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Abstract—In this work, we propose for the first time an
autonomous system, called WiSpiro, that continuously monitors a
person’s breathing volume with high resolution during sleep from
afar. WiSpiro relies on a phase-motion demodulation algorithm
that reconstructs minute chest and abdominal movements by
analyzing the subtle phase changes that the movements cause to
the continuous wave signal sent by a 2.4 GHz directional radio.
These movements are mapped to breathing volume, where the
mapping relationship is obtained via a short training process.
To cope with body movement, the system tracks the large-scale
movements and posture changes of the person, and moves its
transmitting antenna accordingly to a proper location in order
to maintain its beam to specific areas on the frontal part of
the person’s body. It also incorporates interpolation mechanisms
to account for possible inaccuracy of our posture detection
technique and the minor movement of the person’s body. We have
built WiSpiro prototype, and demonstrated through a user study
that it can accurately and continuously monitor user’s breathing
volume with a median accuracy from 90% to 95.4% (or 0.058l
to 0.11l of error) to even in the presence of body movement. The
monitoring granularity and accuracy are sufficiently high to be
useful for diagnosis by clinical doctor.

I. INTRODUCTION

Continuous respiratory rate and volume monitoring play
an important role in health care. While an abnormality in
breathing rate is a good indication of respiratory diseases
such as interstitial lung disease (too fast) or drug over-
dose (too slow), fine-grained breathing volume information
adds valuable information about the physiology of disease.
Common obstructive airway diseases such as asthma and
chronic obstructive pulmonary disease (COPD), for example,
are characterized by the decreased flow rate measure at dif-
ferent breathing volumes. A constant loss of lung volume
in these diseases not only indicates acute changes in the
disease stability but also reveals lung remodeling and other
irreversible states of diseases. Further, patients with lower
airway diseases such as cystic fibrosis or tuberculosis could
be diagnosed when sudden drops in breathing volume are
frequently detected [1]. Therefore, accurate and fine-grained
breathing volume measurements could offer rapid and effective
diagnostic clues to the development of disease progression [2].

Being able to unobtrusively and continuously monitor lung
volume has a high clinical impact. In many instances, patients
with respiratory disease only show their symptoms for a short
period and at a random time. In another important health care
practice, breathing volume of prematurely-born, or preterm,
babies needs to be closely and continuously monitored. A
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Fig. 1. The conceptual design of WiSpiro. A radar beams to human’s heart
area to observe the respiratory and heart beat activities, as shown in (a). If
a body movement or posture change is detected during sleep, the radar is
then moved to a new location and redirects its radio beam to maintain its
orientation pointing to the heart area, as shown in (b).The radar navigator
could roll, pitch, and yaw with 360 degree of freedom using three motors
M1, M2, and M3 to control antennas’ position and their beaming directions,
as shown in (c).

decrease of the babies’ breathing flow and volume must be
promptly detected well before it causes oxygen desaturation
for doctors to give an effective neonatal ventilation inter-
vention. In a recent study on the effects of sleep apnea
during pregnancy [3], it has been shown that detection of
sleep-disordered breathing is possible in women who did
not have sleep apnea prior to pregnancy, and that apnea
leads to abnormal pregnancy outcomes [4]. In these cases,
many only develop apnea for a short period of time. Hence,
monitoring them non-invasively over a longer term to detect
lung volume changes is critical. Last, but not least, long-term
monitoring of breathing volume during sleep detects sleep-
related breathing disorders common in 5% of children and 10-
40% of adults population [5], [6]. Fine-grained and continuous
breathing volume information will help classifying different
types of hypopnea (partial airflow obstruction common in
children) during sleep to better define the abnormality and
direct proper treatment strategies where obstructive hypopnea
is treated differently than central apnea [7]. In all above
mentioned health care practices, the detection of disease and
the observation of disease progression or remission could only
be viable with an accurate and fine-grained breathing volume
monitoring technique over an extended period of time.

Current practice for long-term breathing volume monitor-
ing is obtrusive: airflow are measured from the nose and
mouth qualitatively or at best semi-quantitatively with pres-
sure manometers or impedance chest belt [7]. Non-obtrusive
approaches are apparently more attractive and usable. So far,
however, the literature has mainly focused on the problem of
breathing rate estimation using camera [25], laser [20], [28],
infrared (IR) signal [8], earphones [9], and most recently using



radio signals [10]–[14]. While these breathing rate estimation
solutions are accurate and practical, little progress has been
made along the line of breathing volume estimation. Mas-
sagram et al. [19] presented a technique to calculate breathing
volume of a person from radio signal reflected off the subject’s
chest. While the technique is promising and works with a
static subject, it is not applicable for long-term monitoring
where subject movement is unavoidable. Moreover, it can only
estimate breathing volume once in every breathing cycle.

