms with frequencies F0 and
F1, it chooses the two frequency components such that F1/F0 equals
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Figure 7: Barcode design for monochrome and RGB LED.

to a value Rp well known to the policy enforcers. In other words,
the presence of Rp conveys “no distribution/sharing allowed”. This
encoding mechanism is robust against camera settings 4.

Since physical scenes usually comprise a mix of spatial frequen-
cies, and spectral power rolls off in higher spatial frequencies thanks
to camera lenses’ limited bandwidth [31] while temporal frequen-
cies are unaffected, LiShield’s barcode uses frequencies that are
much higher than the natural frequencies (> 400Hz) in the scene to
avoid interference. It is worth noting that since the rolling-shutter
sampling rate of all cameras falls in a range (30 kHz to slightly over
100 kHz [102]), LiShield limits its highest flickering frequency to
15 kHz, which respects the Nyquist sampling theorem so that the
barcode can eventually be recovered without any aliasing effect.

To further improve robustness, LiShield leverages redundancy. It
embeds multiple pairs of frequency components to make multiple
values of Rp . In this way, LiShield can pack different Rp either at
different rows of the image or in different color channels, further
mitigating interference caused by intrinsic spatial patterns within
the scene. Fig. 7 illustrates an example of monochrome (C2

3 =3 Rp
values) and RGB LEDs (C2

3×3 =36 Rp values). Note that the same
mechanism can be used to increase the amount of information in
the barcode, but this is beyond the scope of the present work.

Detection. Since the barcode containsM frequencies, i.e. fn =
fB + (n − 1)∆f ,n ∈ 2, 3, . . . ,M (Sec. 3.3.1), there areMR =C

2
M pos-

sible frequency ratio values across the image for monochrome bar-
code (MR =C

2
M×3 for RGB barcode). ∆f must be set large enough to

avoid confusion (∆f = 200Hz in experiments). The barcode decoder,
running on the policy enforcer, recognizes the image as protected
if there are at leastMb values that roughly match the known ratio
Rp , i.e., when the value falls within Tb of Rp . We empirically set
Mb =

⌈
γMR +Matt

⌉
whereMatt is number ofRp removed bymanual

exposure attack (Sec. 3.3). γ andTb are determined by bounding the
false positive rate following an empirical procedure (to be discussed
in Sec. 7.3).

To detect the frequency ratios, LiShield first partitions the image
into nbr × nbc blocks, across both rows and columns, either within
the monochrome channel or among all 3 RGB channels. Dividing
image by columns provides LiShield multiple copies of the same
frequency block, in case some of them are interfered by spatial
patterns in the scene. For example, in Fig. 7, nbr =6 and nbc =4.
For each block, LiShield averages the intensity of each row to get
a one-dimension time series sr of length Lf =m/nbr , given total
m rows on the image. LiShield then runs FFT over each series to
extract theMp strongest frequencies. Note that LiShield’s detector

4Although width of stripes is affected by sampling interval ts and exposure time te
(Fig. 1(a) and (b)), ratio of stripe widths resulted from two frequencies (which equals
to Rp ) remains constant.
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Figure 8: Simplified circuit diagram and photo for the smart
LED module.

allows more than one frequencies to appear in one block. Finally,
LiShield combines all unique frequencies extracted from each block
and computes all frequency ratios (within and across color channels
in the case of RGB barcode). Algorithm 1 describes the procedure
of barcode detection.
Algorithm 1: Barcode Detection
Input: image I (m × n), nbr , nbc , Tb , Sb ,Mb ,mb =0, F =∅,
Dp =∅, B=∅, fs =30 kHz
Output: whether I is protected
crop I to nbr × nbc -size blocks, store in set B;
for b ∈B do

sr ←nbr × 1←mean(nbr × nbc );
FD←detrend(FFT (sr , fs ));
pickMp maximum peaks Fp ∈ FD ,
400 Hz⩽ Fp ⩽15 kHz;
F← F ∪ Fp ;

end
Dp←Dp ∪ ( fi/fj ), ∀fi ,fj ∈ F ;
for dp ∈Dp do

if dp ∈ [Rp −Tb ,Rp +Tb ], ∀Rp ∈Sb then
mb←mb + 1;

end
end
if mb ≥Mb then

I is protected;
end

LiShield’s redundancy in barcode ensures that the barcode can-
not be completely destroyed, unless nearly all frequencies are dis-
torted by processing the image, which will in turn cause strong
deformation on the scene. We will verify the robustness of this
scheme through testbed experiments (Sec. 7.4).

