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Abstract—We explore the use of TV White Space (TVWS)
wireless networks for providing robust and long range connectivity
to vehicles. A key distinctive requirement of TVWS networks is
the power asymmetry – the static APs are allowed to transmit
at up to 4 W, while the mobile clients in vehicles are limited
to only 100 mW. Our measurements reveal that the power
asymmetry not only causes severe uplink blackouts but also poses
significant coexistence problems, as high-power fixed nodes can
easily starve the low-power mobile ones due to carrier sensing
loss. To tackle these unique challenges, we propose a cross-
layer design of a Direct-Sequence Spread Spectrum (DSSS) based
system. We employ an adaptive DSSS mechanism that strategically
configures the spreading code, so as to boost uplink coverage
while maximizing throughput. We further design a traffic-aware
code assignment algorithm for uplink packets to balance the
requirement of throughput-intensive and latency-sensitive flows.
We have implemented the design on a TVWS software-radio
platform on a moving vehicle in an urban environment, and
demonstrated that link asymmetry can be completely removed
to support realistic application traffic, while the carrier sense loss
rate at fixed nodes can be reduced by around 85%.

I. INTRODUCTION

High bandwidth, robust Internet connectivity and long range
are key requirements for vehicular networks to enable di-
verse set of applications, e.g., improved traffic intelligence,
transportation safety, infotainment and location-aware services.
Many research systems such as MAR [1], WiRover [2], ViFi [3]
and CaberNet [4], have strived to fulfill the vision of vehicular
networking, using existing cellular technologies (3G/4G), and
sometimes augmented by opportunistic WiFi access. However,
cellular networks are costly and usually delay-prone [5]. On
the other hand, WiFi has limited coverage.

The TV White Space (TVWS) spectrum on the UHF band
(470 – 698 MHz), recently released for unlicensed usage in the
U.S. [6], offers a lucrative wireless communication medium.
The low cost and good propagation characteristics of UHF
make the whitespaces attractive for vehicular networking.

However, when operating in vehicular scenarios, TVWS
networks face a unique challenge: the huge transmit power
asymmetry between fixed and mobile nodes. According to the
FCC rules [7], any static device (e.g., an AP) can transmit
with maximum EIRP of 4 W, whereas, mobile devices (e.g.
handsets or gateways on vehicles) are constrained to only 100
mW. The conservative limit for mobile devices aims to prevent
harmful interference to the primary incumbents during roam-
ing. However, the resulting 40× power asymmetry severely
amortizes benefits of UHF band and poses two obstacles for
vehicular networks over TVWS. First, the power discrepancy
translates into around 4× of downlink/uplink range mismatch
in vehicle-to-infrastructure scenarios [5]. Thus, uplink becomes
the connectivity bottleneck. Uplink connectivity may be en-
hanced by a dense AP deployment, but the APs have to waste
their downlink coverage advantage, and the infrastructure cost
may become formidable. Second, certain static non-AP high-
power transmitters may starve the low-power mobile devices.

Unlicensed TVWS networks (e.g. IEEE 802.11af [8]) typically
use CSMA/CA for channel contention. Although a low-power
device may hear a high-power one’s transmission and back off
for it, the reverse does not always hold, which leads to the latter
arbitrarily interfere ongoing transmissions from the former.

The transmit power asymmetry problem itself already exists
in cellular networks, yet, the legacy solution does not readily
apply to TVWS networks. WCDMA enforces centralized policy
for power equalization to ensure signals from low-power trans-
mitters are not drown [9], which can be hardly imposed on
unlicensed and unmanaged TVWS devices. LTE basestations
have 20 dB higher transmit power than mobile clients [9].
The resulting downlink/uplink gap is filled by making the
basestation RF front-end 100× more sensitive, through large
form-factor antennas and high-end low-noise amplifiers. Such
solutions incur huge infrastructure cost and are inappropriate
for consumer-grade TVWS deployment. Even if the TVWS APs
can sustain the cost, static high-power consumer devices may
not, and will remain a threat to starve low-power nodes.

In this paper, we tackle the power asymmetry problem in
TVWS through a cross-layer design, referred to as adaptive
DSSS code modulation. A DSSS transmitter spreads a data
symbol’s energy over a sequence of N samples, called a code.
The receiver aggregates the energy through matched filtering,
which can theoretically improve the link SNR by N times, i.e.,
achieving a 10 log10(N) dB processing gain [10]. Ideally, with
a sequence length N = 40, a mobile TVWS device can bridge
the 40× power gap between static nodes.

Our empirical investigation reveals unique challenges in
realizing this vision in practical TVWS networks, which are
addressed through two core components.

(i) Although a longer DSSS code provides higher SNR
improvement, it costs more channel time. Thus, our adaptive
DSSS protocol judiciously chooses the code length that ensures
coverage, while minimizing throughput loss. Balancing this
tradeoff requires knowledge of the processing gain of codes,
which is shown to be environment dependent in our experi-
ments. We thus design a set of run-time estimation algorithms
leveraging the inherent structure of DSSS modulated packets.

(ii) Choice of code length may garner high throughput for
one traffic flow, but adversely affect delay-sensitive flows.
We strike a fine balance through a traffic-aware code length
assignment algorithm when different traffic patterns coexist.
The problem is formulated as a utility optimization problem,
which we found to have optimal substructure and can be solved
through a pseudo-polynomial algorithm.