This paper introduces WiSpiro, a system that uses directional
radios to continuously monitor a person’s breathing volume
with high resolution during sleep from afar. WiSpiro relies on a
phase-motion demodulation algorithm that reconstructs minute
chest and abdominal movements by analyzing the subtle
phase changes that the movements caused to the continuous
wave signal beamed out by WiSpiro, as shown in Fig. 1(a).
These movements are used to estimate breathing volume,
whose relationship is obtained via a short neural-network
training process. The key property of WiSpiro is the ability to
work with the presence of random body movement. WiSpiro
autonomously tracks the large-scale movements and posture
changes of the person, and moves its transmitting antenna
accordingly to a proper location in order to maintain its beam
to specific areas on the frontal part of the persons body, as
conceptually illustrated in Fig 1(b) and (c). It also incorporates
interpolation mechanisms to account for possible inaccuracy
of our posture detection technique and the minor movement
of the subject’s body.

We have built WiSpiro prototype and demonstrated its
potential through a user study that it can accurately and
continuously monitor user’s breathing volume with a median
accuracy from 90% to 95.4% even in the presence of body
movement. Our results also show granularity of the estimation
is sufficiently high to be useful for sleep study analysis. They
key findings and contributions of this paper are as follows:

• Theoretical and practical design of a breathing volume
estimator. We derive a model for the effects of chest
movement and posture change on radar signals in terms
of phase and signal strength. We adopt a calibration
technique inspired by neural network back propagation
training model to calculate breathing volume from the
chest movement (Sec. IV).

• A set of algorithm to address challenges caused by body
and body part movement. Posture detection and point
localization techniques are developed to guide the antenna
movement and orientation when movement occurs. To
improve the correctness of inferring breathing volume
from chest movement, an interpolation technique is in-
troduced to integrate with the point localization output
which helps correcting the estimation results (Sec. V).

• Implementation and evaluation show the feasibility, per-
formance, and potential of the system. We propose and
implement 4 algorithms including chest movement re-
construction, posture estimation, point localization, and
volume interpolation on our prototype. We conducted
experiment on 6 users for 360 minutes and report the
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Fig. 2. An illustration of the problem of approximating breathing volume
using rate, and inferring breathing volume from untrained areas.

results. The results show high estimation accuracy after
integrating of the 4 above-mentioned optimization tech-
niques (Sec. VII).

II. WISPIRO GOALS AND CHALLENGES

WiSpiro is designed to be able to unobtrusively and
autonomously estimate the breathing volume with fine-
granularity at sub-breathing cycle level even with the presence
of random body movements. Next, we will discuss challenges
in realizing such goals including the ones caused by the nature
of breathing activities and non-uniformed shape of human
chest areas, by body movement, and the nature of radio signals.

Nonuniform movement of body areas during breathing.
Due to the non-uniform physical shape of human rib cage
and upper body, the movement of different areas on human
chest caused by respiratory activities are also non-uniform.
Fig. 2 illustrates the non-uniformity of a human chest in
contrast with a uniform surface of a cylinder. Given the same
volume change, all points on the cylinder will move with
the same distance. On the other hand, when a normal person
inhales or exhales a certain volume, the xiphoid process area
moves with a smaller amplitude compared to the movement
of the right chest or left chest area, as shown in prior work
in human anatomy [23]. This implies that the relationship
between chest movement and breathing volume is non-uniform
across different chest areas. Because of this property, even
a minor non-respiratory movement of the body could make
the antennas point to a wrong location which could cause
significant volume estimation error. Therefore, at any given
time, WiSpiro must be able to distinguish the area that it is
beaming to in order to estimate breathing volume with high
accuracy. To that end, we choose to adopt highly directional
radar transceivers, and develop a posture detection algorithm
to detect the cross section vector of human chest movement.
Next, we build an autonomous motion control system which
is able to direct the antennas towards a fixed anchor area (e.g.,
heart area) to monitor human chest movement. We present the
solutions in Sec. V-A.

Possible blockage of radio signals. During sleep, a subject
might change her posture or move her body part to react to
common environmental events such as random loud sound,
change of temperature, humidity, and light condition, etc.
These changes or body part’s movements (e.g., arms) might
block the anchor area (e.g., heart area) from the light-of-
sight of the antennas. Therefore, WiSpiro needs to find an
alternative area which can be seen clearly by radar. It then
infers the breathing volume based on the movements captured
on that area and the relationship between that movement and
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Fig. 3. Architectural overview of WiSpiro.

breathing volume learned in the one-time training process at
the beginning. We present the solution to this problem in
Sec. V-B.