6 IMPLEMENTATION
Testbed setup. Fig. 9 shows our smart LED prototype, and the
target scenes containing 5 capture-sensitive objects (document and
painting are 2-D objects and others are all 3-D objects). We mount
the LED inside a diffusive plastic cover similar to conventional
ceiling light covers. We use a programmable motor [13] to hold the
camera and control its distance/orientation, in order to create static
or dynamic scene setup in a repeatable manner.

Smart LED modules. Commercial-of-the-shelf (COTS) house-
hold LED bulbs rely on integrated drivers to regulate LED’s current
[51, 88]. A dimming input is usually available on these drivers for
controlling the current dynamically. We build our smart bulb based
on the same topology as these COTS LED bulbs. For safety, we
use 19V DC laptop power supplies instead of wall AC power, and
NCL30160 [58] LED drivers which allow dimming at nearly 100



Figure 9: Experimental setup and multiple scenes we used.

kHz with arbitrary OOK waveform. The smart bulb has built-in
independent RGB/white channels for controlling color/intensity.
Each channel can be controlled by a separate waveform, with 4 LED
chips in series, at driving current of 800 mA. In total, the 3 channels
consume approximately 25 W peak power, close to common of-
fice LED troffer fixtures. However, since LiShield’s OOK waveform
has a duty cycle much lower than 1 (Sec. 3), the actual perceptible
brightness is significantly lower. As a result, multiple LED modules
can be used to improve light intensity. Fig. 8 depicts the circuit for
each color channel and shows a photo of the whole module.

The dimming input signals of each channel are controlled by an
STM32 [78] micro-controller unit (MCU), which generates the OOK
waveform as specified by LiShield. For flexible reconfiguration, we
generate digitized waveforms in MATLAB on a laptop or Android
app on a smartphone instead, which are then passed to the MCU
via USB.

Android app for normal, authorized and attacker’s cam-
eras. Unless otherwise noted, we use Nexus 5 [46] with stock ROM
as our benchmark device. We assume that normal users use the
stock camera app with default settings (including auto exposure),
while a malicious attacker can manually tune the camera parame-
ters (e.g., using the Open Camera app [35]). By default, the camera
ISO is set to the lowest value (100) since it is the most beneficial for
attackers, as it allows longer exposure to smooth out the stripes
without causing overexposure. To implement the authorization
mechanism (Sec. 4), we develop a specialized app for the authorized
smartphone, which uses Android’s Camera2 API [32] to precisely
control the exposure time, as well as communicating with the smart
LED’s MCU via USB. Since current Android camera APIs do not
support precise frame timing, the app requests the smart LED to
synchronize with the camera by altering its waveform.

Attacker’s image processing. We have implemented the at-
tacking algorithms in Sec. 3.3, which are specifically designed to
combine/process the captured image, aiming to eliminate LiShield’s
stripe distortion. In addition, we implement classical image pro-
cessing techniques, including denoising and debanding, which may
be attempted by attackers. For denoising, we use the Haar-wavelet
thresholding [14], non-local-means (NLmeans) [9] and BM3D [15],
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Figure 11: Image quality levels on a benchmark image.
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which are among the most popular algorithms [70]. For Haar-
wavelet and NLmeans, we use the G’MIC [40] plugin of the GIMP
[83] image processing program. For BM3D, we use a CUDA im-
plementation [36] since it is significantly faster and practical than
CPU-base implementations. As for debanding, we use the Banding
Denoise [22] and Unstrip [8] in the G’MIC [40] plugin.