To validate the mechanisms, we have prototyped adaptive
DSSS on a TVWS software-radio platform that operates on a
spectrum with FCC-granted experimental license. Our imple-
mentation extends the 802.11b PHY layer which uses a fixed
DSSS code length. Our experiments in an outdoor vehicular
environment demonstrate that, the adaptive DSSS protocol can
maintain uplink connectivity whenever the downlink can be
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Fig. 1. Transmitter and receiver structure for DSSS communication
and the evolution of power spectral density of the DSSS signal from the
transmitter to the receiver.

reached, albeit at the cost of reduced uplink throughput. In
contrast, an OFDM uplink, even with oracle rate adaptation, can
maintain the connectivity for only 43% of the time. Adaptive
DSSS reduces the carrier sensing failure rate at high-power
static nodes by around 85%, thus preventing them from inter-
fering low-power mobile nodes. For delay-sensitive applications
our scheme performs 2.2× better than the OFDM case in terms
of deadline misses, while performing equally well in terms of
throughput for throughput-intensive applications.

DSSS modulation has been adopted in the early generation of
WiFi (IEEE 802.11b). Our vision is that, the 802.11b’s mature
baseband silicon implementation can be reused and revived to
complement emerging TVWS networks (e.g., 802.11af) when
they encounter power asymmetry. By trading channel time
usage for coverage, DSSS inevitably leads to lower uplink
throughput than downlink. But, our experiments demonstrate
that many meaningful vehicular network applications can still
be supported, given the downlink-dominated Internet traffic. In
addition, once the uplink connection bottleneck is eliminated,
its bit-rate can be boosted by other means, e.g., opportunisti-
cally aggregating spectrum resources.

II. BACKGROUND, MOTIVATION AND FEASIBILITY STUDY

A. DSSS Communication Primer

The basic operation of a DSSS communication system is
shown in Fig. 1. At the transmitter, each data symbol is
spread by multiplying with a high-rate random sequence called
spreading code. The nature of the high-rate spreading signal
causes the power spectral density (PSD) to spread over a wider
frequency range than the original data signal. The output signal,
when transmitted over-the-air, experiences propagation loss,
multi-path distortions, and noises.

At the receiver, a matched filter de-spreads the received
signal by correlating it with the same spreading sequence
employed by the transmitter. Such correlation boosts the power
spectrum of useful information, whereas, the noise spectrum
level remains the same, thus achieving an extra processing gain,
as shown in the evolution of PSD in Fig. 1. A spreading code of
length N theoretically achieves a processing gain of N times,
equivalently boosting received SNR by 10 log10(N) dB [11].
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Fig. 2. (a) White space range asymmetry in Outdoor. (b) Experimental
setup for indoor whitespace.

B. Power asymmetry causes uplink blackout

To understand the practical impacts of the power asymmetry
issue, we measure the uplink/downlink coverage of a TVWS
network in an outdoor environment (Fig. 3). The experiments
run on our whitespace software-radio testbed, which imple-
ments both OFDM and DSSS modulation (Sec. V-A).

A mobile client is moved to 8 different locations denoted by,
P1,P2, . . . ,P8. The AP is statically placed in a 4th floor room
of a nearby office building with its antenna facing towards the
outdoor clients. We first run OFDM BPSK (modulation scheme
in 802.11af) for both types of nodes. The client transmits at 100
mW and the AP at 1 W due to hardware limitation. As FCC’s
power limit for static device is 4 W, we extrapolated by adding
6 dB (∼ 10 log10(4)) to the SNR of downlink.

Fig. 2(a) shows the CDF of the detected packets. For down-
link, due to occasional tall building blockages, around 25%
packets are not detected and all detected packets can be decoded
successfully. For uplink, more than 60% uplink packets are not
even detected by the AP, with only 37% of detected packets
successfully decoded. In contrast, with DSSS modulation of
code length 64, the uplink performance almost matches with
downlink, i.e., uplink is no longer the bottleneck of network
coverage. Therefore, with traditional OFDM, power asymmetry
causes severe uplink connectivity blackouts in TVWS networks,
which can be potentially prevented using DSSS.

C. Power asymmetry causes starvation of mobile clients

As discussed in Sec. I, the FCC rule [7] may cause starvation
of low-power mobile clients when they coexist with non-AP
high-power fixed clients. To understand the problem in detail,
we place three high-power fixed clients in the outdoor scenario
denoted by, HP1,HP2 and HP3 (Fig. 3). We measure the
fraction of mobile clients’ packets that are not sensed by such
high-power nodes. Similar to the configuration in [12], a packet
is not sensible if its RSS is at the noise-floor level (0 dB SNR).

Fig. 4(a) shows the result. Take the client location P4 as an
example. The HP1, HP2 and HP3 fail to sense 92%, 3% and
61% of P4’s packets respectively. For client location P6, HP1
and HP2 can sense all packets, while HP3 fails on 100%.

Fig. 4(b) shows the result in more detail when the mobile
client transmits from location P5. The CDF plot shows the
distribution of received SNR at the fixed clients. Note that HP1
fails to detect 60% packets, while HP2 and HP3 fail on 3%
and 98% packets respectively. Since all 3 fixed nodes are close
to the AP, carrier sensing failure will cause severe collisions
for uplink packets from the mobile client, thus starving its
transmission. In contrast, when using DSSS code length 64, the
AP and all fixed clients (solid CDF curve) are able to detect
all uplink packets from P5.
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Fig. 3. Experimental setup for outdoor whitespace with 3 high power
static clients. Distances are shown. Note building and tree locations.
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Fig. 4. (a) Carrier sensing loss rate at three high power clients from
all 8 experimental locations. (b) Distribution of SNR at high power fixed
clients from location P5.

III. THE NEED FOR ADAPTING CODE LENGTH

A. Balancing coverage and throughput

The above field experiments indicate that, the two con-
sequences of power asymmetry, i.e., uplink/downlink range
mismatch and low-power mobile node starvation, can be almost
avoided using a long DSSS code sequence (e.g. length 64).
However, a longer DSSS sequence length costs longer channel
time for each data symbol inside a packet, and therefore, the
achievable throughput is proportionally reduced.