Non-linear relationship between chest movement and
breathing volume. It is seemingly possible to obtain breathing
volume from the rate by assuming that the breathing volume
has a form of V = Asin!t, where V is the breathing volume,
A is the amplitude that could be obtained by calibration,
and ! = 2⇡f (f is the breathing rate) [11]. However, this
model misses the inhaled and exhaled patterns of breathing
activities. A brief experiment has been conducted to evaluate
the possibility of this approach. The results (Fig. 2 (a)) show
that the actual breathing volume does not follow a perfect
sinusoidal form in each cycle. However, the imperfect curve is
of interest to medical practitioners because it reflects the sub-
ject’s breathing patterns. The respiration volume information
is buried in the very minor phase shift of the reflected signal.
This is in sharp contrast with respiration rate which only needs
to extrapolate peak frequency of the respiration curve. To solve
this problem, we establish a model to map WiSpiro’s received
signal pattern to chest movement (Sec. IV), and then map the
movement to fine-grained breathing volume value according
to a neural network model trained for different chest positions
(Sec. IV-D).

In short, there are many challenges on designing a radar
system for monitoring the breathing activity continuously,
automatically, and with fine granularity. To our knowledge,
WiSpiro represents the first system that can meet the chal-
lenges, and realize robust breathing volume estimation in
practical sleeping environment with random body movement.

III. WiSpiro OVERVIEW

WiSpiro is created to continuously monitor breathing vol-
ume of a subject during sleep. Figure 3 sketches its functional
architecture, which includes three main components: volume
estimator, radar navigator, and one-time trainer. In the fol-
lowing, we briefly describe these key components.

Volume estimator. WiSpiro builds on a decoding technique
that extracts subject’s frontal movement due to breathing,
heart beat, and random body movement from the reflected
radio signals. It continuously tracks the minute frontal body
movement by analyzing the phase shift and signal strength
of the signal captured by the receiving radar. This movement
information is then combined with a prior knowledge, learned
through a one-time training process, to estimate fine-grained
breathing volume.

Radar navigator. WiSpiro relies on this navigator to
address challenges caused by subject’s random movement,
which could come from limbs, shoulder, other body parts,
or the whole body, during sleep. Taking phase-shift and
signal strength information from the previous component as
inputs, the radar navigator detects large- and small-scale body
movement. It estimates the sleeping posture of the subject and
moves the antenna accordingly to redirect the radio beam to
the subject’s chest upon detecting body movement. Further-
more, it executes an area localization algorithm to identify the
area on the chest to which the radio beam is pointing. This
area information not only allows the navigator to fine-tune its
antenna orientation to beam to the subject’s heart area but also
informs the volume estimator which training data should be
used for calculating the volume. Note that the same breathing
behavior can cause different areas to move differently. The
last operation of the radar navigator is occlusion detection,
i.e., detecting if the heart area is in direct light-of-sight with
the transmitter and the receiver. In case when occlusion occurs,
it redirects the antenna beam to alternative areas (e.g., lower
chest, or abdominal areas) to continue the monitoring process.

One-time trainer. Firstly, a training step is required to
establish the correlation between human chest movement and
breathing volume because this correlation depends on chest
size, age, breathing patterns, and so on. Secondly, the system
needs to know exactly where it’s pointing, so that it uses the
correct correlation function for estimating breathing volume
from the chest movement. For the first task, the trainer uses



neural network to establish the relationship between body
movement and beaming area with the breathing volume.
Given an instance of chest movement at a known area on
human chest as an input, the output of the function is a
corresponding breathing volume. Lastly, the trainer provides
the characteristics of the reflected signal when radar beams
to different areas on the human chest. These characteristics
are mapped into features. By comparing the features of
the signal with those of the signals from trained areas, the
system can infer the location at which radar is pointing. We
describe in detail the 3 above components in the next sections.

IV. VOLUME ESTIMATOR WITH
CHEST MOVEMENT RECONSTRUCTION

A. Theoretical analysis of movement reconstruction
A WiSprio transmitter continuously emits a single tone

signal with frequency !, and uses a directional antenna to
beams the signal towards the subject’s chest. When hitting the
subject’s chest, parts the signal will eventually be captured by
a directional receiver radio. The single-tone continuous wave
T (t) is formulated as:

T (t) = cos(!t)
Let d0 be the distance between radar and human chest, m(t)
be the chest movement function representing the chest position
at time t, then d(t) = d0+m(t) will be the effective distance
between the radar and human chest at any given chest position
at time t. The received signal, namely R(t), can be written as:

R(t) = cos
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As shown in the Eq. (1), the received signal R(t) includes
a high frequency component (i.e., at transmitted frequency !)
and a low frequency component caused by chest movement
m(t). We are interested in extrapolating the low frequency
component which is pertinent to volume estimation.