Metrics. Small displacement and vibration of the camera are
inevitable in physical environment, which is known to affect the
SSIM of captured images significantly [92]. Thus, we quantify the
image quality degradation with the enhanced CW-SSIM [67], which
is insensitive under such translations, but similar to SSIM other-
wise. Since PSNR shows similar trends with SSIM, we omit it in
the experiments except for a few cases. Besides, we employ the
CIEDE2000 [50] to compute the degradation of the images’ color
quality when the RGB LED is used.

7 EXPERIMENTAL EVALUATION
7.1 Effectiveness of Physical Scene Disruption
Impact of flickering frequency.We first verify LiShield’s basic
protection scheme (Sec. 3) with 5 static scenes, monochrome LEDs,
and OOK waveform without frequency randomization, while at-
tacker’s camera uses auto-exposure.Without LiShield, themeasured



50
60
70
80
90

100
110
120

1 2 3 4 5Av
er

ag
e 

Pi
xe

l I
nt

en
si

ty

Frame Number

Red
Red Ref

Green
Green Ref

Blue
Blue Ref

Figure 16: Impact on auto-
matic white balance.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Mono Color

C
W

SS
IM

AE
1/1000 s

1/500 s
1/200 s

1/100 s
1/50 s

Figure 17: Impact on dy-
namic scene.

0
0.2
0.4
0.6
0.8

1

N
exus 5

N
exus 5X

N
exus 4

Xperia M
5

LG
 G

4

G
alaxy N

exus

G
alaxy S5

iPhone 7 Plus

M
oto X

iPad M
ini 2

C
W

SS
IM

Figure 18: Impact of device heterogeneity. Error bars show
std. across OOK waveforms with different frequencies (100
Hz to 500 Hz).

Unprotected Authorized Attacker

(a)
AttackerAuthorizedUnprotected

(b)
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ers for (a) static scene (b) dynamic scene.

image quality stays high, with PSNR> 30 dB and CW-SSIM> 0.9
(slightly lower than simulation results due to digital noises in real
cameras). Despite the use of a basic configuration, LiShield de-
grades the image quality by 3 to 10 dB for PSNR and 0.25 to 0.45 for
CW-SSIM (Fig. 10). We notice that the quality worsens slightly as
flickering frequency decreases from 500 Hz to 100 Hz, as the image
sensor has higher analog gain at lower flickering frequencies [102].
In addition, different scenes suffer from different levels of disruption,
depending on the scene’s structure and reflection rate. As a vi-
sual quality benchmark, Fig. 11 plots the same scene with different
qualities under flickering.

Impact of waveform duty cycle. We use 100 Hz flickering
frequency on the document scene as a representative setup 5 to
study the impact of duty cycle of emitted waveform. Here we enable
auto-exposure to study the stripes’ impact alone. Fig. 12 shows
that lowering the duty cycle from 0.9 to 0.1 degrades the image
quality dramatically, with CW-SSIM from nearly 0.6 to just over 0.1.
However, higher duty cycle leads to more light influx and larger
overexposure area (Fig. 13) when fix-exposure is used by attacker
(here te =1/200 s). To leverage both types of quality degradations
(i.e., flickering stripes and overexposure), the LED should adopt a
relatively moderate duty cycle but high peak intensity, which echoes
our model in Sec. 3.2.

Impact of RGB color distortion.We further verify the color-
distortion impact when the RGB flickering is turned on. The results
(Fig. 14) demonstrate slightly weaker quality degradation when its
peak intensity is the same as monochrome LED (and thus average
intensity is only 1/3). But the quality degradation is stronger if the
RGB LED has the same average intensity with monochrome LED. Be-
sides, the color distortion makes an additional independent impact.

5Unless otherwise noted, the rest of experiments use the same setup.
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Figure 22: Detection rate across detector settings.

The corresponding CIEDE2000 metric (Fig. 15) escalates up to 45,
way beyond the human-tolerable threshold 6 [50]. This implies the
scene is no longer considered viewable by average viewers.