To understand this tradeoff in real settings, we use our
testbed to measure the throughput when the packet is DSSS-
modulated with code length 64 and 11, respectively. We ran the
experiments in two different settings, (i) Indoor walking, at an
average speed of 1.5 m/s and following the path in Fig. 2(b)
(start: P1). (ii) Outdoor driving, with speed between 15 − 35
mph and following the path in Fig. 3 (start: P7).

Fig. 5 shows the uplink throughput variation over time. For
indoor case, near the regions of P1 and P2, the code length 11
provides higher throughput owing to less channel time cost.
However, in regions with weak uplink signals due to long
distance and wall blockages (P6, P4,P5), its throughput is
lower than that of code length 64. In certain other regions (P10,
P9, P8), its throughput plummets to zero, but, the 64-bit DSSS
code link can sustain the connection with throughput between
25−30 kbps. A similar observation was made in outdoor case
shown in Fig. 5(b). In summary, adapting code length is of
utmost importance as, different choice of code length can result
in higher performance, depending on the channel condition.

B. Traffic-aware code length adaptation

A strawman approach to balance between the uplink cover-
age and throughput is to perform just per-packet adaptation and
choose the code length that maximizes the throughput. Even if
this can guarantee the throughput requirement, it is not enough.
We envision future TVWS networks will support a diverse
range of applications, including not only throughput-intensive
(e.g., file downloading and content-rich web browsing), but
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Fig. 5. Uplink throughput variation of two code lengths: (a) Indoor
walking (blackout region for length 11 is zoomed in). (b) Outdoor driving.

also delay-sensitive (e.g., safety warning, GPS location update)
traffics. While solving the power asymmetry problem, adaptive
DSSS faces a new challenge under such blended traffic patterns.

In particular, a long spreading code provisions high uplink
reliability, but may adversely affect delay-sensitive packets. For
instance, a 64-bit code extends a nominal packet length by 64
times, which may cause urgent packets to miss their deadlines.
Certain loss-tolerant packets, such as video/audio streaming,
may prefer less reliable short code in order to meet their own
requirements, while saving time for others.

Therefore, when adapting code length for uplink packets’
transmission, we need to account for not only the throughput,
but also short-term packet latency requirement. Our adaptive
DSSS design offers one viable approach towards this end.

IV. ADAPTIVE DSSS DESIGN

A. Design overview

Built on our previous feasibility and motivational studies, the
adaptive DSSS protocol is designed to provide robust uplink
connectivity between moving vehicles and a TVWS infras-
tructure node (i.e., the AP). It is equally applicable to indoor
TVWS networks for handheld mobile devices that suffer from
the power asymmetry problem. Our design runs in conjunction
with the OFDM-modulated 802.11af TVWS network standard.
By default, the OFDM mode is used for both the downlink
and uplink. The AP initiates the adaptive DSSS protocol for a
mobile client whenever it senses the uplink SNR goes below a
threshold, chosen to be the minimum SNR needed to support
the lowest OFDM bit-rate.

The protocol adapts packet-level DSSS code assignment on
the basis of intervals, each containing multiple packet trans-
missions. Intuitively, the adaptation interval is the look-ahead
time within which channel is relatively stable, and thus we can
schedule the code assignment for all candidate packets within
the interval (Sec. IV-F). In the beginning of each interval, the
client sends a probe packet containing a known preamble and
information about candidate uplink packets (size and relative
priority) within the interval. The information is modulated via
the longest code (Sec. IV-B), to guarantee uplink is reachable.

Upon receiving the probe packet, the AP leverages the known
preamble to estimate the processing gain of all DSSS code
sequences (Sec. IV-C). Then, it runs a code adaptation algo-
rithm to derive an optimal configuration across two dimensions
— candidate packets in current probing interval and DSSS
code sequences to be assigned to them — to maximize the
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Fig. 6. (a) Adaptive DSSS probe packet structure. (b) CDF of processing
gain differences of 10 pseudo-random code w.r.t. original Barker code.

total system utility. It executes either per-packet (Sec. IV-D) or
multi-packet (Sec. IV-E) assignment, depending on the probing
interval length (Sec. IV-F). The AP informs the client of the
code assignment through a probe response packet.

The client’s subsequent uplink packets employ the assigned
codes. In case, it observes severe uplink packet losses, it infers
there may be a sudden channel degradation that invalidates the
optimal configuration. Thus, it terminates the current interval
early by sending a new probe packet.

Below we detail the essential components in the protocol.

B. DSSS code sequences design

Theoretically, a DSSS code length of N = 40 can boost
the uplink SNR by 40×, thus bridging the power asymmetry
(Sec. II-A). However, the practical processing gain is lower
under multipath reflections and Doppler effect, which smear
symbol boundaries and reduces the despreaded signal strength.
Our system chooses 64-bit as the longest code length, which
has empirically proven to be able to bridge the uplink/downlink
SNR gap in real environment (Sec. II-B).

A key requirement for the DSSS code sequence lies in a
strong autocorrelation property, i.e., a high gain of the auto-
correlation peak over the sidelobes. The Barker code is a set
of random sequences that satisfy ideal autocorrelation with a
N -times peak gain. However, the longest known Barker code
only has a sequence length of 13-bit and the 802.11b uses
11-bit code. Our system thus uses alternative pseudo-random
sequences generated using Binary Galois Field LFSR [13],
which can have arbitrary length but lower peak gain. We choose
a set of 2th-power sequence lengths, from 2 up to 64.