To do that, we note that the radar mixes its received signal
R(t) with the originally transmitted one T (t) using a simple
mixer. In an ideal mixer, the output signal, called B(t), is the
multiplication of T (t) with R(t) which are the two inputs to
the mixer. T (t) is fetched into the mixer via its local oscillator
(LO) port. Different frequency components of the output signal
from the mixer is calculated as:

B(t) = cos(!t)cos
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Now that the two signal are separated after passing through
the mixer, the low frequency component could be retrieved
by a simple low pass filter. The filtered signal, called F (t), is
written as following:

F (t) = cos
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Note that WiSprio estimates breathing volume only when
the subject does not move. If a body movement is detected
(discussed in Sec. V), the radar navigator will take control
to adjust the antennas to beam to a correct position before
restarting the breathing volume estimation process. When
the body is static, the distance between the antennas and
the subject’s frontal areas d0 remains fixed. Therefore, from
Eq. (3), phase change between two consecutive samples, F (k)
and F (k � 1), represents only chest movement due to vital
signals including breathing and heart rate.
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samples, then �m = m(k) �m(k � 1). If F
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Eq. (4), shows how chest movement is calculated from samples
of received signal. Note that the movement estimation is
independent of d0, which is base distance from chest to
antenna.

B. Volume Estimation Algorithm
Based on the prior analysis, we design an algorithm to

robustly demodulate fine-grained breathing volume from re-
ceived signals. Several challenges need to be addressed in
this process. First, the respiratory chest movement between
two consecutive reflected signal samples is very small and
is buried in minor phase change. Second, it is difficult to
detect phase changes given the various types of noise in the
system which are introduced by reflection from background
objects, multipath components, and signal leakage due to TX,
RX hardware imperfection. Last but not least, the nonuniform
movement of different body areas during breathing makes the
correlation between area movement vs. breathing volume to
be dependent on the area location.

To overcome the above challenges, we exploit the regularity
and quasi-periodic nature of chest area movement. In particu-
lar, an area is highly likely to move along the same direction,
either inward (exhaling) or outward (inhaling), for a number of
sampling cycles before the direction is changed. The intuition
is that one cannot alter his or her breathing from inhale to
exhale in one sampling cycle and then back. Moreover, the
movement direction only changes when the subject changes
from inhale to exhale, i.e., finishing one half of a breathing
cycle. Thus, we identify and group chest area movements



within one half of a breathing cycle for breathing volume
estimation for which per-sample breathing volume is inferred.
In addition, we found that the noises are either reflected
off rather stationary sources or from hardware leakage, and
thus have either relatively low frequencies or frequencies
following Gaussian distribution. Therefore, these noises can
be removed with proper filtering mechanisms such as DC
and band-pass filters. Lastly, a one-time neural-network-based
training process is designed to mine the relationship between
breathing volume and chest movement for each chest area.
These area-specific relationships are later used for volume
estimation. Alg. 1 summarizes our basic volume estimator
which integrates these solution principles, with the following
key steps.

Algorithm 1: Basic Volume Estimation Algorithm
Input : FI(k) and FQ(k) /* Received samples */

S, areaID,L,Nc(areaID) /* which are number of
samples, chest area ID, moving window size, and trained neural
network for areaID, respectively/
Output: Estimated breathing volume vector V ⇤[1 : S]

1 F 0
I  DC filtered of FI ; and F 0

Q  DC filtered of FQ

2 CZ[1 : n] Find cross zero indexes of arctan(
F 0
Q

F 0
I
[1 : S]),

3 for j = 1 to n� 1 do
4 V [CZ(j) : CZ(j + 1)] 

Nc(areaID, arctan(
F 0
Q

F 0
I
)[CZ(j) : CZ(j + 1)])

5 V ⇤[1 : S] V [CZ(1) : CZ(n)]

Signal preprocessing. Assuming the signal sequence re-
ceived by the receiver has S samples which are in I and
Q channels and acquired as described in Sec. IV-A. The
series of F

I

(k) and F
Q

(k), k 2 [1 : S] contains DC
components caused by hardware leakage and quasi-stationary
background which are removed by a moving-average DC
filter. The filtered signal sequence, F 0

I

(k) and F 0
Q

(k), are

F 0
I,Q

(t) = F
I,Q

(k) � 1
L

LX

i=0

|F
I,Q

(k � i)| in which L is the

moving window size and k 2 [1 : S].
Half-cycle segmentation. The filtered samples are then di-

vided into n segments where n is the number of times that the
phase of the signal, arctan(F

0
Q

F

0
I
), crosses zero. By doing so,

samples of the same breathing activity, either inhale or exhale,
are grouped into the same segment. It also accommodates
group with different size which mean breathing activity with
different paces, such as a long inhale or short exhale.