Two bonus effects from our RGB LED are observed: (i) The struc-
tural distortion from the stripes disrupts the camera’s auto-focus
function, often making the captured scene extremely blur. This is
because under LiShield, contrast of bands no longer depend on fo-
cusing accuracy, which breaks the assumption of auto-focus mech-
anism. (ii) The color bands also mislead the automatic white balance
function across all 5 different scenes, since the camera can no longer
identify a clean region in the image to calibrate itself and thus
hesitates as shown in Fig. 16.

Impact on dynamic scenes. To create a dynamic scene, we
use the motor to rotate the smartphone, creating relative motion
at three different speeds (45, 100 and 145 degrees/second). Fig. 17
shows the average quality among all 3 speeds, which indicates
that dynamic scene experiences worse quality under LiShield due to
motion blur. Moreover, if the exposure time is larger than 1/100 s,
then overexposure and motion blurs together further reduce the
quality (PSNR < 6, CW-SSIM < 0.1). Thus, dynamic objects further
decrease the adjustment range of exposure time and make manual
exposure attack more ineffective.

Impact of device heterogeneity.We cross-validate the impact
of LiShield on 10 common smartphone cameras. Fig. 18 shows
the image quality varies slightly, due to different sampling rates
across devices resulting in stripes of different widths. However, the
quality remains at an intolerably low level across devices. Thus
LiShield’s protection mechanism works across typical smartphone
camera models.
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Table 1: Flicker-free configurations for monochrome bar-
code.

Seq f1 (Hz) f2 (Hz) f3 (Hz) tatt (s)
1 400 600 800 1/400, 1/600, 1/800
2 1000 1200 1400 1/1000, 1/1200, 1/1400
3 1600 1800 2000 1/1600, 1/1800, 1/2000

Table 2: Flicker-free configurations for RGB barcode.
Color f1 (Hz) f2 (Hz) f3 (Hz) tatt (s)
Red 400 600 800 1/2000 ∼ 1/400
Green 1000 1200 1400 1/2000 ∼ 1/400
Blue 1600 1800 2000 1/2000 ∼ 1/400

7.2 Effectiveness of User Authorization
We developed an app (Sec. 6) that allows a user to capture critical
frames on static scene protected by our RGB LED, and then recover
the scene following Sec. 4. The resulting image quality (PSNR =
25dB, CW-SSIM = 0.9, CIEDE2000 = 5) is comparable to the ideal
setting when we disable LiShield’s LED modulation (Fig. 19 shows
example frames extracted from a recorded video). In contrast, the at-
tacker suffers intolerable image corruption (PSNR = 13dB, CW-SSIM
= 0.56, CIEDE2000 = 34) by combining same number of randomly
selected frames (Sec. 3.3.2).

For the dynamic scene, we set fintra =1 kHz and finter =300 Hz
(Sec. 4.1). From Fig. 20, we can see the authorized user has much
higher quality (PSNR=25dB, CW-SSIM=0.98 in average) compared
with attacker (PSNR = 10dB, CW-SSIM = 0.6 in average). This can
be seen by resulting image frames in Fig. 19 where attacker suf-
fers from both intra-frame and inter-frame stripes. Thus LiShield’s
authorization scheme is effective in unblocking specific users while
maintaining protection against attackers.

7.3 Effectiveness of Barcode Embedding
We first determine general optimal parameters for LiShield’s bar-
code detector (γ ,Tb ,nbr and nbc in Sec. 5), based on the following
metrics. (i) False alarm rate. We run the detector on 200 images
(random real-world scenes) in the SIPI database [93], and measure
the probability that a barcode is detected from clean image. (ii)
Detection rate. We embed monochrome barcodes with different f1
from 400 Hz to 10 kHz with 200 Hz switching frequency. For each
f1, we embed 3 frequencies (i.e.,MR = 3 in Sec. 5) with ∆f = 200 Hz
interval and capture 300 images with these barcodes over a bench-
mark scene (without loss of generality) to obtain detection rate. For
simplicity we set nb =nbr =nbc . Fig. 21 plots the fraction of falsely
detected frequency ratios (i.e., Rp in Sec. 5) over total number of
ratios, while Fig. 22 shows successful detection rate under the same
set of parameters. Considering the trade-off between false alarm
and detection, we choose Tb = 0.05,Mp = 2 and nb = 4 to bound the
false alarm rate below 5%, and setMb = ⌈2 × 5% ×MR +Matt⌉ = 3 to
guarantee no false alarm for barcodes with 3 frequencies (Matt =2

Table 3: Flicker-free configurations for frequency random-
ization. fc , tatt represent center frequency and attacker’s ex-
posure time.