To understand the impact of the imperfect peak gain in real
channel, we randomly pick 10 such sequences of length 11-
bit and compare the processing gain differences w.r.t. to the
802.11b Barker code. The experiments run on our testbed
with DSSS modulation (Sec. V-A). Fig. 6(b) shows that the
85th percentile processing gain difference lies within ± 1 dB,
with worse gain difference being -2.3 dB. Such difference is
tolerable and can be compensated when we use a long sequence.

C. Processing gain estimation

To estimate the processing gain of different code lengths, the
AP only needs to inspect the client’s probe packet that con-
tains preamble known as the probing preamble. The preamble
comprises two small segments of symbols modulated using the
longest and shortest spreading code, respectively (Fig. 6(a)).
Simply put, the AP first estimates the SNR of these two code se-
quences based on the two segments it received. Then it predicts
the processing gain of all code sequences based on the SNR
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estimation results. This saves significant overhead compared
with a naive preamble containing all possible sequences. Below
we detail these two steps separately.

1) SNR and BER estimation: Suppose the known preamble
segment contains L symbols. Let Pm denote the corresponding
received raw samples, which have been modulated using DSSS
code cm with code length nm. The AP performs matched
filtering of the samples with the same DSSS code and the output
is given by, MFm = Pm∗ cm, where ∗ is the convolution
operator. It runs a slicer over the matched filter output, sampling
at peak values to retrieve the preamble symbols. Corresponding
L peak values can be represented as,

Zm,k = max
qk≤j<qk+nm

|MFm,j |, ∀ 1 ≤ k ≤ L

q1 = 1, qk+1 = argmax
j

|MFm,j |+ 1, ∀ 1 ≤ k < L
(1)

The combined signal+noise energy can be calculated by using
the expectation of the peak values,

Sm +Nm =
1

2

[ 1
L

L∑
k=1

Zm,k

]2
(2)

while the noise floor is approximated as the variance:

Nm =
1

L− 1

L∑
k=1

Z2
m,k −

1

L(L− 1)

[ L∑
k=1

Zm,k

]2
(3)

Then, the post-processed SNR of the segment modulated using
DSSS code cm can be calculated as, SNRm = Sm/Nm.

Given the SNR of decoded symbols, the BER is simply the
probability that one Gaussian random variable (corresponding
to one noisy symbol) smears into the other’s “region”, which
can be modeled by the standard Q-function:

εm = Q(
√

SNRm) (4)
2) Processing gain prediction: To understand how practical

processing gain deviates from theory, we measure its variation
over different channel conditions. Fig. 7(a) shows that for
different outdoor locations, the same DSSS code length 64
achieves different processing gains. For example, location P2
(in Fig. 3) has an average processing gain of 14 dB with std.
0.9 dB over 60 seconds, whereas location P7 experiences an
average of 11.9 dB with std. 1.3 dB. Fig. 7(b) shows the
processing gain of two different DSSS code sequences carried
by the same packets. Interestingly, the channel variation affects
both of them almost following a consistent trend.

We leverage this observations to predict the processing gain.
Denote the longest and shortest code sequence length as Nmax

and Nmin, respectively. The theoretical processing gain of these
two sequences differs by, Gmax − Gmin = 10log10(Nmax) −
10log10(Nmin) dB. Using the probing preamble, the AP esti-
mates these two sequences’ SNR levels following Sec. IV-C1,
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denoted as SNRmax and SNRmin respectively. Suppose channel
distortion reduces the gain equally by a discounting factor α,
e.g., Gmax(α) = 10 log10(αNmax), 0 < α ≤ 1. Then, the AP
can estimate α as follows:

α = (Nmin/Nmax) · 10(SNRmax−SNRmin)/10 (5)
Then, for any other spreading code with length N , it predicts
the processing gain as: GN (α) = 10 log10(αN).

Denote SNRN as the absolute achievable SNR when using
DSSS code length N . Then it can be estimated as:

SNRbaseline = SNRmin −Gmin

SNRN = GN (α) + SNRbaseline
(6)

where SNRbaseline is the absolute SNR when no DSSS code is
used, or equivalently, code length N = 1.

D. Per-packet code assignment
Based on the SNR predicted using Eq. (6) and model in

Sec. IV-C1, a receiver can map the estimated BER εm to
expected instantaneous throughput under a given configuration.
For simplicity, we assume no error correction code is adopted.
Then, the packet level throughput while using a DSSS code cm
of length nm can be modeled as:

Thm =
L ∗ (1− εm)L

nm × t
(7)

where L is the packet size and t is the original packet duration
without using any DSSS code and including MAC layer over-
heads. This can be estimated using the model proposed in [14].
The AP can choose the DSSS code cm that maximizes Thm.

E. Traffic-aware multi-packet code assignment
The traffic-aware multi-packet code assignment algorithm is

designed to find utility-optimal code assignment for blended
traffic patterns, depending on their delay/throughput require-
ments. Recall that, the AP runs this algorithm by leveraging
the candidate uplink packets’ priority and length information
collected from the clients’ probe packet. We first formulate the
code assignment as a utility maximization problem and solve
it using a dynamic programming framework. Then, we use the
solution to assign optimal DSSS codes to candidate packets.

1) Code assignment as a utility maximization problem:
Problem formulation. Denote T as the duration of probing
interval. Suppose a client has J candidate packets for the
interval. The jth packet has length Lj . Each packet contains
possibly different priority levels denoted by, p1, p2, . . . , pJ . We
will discuss in Sec. V-D about how to design the priority levels
based on the applications’ delay/throughput requirements. Sup-
pose there are M codes available denoted by, c1, c2, . . . , cM ,
which are sorted descendingly according to their length ni
(i = 1, 2, . . . ,M ). The BER εij for a packet j while choosing
the DSSS code ci of length ni can be estimated by Eq. (4). The
corresponding instantaneous throughput is denoted by, Thij and,
can be calculated by leveraging Eq. (7).