Per-segment volume estimation. This step is to calculate
the volume of each half-cycle segment. One important input of
this step is the neural network that contains the relationship
between a movement of a specific chest area and its corre-
sponding breathing volume values. This network conducts the
one-time training process that is presented in the following
subsection, Sec. IV-C. Another key input is the ID of the chest
location at which the antennas are beaming.
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Fig. 5. Breathing volume estimated by the basic
WiSpiro algorithm for a stationary person - a mean
error of 0.021l and maximum error of 0.052l and
a standard deviation of 0.011l.

C. Training the Neural Network for Movement-to-Volume
Mapping

WiSpiro is built on a physiological premise of the harmonic
movement between the chest and lung expansion during
breathing. That is, when the lung expanses due to inhaling,
the chest is also expanding. Likewise, the chest is collapsing
during exhale. This phenomenal is the leading principle for
our training algorithm. This training process quantifies the
relationship between chest movement and breathing volume
of individual. It needs to also take into account the non-
uniformity of the movement on different chest areas given
the same breathing activity.

Algorithm 2: Training for Movement-to-Volume Neural
Network

Input : FI(k) and FQ(k) /* Received samples */
gridSize /* Number of chest areas */
N /* Total number of samples collected per area */

Output: Trained neural network Nc[i] for all areas with
i 2 [1, gridSize]

1 for each area do
2 VG[1 : N ] Volume measured by spirometer for area i
3 fL  0.2Hz; fH  1.8Hz; /* Cut-off frequencies */

F 0
I  DC filtered of FI ; and F 0

Q  DC filtered of FQ

4 F ⇤[1 : N ] Band pass filter of (arctan(
F 0
Q

F 0
I
)[1 : N ])

5 Align F ⇤ with VG using peaks and cross zero points
6 Resampling F ⇤ to match with VG

7 [CZF⇤ [1 : n0]] Find cross zero indexes F ⇤

8 Segment < F ⇤, VG > pairs using cross zero indexes
9 Obtain Nc(areaID) /* trained network for all pairs using

Bayesian back-propagation neural network */
10 Navigate the antennas to the next area
11 return Nc

The movement-to-volume training is needed only once for
each subject. During this process, a subject is asked to lie
down and breath normally into a spirometer. The breathing
volume V

G

of the person is recorded. The patient’s chest is
spatially divided into subareas. Depending on the chest size
and the beam width of the transmitting antenna, the number of
areas, gridSize, is determined so that the antenna can beam
to each area individually without overlapping to the others.
Illustrated in Fig. 4, a chest is divided into 9 areas each of
which is scanned sequentially by the antennas. For each area,
F
I

and F
Q

signals are collected, along with the corresponding
V
G

. The training process is formalized in Alg. 2.
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Due to space limit, we refer readers to our technical report
for further details and derivation of the training algorithm
in [29].

D. Achievable Accuracy of Volume Estimator
We have implemented the basic volume estimating system

(details in Sec. VI). Now we set up a simple scenario to
verify the achievable accuracy of the technique and to identify
possible optimization. The subject under test lies down on a
bed and breaths normally for a period of 3 minutes, while
his breathing volume are being monitored and estimated by
both our WiSpiro and a spirometer (ground truth). At the
beginning of the experiment, the person performs a 9-minutes-
long training, following the procedure in Sec. IV-C.

Figure 5 plots the estimated volume time series. WiSpiro
demonstrates a small mean error of 0.021l, maximum error
0.052l, and standard deviation 0.011l across the testing period.

V. RADAR NAVIGATOR

The above analysis and experiment have shown that the
basic WiSpiro is capable of estimating fine-grain breathing
volume of a static subject. In this section, we describe a set
of algorithms to make WiSpiro robust to disturbance caused
by body movement in practical scenarios.

A. Posture Estimation
WiSpiro’s posture estimation algorithm estimates the cur-

rent posture of the user and changes the location and beam
direction of the radar to ensure the chest movements are
always captured by the radar receiver.