M fB = f1 (Hz) ∆f (Hz) fc (Hz) tatt (s)
2 200 50 225 1/225
3 300 50 350 1/350
4 400 50 475 1/475
5 500 50 600 1/600
6 600 50 725 1/725
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Figure 26: Quality with and without frequency randomiza-
tion.

since manual exposure attack can remove two Rp ), while ensuring
around 90% detection rate for monochrome barcode.

Using the above configuration and frequencies in Tables 1 and 2,
Fig. 23 shows that detection rate for RGB barcodes is close to 100%
with or without manual exposure attack, while being slightly be-
low 90% for monochrome barcodes if attacked. We conclude that
LiShield’s barcode detector provides reliable detection, while RGB bar-
codes are more detectable and robust than monochrome ones, thanks
to extra redundancy provided by color channels.

An attacker may post-process the image in attempt to remove
the watermark. However, thanks to the redundancy of the barcode,
the attacker will have to deform most parts of the image, which
greatly reduces the image quality and makes the attack nonviable.

7.4 Robustness and Counteracting Attacks
Manual exposure attack. One possible attack against LiShield is
to manually set the exposure time te to smooth out the flickering
patterns (Sec. 3.3). Fig. 25 shows that although the image quality
first increases with te , it drops sharply as overexposure occurs.
Therefore, LiShield traps the attacker in either extremes by optimizing
the waveform (Sec. 3.2), and thwarts any attempts through exposure
time configuration.

We further test the effectiveness of randomization as configured
in Table 3 with auto-exposure (except for attacker). Fig. 26 shows
that the image quality with scrambling is comparable with single
frequency of f1 and fc , thus frequency randomization does not cause
much difference in image quality. Note that the image quality varies
only slightly with number of frequencies, implying it is insensitive
to LiShield’s frequency randomization pattern. We assume the expo-
sure time is tatt = 1/fc , which is optimistic for the attacker. Results
show that image quality does not vary significantly (compared
with attacks to stripes without randomization), showing LiShield’s
robustness against such attacks.
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Multi-frame attack. Fig. 27 plots the recovered scene’s quality
under the multi-frame attack. Here we set te to be 1/500 s to avoid
overexposure and then record a video in 30 fps. When a tripod is
used, PSNR goes to 30 dB but CW-SSIM remains low at 0.5 using
1000 frames, which means the impact of stripes on structure of scene
is still strong although intensity does not differ substantially, making
quality still unacceptable for professionals who spend such a great
cost.We also ask 5 volunteers to hold the smartphone as stable as
they can on a table, and Fig. 27 shows the quality is even lower,
because it is impossible to completely avoid dithering with hands
even with anti-shake technology, making recovered scene unview-
able. Extending the recording duration increases the number of
frames recorded by the attacker, but it also increases disturbance
and probability of being identified by the protected user, making it
risky and impractical for the attacker to pursue higher quality.

Image recovery processing attack. Fig. 28 shows the image
quality after post-processing with denoising or de-banding (Sec. 6).
The denoising methods fail to improve the quality significantly as
the disruption pattern of LiShield does not fit any known noise
model (e.g. the commonly used Gaussian model). BM3D can im-
prove the CW-SSIM slightly because it decreases contrast slightly,
but the PSNR remains low. The deformation removal methods (i.e.,
de-banding and unstriping) do not help either, since interpolation
process cannot bring back the correct pixel values. The CIEDE2000
color metric also shows a low quality (well above 6). Thus, it is
practically impossible to remove LiShield’s impact by image process-
ing, despite some unnoticeable increase of the image quality. More
advanced computer vision techniques may provide better recov-
ery, but even they will not recover the exactly original scene since
information is already lost at capture time.