Let uij be the utility obtained when receiving an uplink packet
j modulated using code ci. To incorporate both priority and
throughput, we model the utility as:

uij = pj × Thij (8)
Let the binary variable xij ∈ {0, 1} indicate if packet j should

be modulated and sent with DSSS code ci of length ni. The
problem of utility-optimal code assignment can be cast as:

max

J∑
j=1

M∑
i=1

xiju
i
j

s.t.

M∑
i=1

xij ≤ 1, and
J∑

j=1

M∑
i=1

xijnitj ≤ T

(9)

The first constraint means a packet can be modulated using at
most 1 DSSS code. The second constraint requires the total
amount of time for transmitting all the packets should not
exceed the probing interval. If a packet is not assigned any
code, it should be deferred to in the next interval.

Problem (9) can be reduced from multiple-choice 0-1 Knap-
sack problem [15, p. 425–427], and thus is NP-hard. Fortu-
nately, we find it has inherent optimal substructures that allow
for a dynamic programming solution, which we detail below.

Optimal substructure and solution. We first sort candidate
packets in descending order of priority. Define U(j, i, t) as
the optimal utility for packets Pl, l = 1, 2, . . . , j with DSSS
code up to ci (code length ni) and total transmission time
bound t. Let τj1,j2,i =

∑j2
l=j1

nitl be the amount of time
needed to transmit packets within index range [j1, j2], and
using code ci. To compute the optimal utility U(j, i, t), note
that only the last few packets ending at Pj may choose code
ci. Denote these packets as Pl, l = k+1, . . . , j (if k = j, then
no packets are transmitted with code ci). Then, we find the
optimal substructure by representing U(j, i, t) as the summation
of the optimal utility of the first k packets using codes up
to ci−1 within the remaining time t − τk+1,j,i, and the utility
obtained by transmitting packets k + 1 to j using DSSS code
ci. Maximizing over all possible k, we obtain the recursive
solution for U(j, i, t) as follows,

U(j, i, t) = max
0≤k≤j

[
U(k, i− 1, t− τk+1,j,i) +

j∑
l=k+1

ui
l

]
(10)

q(j, i, t) = argmax
0≤k≤j

[
U(k, i− 1, t− τk+1,j,i) +

j∑
l=k+1

ui
l

]
(11)

In Eq. (11), q(j, i, t) is the memoization data structure of
dynamic programming that keeps track of the best parameter
k and corresponding DSSS code ci that solves Eq. (10), which
is later used for the optimal code assignment.

For the whole probing interval T , we can compute the
optimal utility U∗ and jointly calculate the optimal packet
number j∗ and optimal DSSS code index i∗ as:

U∗ = max
1≤j≤J
1≤i≤M

U(j, i, T ), {j∗, i∗} = argmax
1≤j≤J
1≤i≤M

U(j, i, T )
(12)

where j∗ achieves the optimal utility, indicating that packets
j > j∗ are dropped from the current probing interval and will
be deferred to in the next probing interval.

Algorithm. The dynamic programming procedure to find the
optimal utility, maximum number of packets and DSSS code
index within the probing interval is illustrated in Alg. 1.

Boundary conditions. To bootstrap the recursive solution to
Eq. (10), we derive the boundary conditions for U(j, i, t) as:

U(j, i, t) = −∞, if t < 0

U(j, 0, t) = −∞, if j > 0, t ≥ 0

U(0, i, t) = 0, if i ≥ 0, t ≥ 0
(13)

The first two equations state that, t < 0, or i = 0 and j > 0 is
not a valid choice for the utility function U(j, i, t). The valid
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Algorithm 1 Packet scheduling in a probing interval
1: Compute the boundary conditions using Eq. (13).
2: for all j, i, t do
3: Compute U(j, i, t) iteratively using Eq. (10).
4: Calculate and store q(j, i, t) using Eq. (11).
5: end for
6: Find the optimal utility U∗, optimal packet number j∗ and

the optimal DSSS code ci∗ using Eq. (12).

Algorithm 2 Multi-packet DSSS code assignment
1: t = T , j = j∗, i = i∗, k = q(j, i, t).
2: Packets Pl, l = k+1, . . . , j are assigned DSSS code ci (if
k == j, no packets are assigned DSSS code ci).

3: If k ≤ 0, go to Step 4. Otherwise, t = t− τk+1,j,i, j = k,
i = i− 1, k = q(j, i, t), go to step 2.

4: All packets have been assigned optimal DSSS codes.

DSSS code index choices range from 1 to M and i = 0 is a
dummy index for initialization only. The third equation models
a dummy packet with index j = 0 and zero utility.

2) Optimal DSSS code assignment: Finally, the multi-packet
code assignment algorithm assigns DSSS codes in the current
probing interval T , based on the above utility-maximization
solution IV-E1. This is formally described in Alg. 2. For J
uplink packets, M DSSS codes and probe interval T , both the
time and space complexity of the algorithm is O(JMd T

τmin
e),

where τmin is the minimum transmission time required for
one data packet. The algorithm is pseudo-polynomial as the
time complexity is polynomial w.r.t. the value of d T

τmin
e but

is exponential w.r.t. the number of bits required to store d T
τmin
e

[15]. In practice, each interval T only contains tens to hundreds
of packets, thus the algorithm can run very efficiently. Indeed,
this is what we observed in our implementation.