The respiration and heartbeat information are detectable
when the radar beams to user’s front chest. Meanwhile, those
vital signs are difficult to capture when the radar beams to
user’s back. Exploiting those facts, we develop a scanning
algorithm which mechanically brings the radar across the bed
surface to scan and search for a position that senses vital signs.
During the scanning, the radar transceivers are continuously
running and pointing orthogonally to the bed. The collected
signal is extracted to find the location where vital signs start
and stop. Figure 7 plots the signals of an example scanning
process, where the vital signs signature is detected. The radar
is then navigated back to the middle point of the segment
where vital signs were recognized, at dtravel

2 in Fig. 7. This
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simple step guarantees that the radar points to the frontal chest
of the patient.

Next, WiSpiro navigates the radar to search for and beam
to the heart location. Heart location is selected because the
corresponding signal fluctuation contains both respiration and
heartbeat information. However, it is nontrivial to automat-
ically direct the radar from current location to the heart
location. The required moving distance differs for different
postures. For example, moving the radar from location 5 to 3
(Fig. 4) requires the radar to move its beam by 5 cm when
the user is lying flat on bed (orthogonal to radar beam), but it
requires only 4 cm when user body forms a 40 degree angle
with the bed. In response, WiSpiro estimates the angle between
the user’s back and the bed to calculate the effective movement
its beam would make on the chest surface given a fixed amount
of movement on the radar. WiSpiro then directs the radar to
different areas while capturing the signal at each moving step
and stops at the location. Last, it identifies the heard area
by finding the location that has the received signal that best
matched with that of the heart location (Sec. V-B).

Estimating the angle between user’s back and the bed
surface. The key idea of estimating the angle is based on the
gradient changes of vital signal strength on received signal.
However, due to space limit, we refer readers to our technical
report for further details and derivation of the algorithm
in [29].

B. Point Localization
This section describes how WiSpiro recognizes the exact

chest location the radar is beaming at. As can be seen in Figure
6 (a), human chest movement comprises 3 main sources: lungs,
diaphragm, and heartbeat. Different areas move differently
according to the distance to vibration sources, and the structure
of muscles. We divide the chest into nine areas as in Figure
6 (b), named as P1, P2, ..., P9, respectively. This division
depends on the radar beamwidth, its distance to chest, and
the chest size. With a narrower beamwidth, the number of
areas can be increased. On the other hand, the number of
areas will be decreased if the system monitors young subjects
with small chest (e.g. a baby). The key idea is to make sure
the beam width is small enough to isolate the signal reflected
from different areas. Moreover, as only a discrete set of areas



have been trained, we design an interpolation technique to fill
up the data for untrained areas.

We use a machine learning technique to realize area recog-
nition. Specifically, the radar beams a signal continuously,
observes the signal features, and then match with those trained
offline to identify the current area.

Due to space limit, we refer readers to our technical report
for further details of the training process in [29].

VI. TESTBED AND SYSTEM IMPLEMENTATION

In this section, we describe the WiSprio hardware and
software that we implemented for evaluation purposes.

Hardware. As illustrated in Fig 9, the hardware setup is
composed of two main components: a radio transceiver and a
radar navigator. The radio transceiver hardware is developed
from a iMotion radar [18], originally used for estimating
respiratory rate. An iMotion transmitter sends single tone
continuous wave at 2.4 GHz. A receiver captures reflected
AC-coupled signals, convert to base band, and output discrete
I/Q samples with 1 kHz baseband sampling rate. The received
I/Q signals are transferred to a PC through a NI-DAQ 6008
module, to which our algorithms in Sec. IV and V are applied.
One issue with the iMotion setup is that its antenna beamwidth
of 60 degree is too wide to be usable for WiSpiro. We
customize the antenna beamwidth by mounting tin cans on
the patch surface, resulting in a narrower beaming angle of
around 20 degrees.

The radio hardware is mounted on a mechanical motion
control system from Cinetics [17] which is steered by a PC
host in real-time. The control system supports 360� pan,
tilt, and 64-inches slide movement. To navigate the radar to
proper location and orientation, the motion control system is
driven by our radar navigator algorithms (Sec. V) which are
implemented on the PC host. The whole system is mounted
across and on top of a twin-size bed on which all experiments
are conducted.

Spirometer, camera, and microphone are used together to
create ground-truth for various experimental verifications, to
be detailed in Sec. VII.