Impact of ambient light. We evaluate LiShield’s performance
under different types of ambient lights and LED power to verify
LiShield’s robustness. As shown in Fig. 29, the stripes are almost
completely removed under direct sunlight due to its extremely high
intensity, making the quality comparable with the unprotected case
(PSNR>30dB, CW-SSIM>0.9). However, CIEDE2000 remains rela-
tively high as LED’s light affects the scene’s color tone significantly,
which explains unexpected image quality degradation under dif-
fused sunlight and office light in Fig. 29. Flash light can increase
the quality slightly thanks to its close distance to the scene, but
the improvement is marginal and far from unprotected. In addition,
Fig. 30 shows a slight decrease of detection rate of barcode under
direct sunlight, but the decrease is marginal in every case. Thus,
we conclude that LiShield is robust against ambient light, and still
guarantees protection with barcode under direct sunlight.

Impact of distance.We vary the distance between camera and
a single LED from 1 m to 3 m. The scene resolution lowers at longer
distance. Fig. 24 shows the barcode detection rate remains high
(> 90%) at 2 m range (where the bright area is only 1/4 on the image

compared with 1 m case). However only 70% rate can be achieved
at 3 m range, since the bright area is too small on the image (1/9).
But multiple LEDs may be distributed to increase the coverage. To
make a fair comparison on quality, we tailor the same scene from
image to avoid interference from surrounding objects. Fig. 31 shows
that even under 3 m, CW-SSIM is still way below 0.9 and the quality
only increases slightly with distance. Thus, LiShield’s working range
can cover most of common applications with only a single smart LED.
With multiple smart LEDs, LiShield’s coverage can be scaled up
just like normal lighting (Sec. 8).

8 DISCUSSION
Considerations for high peak intensity. Considering the hard-
ware capability and energy costs, we estimate the optimal LED
peak intensity to be 20 kLux, and average intensity is 10 kLux with
0.5 duty cycle, which is an order of magnitude lower than outdoor
intensity in a sunny day [85], and generally considered safe even
for long activities [82]. Our smart LED is brighter than typical in-
door lighting, which is usually less than 1 kLux. But we found the
intensity is always acceptable by perception in our experiments,
likely because the brightness perceived by human eyes and actual
light intensity follow a logarithmic relationship. Since the privacy
protection has higher priority than power savings, we expect slight
increase of illumination brightness is acceptable in the target use
cases.

Multiple LEDs and multiple cameras. When a large indoor
environment needs LiShield’s protection, the smart LEDs can be
deployed pervasively to cover the whole area, just like regular light-
ing. Availability of multiple LEDs can also increase the diversity of
the protection, since each of them can be controlled independently.
We leave the optimization of such multi-LED setup for future work.

With the presence of multiple unauthorized cameras, LiShield
needs to ensure no additional information can be recovered by com-
bining images across them, which may impose extra constraints
on waveform design. Meanwhile, when multiple authorized cam-
eras (Sec. 4) are present, LiShield can serve them in a round-robin
manner. Better strategies may require synchronization between
cameras and we leave them for future work.

Attacker with special equipment. Global shutter cameras,
ND filters (optical attenuators) and similar professional devices may
compromise LiShield’s protection. While this is inevitable, we note
that such devices are usually bulky and costly, which makes them
obtrusive and less accessible by everyday photographers. Thus,
LiShield may still protect the privacy of its users by demotivating
such attacks. An advanced version of LiShield that fully prevents
such attacks will be left for our future work.

Recording a high speed video (e.g., 120 FPS) by advanced cameras
will not significantly weaken LiShield’s protection, as stripes across
frames will be similar. High FPS also requires shorter exposure,
which actually amplifies LiShield’s effect. Along with the backup
barcode protection, which is not affected by the camera’s frame
rate, the threat posed by high speed camera is limited.