Optimality of DSSS code assignment when probe interval
changes. Recall a client can terminate the current interval under
sudden channel condition changes. It may seem that the above
code assignment algorithm will be invalid then. However, owing
to the optimal substructure in the utility-maximization solution,
any solution that has been executed up to this point is still
optimal. Said differently, the multi-packet DSSS code allocation
algorithm is independent of sudden channel condition change.

F. Adapting the probing interval
Measurement studies show that channel coherence time may

vary between 10 ms. and 200 ms. in real vehicular networks
depending on speed [16]. We thus adopt an Additive Increase
/ Multiplicative Decrease (AIMD) strategy to update the adap-
tation interval. This is formally described in Alg. 3.

More specifically, the client starts with maximum interval
Tmax and sends the probe packet to the AP. In subsequent
uplink transmission, the client keeps a moving average of
packet throughput Thwin across the interval. Let E be the
expected throughput estimated during initial code assignment.
When Thwin/E drops below a threshold σ (0.8 by default),
the channel is likely to have changed remarkably compared
to the beginning of the interval. Thus, the client decreases
the adaptation interval by a multiplicative factor η = Thwin

σE .

Algorithm 3 Update probing interval and choose between per-
packet and multi-packet code assignment protocols

1: Initialize probing interval T : T = Tmax.
2: Send a probe packet to AP for multi-packet code assign-

ment in interval T (Sec. IV-E).
3: Keep moving-average throughput Thwin over an interval.
4: if Thwin ≈ 0 then Invalidate codes and go to step 2.
5: else if Thwin < σE then T = max(T × Thwin

σE , Tmin);
6: else T = min(T + β, Tmax);
7: end if
8: if T == Tmin then Send a probe packet to AP for

per-packet code assignment (Sec. IV-D) and go to step 3.
9: else Go to step 2.

10: end if

Otherwise, the vehicle increases the probing interval T by β
(additive increase). The min. and max. interval lengths (Tmin

= 1 ms. and Tmax = 200 ms.) are capped empirically (Sec. V).

V. EVALUATION

A. Testbed and prototype implementation
We implement and evaluate the adaptive DSSS protocol on

the WARP software-radio platform [17]. Each WARP board is
paired with WURC (Fig. 8), a third-party RF front-end [18]
that enables communication over the TVWS band.

To prototype the adaptive DSSS, we first port the GNURadio
implementation of 802.11b PHY (with 11-bit Barker Code
modulation) to the WARP driver. Then, we re-implement the
modulation/demodulation library, which enables DSSS commu-
nication with 2th-power code sequences (Sec. IV-B) and the
flexibility to switch between them. We further reengineer the
preamble structure for the probe packet and implement the run-
time estimation algorithms (Sec. IV-C). For benchmark compar-
ison, we also implement an OFDM modulation/demodulation
layer, following the WARP 802.11g prototype in [19]. This
OFDM layer uses BPSK modulation by default, but the post-
decoding SNR is mapped to an optimal bit-rate using a look-up
table, in order to emulate an oracle rate adaptation scheme.

We found the interface and signal demodulation latency of
the WARP testbed is several hundred milliseconds per-packet,
which is unsuitable for fine-time adaptation. We circumvent this
limitation by continuously sending a pre-built packet comprised
of the probing preamble, which drastically cut the inter-packet
latency to 9 ms. AP’s radio first stores all the received raw
samples, and then processes the samples, demodulate the DSSS
coded symbols, thus obtaining the per-packet SNR, BER and
bit-rate (Sec. IV-C and IV-D) at a 9 ms. granularity. Given these
per-packet statistics, we run the adaptive code assignment and
interval update algorithms (Sec. IV).

For all outdoor experiments, we place the AP and clients
similarly to our field-study in Sec. II. The outdoor client node
runs inside a car with an omni-directional antenna on top (Fig.
8). We also run some of the benchmark experiments in a more
controlled office environment (Fig. 2). All the experiments are
conducted under a FCC experimental license, which allows us
to use the vacant TV channels 40 and 41 (626 – 638 MHz) in
our area. We limit the WARP’s communication bandwidth to
10 MHz to be compatible with the 802.11af 10 MHz mode.
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Fig. 8. Outdoor experimental setup in a car.
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B. Micro-benchmarks

We start by evaluating the efficacy of each individual design
component in the adaptive DSSS protocol.

1) Accuracy of processing gain estimation: We first place
the nodes in fixed locations and evaluate the preamble-based
processing gain prediction algorithm (Sec. IV-C2), in compar-
ison with an oracle that directly uses all the code sequences
to compute the processing gain of each. Each experiment runs
continuously across 10, 000 transmissions, and Fig. 9(a) shows
the CDF of prediction error. The 95th percentile prediction error
is only ± 0.8 dB with worse case estimation error of only -1.1
dB. Fig. 9(b) shows the measured and predicted processing gain
across 4 different locations, which exhibits high consistency.

2) Maintaining uplink connectivity: To evaluate the capabil-
ity to maintain uplink connectivity under power asymmetry, we
follow similar outdoor settings as in Sec. II-B. Fig. 10 shows
the measured uplink throughput of all 8 locations. For OFDM
uplink with oracle bit-rate selection, when the SNR is high
(P3 and P7), the throughput can be higher compared to DSSS
which only uses BPSK under all code lengths. Unfortunately,
for locations P1, P2, P4, P5, P6 and P8, the OFDM uplink has
0 throughput, whereas DSSS can still sustain the connection,
albeit at the cost of low throughput. We emphasize again
that for high-SNR uplink connections, the adaptive DSSS can
switch to OFDM modulation to achieve high throughput (Sec.
IV-A). Our evaluation isolates these two schemes in order to
zoom in the efficacy of adaptive DSSS alone. For low-SNR
cases, DSSS’s achievable throughput is fundamentally limited
by the Shannon’s law, and can be improved by opportunistically
aggregating spectrum resources.
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Fig. 11. Performance of adaptive DSSS scheme in uplink compared to
OFDM: (a) Indoor walking. (b) Outdoor driving.