TXRX

ControllersMotors

Board

Fig. 9. WiSpiro setup.
Software.: We implement a program in Matlab to perform

the training algorithms and volume estimation algorithm de-
scribed in Sec. V. The radar controller software is developed
and run in Matlab to realize posture estimation, point localiza-
tion and associated training algorithms (Sec. V), and also make
decisions on moving and steering antennas to proper location.
We also developed a software using C++ to simultaneously
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Fig. 10. The mean accuracy of volume estimation in two cases: users sleep
stationary on the back, and users move during sleep.

trigger multiple hardware pieces at once to minimize the
execution effort of the system and minimize the starting time
discrepancy across the devices.

VII. PERFORMANCE EVALUATION

A. Experiment Setup
Participants: To evaluate the performance of WiSpiro, we

recruited 6 students (5 grads, 1 middle-school), with different
weight, height, and a mean age of 25. During the experiments,
a subject sleeps on the WiSpiro testbed (described in Sec. VI)
wearing their normal clothes and covered by a thin blanket in
some cases.

Ground truth: We use a spirometer [30] as a ground-truth
to evaluate WiSpiro’s volume estimation accuracy and train
its algorithms when necessary. A camera was used to record
participants’ sleep behaviors and noise, together with a laser
pointer to track the antenna’s direction.

Training: The training process was done within 9 minutes
for each participant. They were asked to breath normally to a
spirometer when the radar was navigating and collecting data
at all desired training areas.

Testing: After training, each participant was asked to sleep
normally for about 60 mintues while WiSpiro is running. The
spirometer was attached to the participant’s mouth to collect
ground-truth data.

B. Experiment Results and Analysis
Overall accuracy of breathing volume estimation. We

group the testing results based on the ID of the area that
the radar points to. Fig. 10 shows that, WiSpiro can estimate
breathing volume with 90% to 95.4% accuracy, which mean
the error is less than 10% of the total breathing volume within
an average window of 10ms. The performance peaks at areas
on upper part of the chest and around the heart area. The
results also show that the impact of body and limb motion is
small, thanks to the radar navigator algorithms.

Potential medical significance of WiSpiro. We evaluate
the medical implication and benefit from WiSpiro, focusing
on a specific question: Could WiSpiro provide meaningful
information to help clinical doctor in sleep and respiratory
disease diagnosis?
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for diagnosis.

We recruited 3 volunteers: one male middle-school intern
student with known minor hypopnea, one normal male student,
one female student with a known mild snoring pattern. The
three subjects’ breathing volume, which is monitored by both
a spirometer and WiSpiro, are given to a clinical doctor, a
sleep expert who directs and operates a clinical sleep analysis
lab in a state hospital.

From the fine-grained breathing information, the doctor was
able to map the breathing volume pattern to each person with-
out prior knowledge about the mapping. Once the symptom is
confirmed, the doctor was able to provide further analysis of
breathing and sleeping issues from the volume information,
part of which is presented in Fig. 12 (b). “With a known
snoring female, the signal shows a small inspiratory flow
limitation but very little effect on her tidal volume. This is
a marker of mild flow limitation that is commonly seen in
premenopausal woman. It is likely a non-REM sleep because
of the regular rate. The normal volume variability which can
normally be seen through CO2 and O2 levels.”, said the doctor
regarding the female subject with mild-snoring. The flat top
of part of the volume measurement, marked in Fig. 12, is an
indication of flow limitation which is, otherwise, not possible
to be captured with breathing rate information.

Regarding to the middle school student’s breathing volume
time series, the doctor analyzed as follows: “These three
breathing cycles (the doctor was pointing to the part marked
on Fig. 12 (c)) show a moderate inspiratory flow limitation
that decreases the tidal volume of the breath. This could be
clinically important because the child might get enough O2

due to the air flow limitation and decreased volume. This
could lead to alteration of blood gas such as CO2 and O2

levels. The moderate flow limitation during sleep is one form
of hypopnea”. Once again, this analysis mostly relies on the
breathing volume and its variation overtime, which is not
acquirable from respiration rate.

While this qualitative analysis is not statistically significant
to make a conclusive answer for the aforementioned question,
it shows that WiSpiro’s accurate and fine-grained breathing
volume information is potentially useful for medical practice.

