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Egocentric non-intrusive sensing of human activities of daily living (ADL) in free-living environments represents a holy grail in 
ubiquitous computing. Existing approaches, such as egocentric vision and wearable motion sensors, either can be intrusive or 
have limitations in capturing non-ambulatory actions. To address these challenges, we propose EgoADL, the first egocentric 
ADL sensing system that uses an in-pocket smartphone as a multi-modal sensor hub to capture body motion, interactions with 
the physical environment and daily objects using non-visual sensors (audio, wireless sensing, and motion sensors). We collected 
a 120-hour multimodal dataset and annotated 20-hour data into 221 ADL, 70 object interactions, and 91 actions. EgoADL 
proposes multi-modal frame-wise slow-fast encoders to learn the feature representation of multi-sensory data that characterizes 
the complementary advantages of different modalities and adapt a transformer-based sequence-to-sequence model to decode the 
time-series sensor signals into a sequence of words that represent ADL. In addition, we introduce a self-supervised learning 
framework that extracts intrinsic supervisory signals from the multi-modal sensing data to overcome the lack of labeling data 
and achieve better generalization and extensibility. Our experiments in free-living environments demonstrate that EgoADL can 
achieve comparable performance with video-based approaches, bringing the vision of ambient intelligence closer to reality.

CCS Concepts: • Human-centered computing ! Ubiquitous and mobile computing; • Computing methodologies !
Machine learning.

Additional Key Words and Phrases: Daily-life logging, Egocentric non-visual sensors, Multi-modal data

ACM Reference Format:
Ke Sun, Chunyu Xia, Xinyu Zhang, Hao Chen, and Charlie Jianzhong Zhang. 2024. Multimodal Daily-Life Logging in Free-
living Environment Using Non-Visual Egocentric Sensors on a Smartphone. Proc. ACM Interact. Mob. Wearable Ubiquitous 
Technol. 8, 1, Article  2024), 32 pages. https://doi.org/10.1145/3643553

1 INTRODUCTION
The emerging Internet of Things (IoT) promises to embed a massive population of sensors in the environment to
form an ambient intelligence [1]. Such omnipresent IoT sensors can generate huge personalized data to enable
life-logging and support many activity-aware applications. In particular, they can monitor a subject’s activities of
daily living (ADL), including not only body motion (e.g., walking, bathing), but also interaction with the physical
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Fig. 1. EgoADL is an egocentric ADL sensing system, leveraging an on-body smartphone as a sensor hub to capture
the audio, Wi-Fi CSI, and motion sensor signals simultaneously. EgoADL employs a self-supervised cross-modal
(CM) clustering to encode a general feature representation from the large-scale unlabeled data (Sec. 6) and a
supervised Multi-Modal Frame-Wise Slow-Fast (MMFWSF) transformer model to recognize the ADLs (Sec. 5).

environment and daily objects (e.g., kitchen appliances, water cups, faucets). They can transform the healthcare
domain which, to date, has been relying on laborious monitoring and subjective questionnaires/reports for diagnosis,
assessment, and emergent response. Examples include tracking medical compliance, evaluating rehabilitation (e.g.,
for stroke patients), detecting onset of chronic diseases (e.g., the Alzheimers’ disease), etc.

To approach the vision of ubiquitous ADL sensing, substantial research has investigated the egocentric sensing
scenario, where the sensors are co-located with subjects [2]. In particular, egocentric visual sensing relies on a
head-mounted camera or smart glasses to capture the first-person views [3–5]. Due to the limited angle of view
and constrained wearing style, they can only partially capture the user’s ambulatory activities, leading to low
accuracy [4, 6]. Furthermore, these approaches inherit the limitations of camera sensing–They are privacy intrusive,
energy hungry, and crippling for continuous sensing. On the other hand, egocentric non-visual sensors such as
wearable motion sensors are limited to capturing only ambulatory actions without the interaction with the physical
environments and daily objects [7]. Therefore, audio [8, 9], and motion sensor [10, 11] are typically used to assist
the egocentric video to improve accuracy.

In this paper, we design EgoADL, a multimodal ADL sensing system that employs ubiquitous non-visual sensors
on an egocentric in-pocket smartphone to log ADL in free-living environments. Compared with vision-based
approaches, EgoADL is less intrusive and better approximates Mark Weiser’s pioneering definition of ubiquitous
intelligence [12], i.e., sensing technologies that quietly serve human in the background. As shown in Fig. 1, a
user performs daily routines with the sensor hub, i.e., an in-pocket smartphone. EgoADL is designed to log a
comprehensive range of basic ADL, which are characterized by open-ended, fine-grained activities encompassing
both body motion and human-object interactions. These activities include, but are not limited to, routine physical
movements (e.g., walking, sitting, bending down), common household tasks (e.g., cooking, washing dishes,
mopping floor), and interactions with various objects in daily life (e.g., using utensils, chopping vegetables, taking
food from fridge) (see Fig. 11 and Fig. 12 for detailed ADL list). The focus is on detailing these everyday actions
in a manner consistent with the definitions used in computer vision-based ADL recognition [5, 13–15].