C. Performance of per packet code length adaptation

Fig. 11(a) shows the throughput variation when the client
moves at walking speed indoor. Between 100th − 400th sec-
onds, wall blockages cause a complete connection blackout
for OFDM, even with oracle rate adaptation. However, the
adaptive DSSS can maintain the uplink connectivity with
35 kbps throughput, which is critical for low-rate real-time
and downlink-dominated traffic. The observation is similar for
outdoor driving case (Fig. 11(b)). Although building blockage
causes connection blackout even in adaptive DSSS case, we can
see the uplink can be sustained whenever the downlink can
be reached. Said differently, the adaptive DSSS successfully
bridges the range gap caused by power asymmetry. In contrast,
OFDM can sustain the connection only for 43% of the time.

D. Traffic-aware multi-packet code length adaptation

We run the traffic-aware code adaptation algorithm using
a trace based emulation by collecting WiFi packet traces
from (i) a FTP session downloading a 25 MB file, (ii) a 3-
minute web browsing session, (iii) a 3-minute VoIP session
using Google+ hangout, and (iv) a 3-minute youtube video
streaming/downloading session. We also generate a synthetic
trace for periodic GPS update to emulate location-based ser-
vices. These traces contain timestamped downlink/uplink data
packets, which are fed into the AP/client’s outgoing queues and
served by the adaptive DSSS protocol. In the traces, we found
only 9.6% data (28% of packets) correspond to uplink traffic.
The traces represent a real vehicular networking scenario with
safety and infotainment applications running together [20].

Given R coexisting traffic patterns, we set traffic priority
range to [1,R]. The real-time and delay-sensitive traffics (i.e.
GPS update, VoIP) are statically assigned highest priority R.
The priority of the non-realtime throughput-intensive (e.g. FTP,
video downloading) traffic dynamically changes following: (1 -
currentThroughput/targetThroughput)×(R-1). We compute the
current throughput via a moving average, and set the target
throughput empirically according to application type.

1) Real-time traffic: We first run two real-time traffic flows
(VoIP & GPS update) simultaneously between the AP and the
vehicle client in outdoor driving mode. For every 10-second
window in the traffic traces, we calculate the percentage of
packets that miss their deadlines. For GPS update, we consider
the deadline of a packet as the average of current and next
packet arrival time, while for VoIP, the deadline is the next
packet arrival time. Besides the oracle OFDM, we also compare
with a naive DSSS scheme that randomly assigns code length
to uplink packets. Note again, the downlink always uses the



8

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D
F

Deadline miss (%)

Multi-packet adaptive DSSS
OFDM w/ oracle rate adaptation

Random code assignment

(a) 0

10

20

30

40

50

(b)

No OFDM packets!

D
ea

dl
in

e 
m

is
s 

(%
)

P2 P8 Vehicle

Adaptive DSSS OFDM Random

Fig. 12. (a) CDF of deadline miss percentage of real-time traffics when
running in outdoor driving scenario. (b) Average deadline miss percentage
of three different clients.

0 150 20010050

Adaptive DSSS

OFDM w/ 
oracle rate
adaptation

250

0 150 20010050 250

Fig. 13. Time series plot of a 80 s. video downloading in different systems
for the outdoor driving scenario. The dark color shows the downloading
time and the light color shows the delay.

OFDM modulation as in 802.11af. To isolate the artifact caused
by building blockage, we discard time period where downlink
itself was not connected, thus focusing on the problems caused
by power asymmetry alone.

Fig. 12(a) shows the CDF of the deadline miss percentage.
The OFDM uplink experiences an average deadline miss per-
centage of 45%, and has 100% deadline miss for more than
41% of the time. This is mainly because the OFDM uplink is
completely broken for a significant amount of time and hence
the client can not even send requests or ACK towards the AP.
In contrast, with adaptive DSSS, we see more than 74% of the
times, it observed no deadline miss and worst case deadline
miss is only 62% across all the 10-second windows. The
random code assignment scheme has severe deadline misses
(37% deadline miss probability for 74% of the time) as it does
not allocate codes to packets in uplink queue based on their
requirement. However, it still outperforms OFDM owing to the
DSSS processing gain that bridges the power asymmetry.

2) Coexistence of real-time and non-real-time traffic: Fig. 13
and 14 plot the time series diagram of video downloading and
GPS update when running together with all the aforementioned
traffics patterns. For video downloading, we use a 480p video of
playback length 80s. The adaptive DSSS can finish its download
around 102s., while the OFDM with oracle rate adaptation takes
about 240s. to finish because of the severe uplink blackouts.
We expect the OFDM’s latency will be more severe when
running in an actual TVWS network stack, which involves huge
connection setup overheads, such as association/re-association,
TCP timeout and slow start, etc. Due to the limitation of our
testbed, verification of such impact is left for our future work.

For the GPS traffic, the vehicle sends periodic GPS update
of 20-byte packet every 500 ms. (typical in safety applications
[20]). With OFDM PHY, the server got GPS updates for only
42% of the time within a 300s period. In contrast, with adaptive
DSSS at uplink, we can see 92% of the GPS updates sent
successfully (a 2.2× improvement!).