Accuracy of point localization technique. We now eval-
uate the accuracy of WiSpiro’s point localization module
and its impacts on the system’s overall performance. After
training, we beam the antennas to different areas on each
participant. We repeat the process for 15 times at each area
for all 9 participants. The accuracy is then averaged across
participants. Fig. 14 shows the accuracy of the algorithm in

0 20 40 60 800

20

40

60

80

100

Angle β (degree)

D
et

ec
tio

n 
ra

tio
 (n

or
m

al
iz

ed
)

21.62

82 85 91.8
95.792.292.1 93.5

79.9

Fig. 13. Estimation accuracy of the
angle between human back and the
bed surface

1 2 3 4 5 6 7 8 90

20

40

60

80

100
85.0

92.5 95.0 94.0 92.591.0
82.0 82.582.0

Area ID

Ac
cu

ra
cy

 (%
)

 

 

Area detection accuracy

Fig. 14. Chest area ID detection
accuracy

correctly detecting the area ID. The results show that the
algorithm performs better in detecting areas that are close to
the heart, position 2, 3, 4, and 5, while accuracy drops near
the abdominal area. This trend is intuitive since there are more
vital signal affects on the former set of areas. Fig. 11 shows
the error distribution of the localization. It shows that when
an error happens, it tends to be confused with an area with its
neighborhood.

Accuracy of posture detection. The performance of our
posture detection algorithm is presented in Fig. 13. A partic-
ipant is asked to lie his/her body w.r.t. the bed with an angle
ranging from 10o to 90o with step of 10o. The estimation
is repeated 20 times for each participant at each angle. The
results show that WiSpiro can roughly estimate the angle of
more than 20 degree with the accuracy of 80% versus only
21.62% accuracy when the angle is at 10 degree. The angle
is considered to be correctly estimated if the result is within
5% from the ground truth. This limitation is due to the wide
beam angle of our antenna at 20o. As the angle increases, the
posture detection accuracy increases up to 95.7%.

VIII. RELATED WORKS

Radar technique has been widely used in estimating vital
signs. The frequency and phase shift of body-reflected radar
signals have be used to estimated the heart and breathing rate
[19], [21], [22], [24]. Droidcour et al. [10] introduce a linear
correlation model to approximate the chest movement based
on phase information. Linearity holds only if the movement is
much smaller compared with the wavelength so that the chest
movement is linearly proportional to the phase change. Using
this approach, breathing rate and heart beat can be extracted
by analyzing the received signal on frequency domain. Changi
et al. [11] analyze the breathing activities using Fourier series
and exploit the harmonics information to obtain the respiration
rate and heart beat regardless of the distance from subject
to radar. The dependency of movement and wavelength of



the signal has also been resolved. Adib [13] used FMCW
technique to collect the change of distance between radar
to multiple objects and infer their breathing rates based on
the traveling time of the signal. These approaches triggered
substantial investigation along the same line. In addition,
Patwari et al. [22] presented the feasibility of using Wi-Fi of
the shelf device to track respiration rate in real time. However,
breathing rate estimation, a problem equally important to med-
ical practitioners, has not been thoroughly solved. Early efforts
in tidal volume estimation (e.g., [26]) focused on controlled
settings and short-term monitoring, which is of less clinical
significance as discussed in Sec. I. To our knowledge, WiSpiro
marks the first step to systematically investigate the problem
under practical settings involving body area heterogeneity,
random body movement, etc.

IX. LIMITATIONS AND FUTURE WORK

WiSpiro relies on the correlation between breathing volume
and chest movement of a human body. The system might
not perform well in scenarios where that assumption does not
hold. While it rarely happens, there exist a few of such cases.
One example is apnea caused by blockage in the respiratory
airway of the patient. Regardless of the apnea patient’s effort
in inhaling or exhaling, the breathing volume does not change
since no air can go through the airway, while the chest and
other frontal areas might still be moved by the pressure caused
by the respiratory effort. One possible solution to detect this is
to combine WiSpiro with a sensing system that could capture
inhaling and exhaling air flow, such as CO2, O2 levels, or
thermal camera.

WiSpiro’s scanning process is currently taking tens of
seconds due to limitations of the mechanical motion control
system. The scanning will suffer further if the subject moves
frequently during scanning, in which case, the scanning pro-
cess need to be reset. This limitation can be overcome by
using a more efficient motion control system, combined with
electronically steerable phased-array antennas. Finally, our
experimental results are performed on a small user population.
More thorough testing with in-house and in-hospital setup
could further validate the clinical significance of WiSpiro. We
consider that as extension of this work.

X. CONCLUSION

We have presented WiSpiro, the first autonomous radar sys-
tem to monitor breathing volume of a sleeping person. WiSpiro
achieves fine-grained volume estimation using a phase-motion
model, combined with a neural network training that maps
chest movement to breathing volume, taking into account
heterogeneity of frontal body areas. Further, WiSpiro handles
random body movement, by redirecting the radar in real-time,
using a set of navigation and area localization algorithms. Our
prototype and experiments verify WiSpiro’s feasibility, and
its ability to track breathing volume at high accuracy. Our
immediate next step of research is to optimize WiSpiro and
test it in practical clinical environment.
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