9 RELATEDWORKS
Anti-piracy and capturing-resistant technologies. Camera
recording of copyright screen-displayed videos (e.g., in a movie
theater) accounts for 90% of pirated online content [104]. Since
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screen refresh rate is much higher than video frame rate, Kaleido
[104] scrambles multiple frames within the frame periods to deter
recording, while preserving viewing experience by taking advan-
tage of human eyes’ flicker fusion effects. Many patented tech-
nologies addressed the same issue [10, 11, 20, 21, 30, 43, 61, 68, 71–
73, 75, 79, 94, 100]. In contrast, the problem of automatic protection
of private and passive physical space received little attention. Cer-
tain countries [19, 28] dictate that smartphone cameras must make
shutter sound to disclose the photo-capturing actions, yet this does
not enforce the compliance, cannot block the photo distribution,
and cannot automatically protect against video recording.

Certain optical signaling systems can remotely ban photography
in concerts, theaters and other capturing-sensitive sites. Courteous
Glass [42] and a recent Apple patent [84] augment wearable devices
with near-infrared LEDs, which are invisible to human but can
be captured by camera, to convey hidden privacy appeal of the
wearers. These LEDs cannot enforce protection (e.g., through image
corruption as in LiShield), and convey information only when they
fall in the camera’s field of view. BlindSpot [86] adopts a computer
vision approach to locate retro-reflective camera lenses, and pulses
a strong light beam towards the camera to cause overexposure.
Despite its sophistication, approach fails when multiple cameras
coexist with arbitrary orientations.

Invisible screen-camera communications. Recent research
also explored novel ways of screen-to-camera visible light commu-
nication, by hiding information behind the display. VRCodes [97]
carries information through high frequency changes of selected
color, which can be decoded by rolling-shutter cameras. Hilight
[47] conveys information by modulating the pixel translucency
change in subtle ways. ARTcode [99] embeds data into images by
modifying the pixels’ colors, which is imperceptible due to human
eyes’ limited pixel resolution. This line of research is also related
with the classical watermarking which hides copyright and authen-
tication information in images/videos through spatial/frequency
domain re-encoding [1, 59]. These mechanisms are applicable when
the users have full control over the image/video source, but cannot

prevent malicious capturing/distribution of physical scenes. On the
other hand, conventional luminaries bear natural flickering effects
that have been leveraged for localization purposes [102, 103, 106],
but the frequencies are too high to cause visible corruption on the
camera images.

Privacy protection for images/videos. Conventional visual
privacy-protection systems have been replying on post-capture pro-
cessing. Early efforts employed techniques like region-of-interest
masking, blurring, mosaicking, etc. [56], or re-encoding using en-
crypted scrambling seeds [18]. There also exists a vast body of
work for hiding copyright marks and other information in digital
images/videos [27, 38, 39, 45, 52, 63, 89, 90, 97, 101]. LiShield’s bar-
code protection is inspired by these schemes, but it aims to protect
physical scenes prior to capturing.

One common challenge in visual privacy protection is to identify
the privacy preference. Location-bound privacy expression can
be achieved in everyday life using special signs. Privacy.Tag [7]
allows people to express their privacy preference by wearing QR
codes. I-Pic [2] allows people to broadcast their privacy preferences
using Bluetooth. COIN [105] matches a user’s face to a prescribed
privacy preference, and can automatically detect and mask people
who do not want to be captured. P3 [63] protects photo-sharing
privacy by encoding an image into a private, encrypted part, and a
public, standards-compatible part. PrivacyEye [65] allows a user to
manually mark regions on an image that permit access from mobile
apps. PlaceAvoider [80] allows first-person camera users to capture
and blacklist sensitive spaces a priori, and use image matching to
block subsequent pictures containing such spaces. These systems
only work when the user has full control over the camera.

10 CONCLUSION
Privacy protection in passive indoor environment has been an im-
portant but unsolved problem. In this paper we propose LiShield,
which uses smart-LEDs and specialized intensity waveforms to
disrupt unauthorized cameras, while allowing authorized users to
record high quality image and video. We implemented and evalu-
ated LiShield under various representative indoor scenarios, which
demonstrates LiShield’s effectiveness and robustness. We consider
LiShield as a first exploration of automatic visual privacy enforce-
ment and expect it can inspire more research along the same direc-
tion.
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