3) Multi-client scenario: We also ran multi-packet code
adaptation in multi-client scenario with two static clients (loca-
tions P2 and P8) and the same vehicle client as before (Fig. 3).
The applications are: (i) P2: VoIP, FTP and GPS update, (ii) P8:
GPS update and web browsing, (iii) vehicle: video streaming
and GPS update. For this experiment, we consider TVWS
spectrum aggregation with 20 MHz channel which doubles link
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Fig. 14. Time series plot of 300 s. GPS updates for outdoor driving
scenario. Dark color shows update time and light color shows the miss.
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throughput in the trace driven emulation. We emulate 802.11af
CSMA/CA protocol to arbitrate contention between clients.

Fig. 12(b) shows the percentage of deadline misses across
all packets. For all three clients, adaptive DSSS has an average
miss rate of 3.1% to 10.8%, in contrast to 34% to 39.5% for
random code assignment. OFDM experiences connectivity loss
for P2 and P8, and a miss rate of 41% for the vehicle client.

E. Performance in presence of high power fixed clients

Recall that, a high-power fixed client often fails to sense
mobile clients (Sec. II-C). We now follow the same setup as
in Sec. II-C to verify how adaptive DSSS can alleviate the
problem. Fig. 15(a) shows the carrier sensing loss rate when
each fixed client attempts to sense the outdoor mobile client.
We observe that the adaptive DSSS reduces the loss rate by
around 85% (67% for P1, > 88% for others, in contrast to Fig.
4(a)). However, it does not completely eliminate the loss, partly
because it occasionally resorts to a short code for efficiency,
thus reducing the mobile client’s signal coverage. Fortunately,
when suffering from packet losses due to high-power clients’
interference, as per Alg. 3, the client will resort to single packet
code adaptation that uses the probe preamble (containing a
long sequence) per-frame to ensure coverage. In case when
the longest DSSS code cannot be sensed by the fixed clients
(e.g., too far away or severely blocked), the problem is similar
to the traditional hidden terminals (and no longer due to power
asymmetry), which we do not aim to solve in this paper.

Fig. 15(b) also shows the throughput CDF across all 8
locations and across 5 min. Throughput is calculated over 0.1s
windows for each client. Random code assignment suffers from
the fixed client interference sporadically, resulting in 0 median
throughput. With adaptive DSSS, the median throughput is
sustained at 60 kbps and 80 percentile can be 0.5 Mbps.

VI. RELATED WORK

TV whitespace networking. The prospects of the emerging
whitespace spectrum have triggered multiple standardization
activities. Besides the aforementioned IEEE 802.11af, the IEEE
802.22 [21] specifies MAC/PHY mechanisms for regional area
connectivity using TVWS. Several customized protocols have
addressed the new challenges when extending WiFi to the
whitespace. WhiteFi [22], for example, designs a lightweight
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link quality sensing and bandwidth assignment scheme to tackle
spectrum fragmentation and spatial/temporal variation.

Mobile networking over TVWS and ISM band. To date,
TVWS networking research has mainly focused on spectrum
sensing/management and other low-layer issues [6], while the
real-world applications remain largely under-explored [23]. A
campus-wide whitespace vehicular network has been reported
in [24]. The measurement revealed that the AP/client power
asymmetry leads to 4× of coverage gap between downlink
and uplink. Recently, Scout [5] is designed to circumvent
the problem using heterogeneous link access, which binds a
whitespace downlink to a cellular uplink. However, to reach a
whitespace AP, an uplink packet needs to traverse the cellular
and Internet infrastructure, resulting in a latency of tens to hun-
dreds of milliseconds. Our adaptive DSSS solution overcomes
this limitation through a cross-layer design — it reengineers the
uplink PHY to bridge the coverage gap between the downlink.

Coexistence of power-asymmetric links. Harmful coex-
istence often occurs when wireless devices adopt different
transmit power levels. A measurement study in [25] revealed
such an issue when low-power ZigBee coexists with high
power WiFi. A high-power busy-tone can alleviate the problem
and protect the vulnerable weak transmitters. Similar solution
has shown to be effective when 802.22 devices coexist with
802.11af [26]. Alternative solutions, such as Weeble [12],
allow weak nodes to emit long preambles that can be sensed
despite their low transmit power. These protocols mainly aim to
reduce interference between heterogeneous networks, whereas
our adaptive DSSS scheme enhances communication and con-
nectivity between nodes in the same network.

Wireless rate adaptation. The problem of adapting code
length shares some spirit with bit-rate adaptation, which has
been extensively studied in 802.11 networks (e.g., [27], [28]).
Both entail strategic choice between different communication
schemes. Yet adaptive DSSS faces several unique challenges.
In particular, there does not exist a fixed mapping between
a code length and link throughput, because of the channel-
dependent processing gain that must be estimated on-the-fly
(Sec. III). Moreover, the tradeoff between link reliability (long
code length) and overhead becomes prominent especially when
diverse vehicular network traffic patterns are mixed together.
Our work is arguably the first to apply DSSS to solve the link
asymmetry in whitespace networks, and adapt the design to
counter network/traffic dynamics.

VII. CONCLUSION

This paper presents a protocol to bridge the huge link power
asymmetry in mobile TVWS networks for providing long range
and robust wireless connectivity to vehicles. Our experiments
reveal that this power asymmetry causes severe uplink con-
nectivity blackouts and starvation of mobile nodes. Through
a practical cross-layer design, using simple components that
are built from existing WiFi modules, the protocol ensures
robust and efficient uplink communication in TVWS spectrum
which is constrained by stringent rules from the FCC. In
addition, we strike a fine balance through a unique traffic-
aware code length assignment algorithm when heterogeneous

traffic patterns coexist. Thus, our design provides a viable and
effective means to realize vehicular networks over the TVWS.
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