To realize EgoADL, we resolve three key challenges:
ADL representation–beyond activity classification. Most of the traditional DNN-based ADL analysis models

are designed to perform classification [3, 14], which assigns integer IDs to various ADL. However, it requires
prescribing a known set of ADL, which falls short of extensibility when new ADL of interest emerge. In contrast,
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EgoADL is designed to enable comprehensive daily life logging for humans, covering a wide spectrum of distinct
ADLs. Therefore, we propose to use a transformer-based sequence-to-sequence model to decode these feature
representations as label name semantics using a sequence of words. Moreover, these ADL representation establishes
a connection between sensor data and natural language. This enables us to harness the semantic information
inherent in these natural language labels. By seamlessly integrating this information with language models, we
significantly elevate the overall performance of EgoADL.

Egocentric multi-modal fusion–overcoming limited resolution of non-visual sensors. The second major chal-
lenge is that the non-visual sensors have much lower resolution than camera, for sensing both human body motion
and interaction with daily objects [16]. To overcome the challenge, we select and synthesize 3 specific modalities
which have already been embedded in commercial devices, i.e. motion sensor for ambulatory actions of leg; wireless
sensing for full-body motion and interactions with ambient environments; audio recording for motion and human-
object interaction with unique sound events. Our empirical analysis of real-world ADL data indicates that each
sensing modality is amenable to different ADL patterns, and a judicious combination of them can potentially achieve
near-vision resolution. Therefore, we propose a Multi-Modal Frame-Wise Slow-Fast (MMFWSF) encoder to learn
the feature representation of multi-sensory data, which characterizes multi-modal fast-changing motion, continuous
scene sounds, and cross-modal frame-wise alignment. We then use a transformer-based sequence-to-sequence
model to decode these feature representations as label name semantics using a sequence of words.

Self-supervised ADL learning–achieving generalization with limited labeled data. To achieve high sensing
accuracy, extensibility for non-frequent ADL and generalization (across different ADL, users and environments),
EgoADL needs a massive amount of training data, which entails exorbitant labeling cost due to the high variability
and “invisibility” of the sensing records. We observe that capturing the data without labeling is relatively easy for
EgoADL, since all the sensors are embedded in an in-pocket smartphone. Thus, we collect large-scale unlabeled
data and adopt a self-supervised learning (SSL) framework to encode a general feature representation. Specifically,
we design a cross-modal deep clustering model that extrapolates two self-supervisory signals from unlabeled data:
i) Audio captures human-object interaction which can inform the motion sensor and Wi-Fi CSI. ii) Correspondence
between different modalities when observing the same ADL. In addition, we leverage the vast amount of existing
labeled audio datasets [17] to pretrain a feature embedding DNN. These datasets already encompasses the natural
logic of ADL, thus further alleviating the training workload of the self-supervised ADL learning.

To validate the design principles behind EgoADL, we implement an Android app to collect the multi-modal
data from in-pocket smartphones, when users freely perform daily activities. Our implementation leads to the
first non-visual multimodal dataset for egocentric ADL. The dataset consists of large-scale unlabeled data, along
with a labeled subset for users who are willing to wear a head-mounted camera to capture the ground truth. We
implement a labeling software that allows the users to playback the audio/video recordings and annotate the sensor
data accordingly.

Using this platform, we have collected 20 hours of labeled data and more than 100 hours of unlabeled data, which
includes 221 different types of ADL involving 70 actions and 91 objects. The data was collected from 20 different
home environments and 30 users who performed an unrestricted set of activities, encompassing both ambulatory
motion and interaction with daily objects. Our evaluation results show that EgoADL achieves 72.5% top-1 and
90.8% top-5 mean Average Precision (mAP) for recognizing 105 frequently-used ADL, which are 21.0% and 14.7%
higher than the baseline model using traditional modal-wise sensor fusion. When considering the 35 state-based
ADL which typically last more than 5 seconds, EgoADL achieves 85.9% top-1 and 94.5% top-5 mAP. Our results
suggest that EgoADL can achieve comparable performance with vision-based egocentric sensing, particularly for
non-ambiguous actions and objects using non-visual sensors.

The main contributions of EgoADL are as follows.
• We introduce a new concept of multi-modal egocentric ADL sensing based on non-visual sensors on in-pocket

smartphones. We build a platform for EgoADL sensor data collection and labeling, and establish the dataset
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Modality Scenario Range Task # of
Activities Method User

Study
Receiving
Sensors

E-eyes [18]

WiFi CSI DF

Apartment HA
Classification

9 SM+SL 1 S,
2 E 1 WiFi AP

CARM [19] Single
Room 9 SM+SL 25 S

4 E 1 WiFi AP

EI [20] Single
Room 6 SM+SL 10 S

3 E 1 WiFi AP

WiPose [21] Static HPC 16 SM+SL 10 S
1 E 9 WiFi AP

RF-Diary [22] FMCW
radar DF Single

Room
HA + HOI
Captioning

157 Acts,
38 Objs SM+S 10 S

10 E
FMCW Radar

(need floormap)
DeepSense [23] Motion sensor Ego / HA

Classification
6 SM+SL 9 S Wearable Devices

LIMU [24] Ego / 7 SM+SSL 73 S Wearable Devices
DESED [25] Audio DF / SEDL 10 SM+SL / Mic Array

Ubicoustics [26] Ego
/DF / SE

Classification 30 SM+SL 7 S Wearable devices

Cosmo [27] Ego For motion sensor
DF For Depth Cam, Radar / HA

Classification 14 MM+SSL 30 S
1 E

Wearable devices,
Radar, Depth Camera

Wrist-ADL [28] Audio +
Motion sensor Ego / HA

Classification 23 Acts MM+SL 15 S
15 E Smartwatch

EgoADL WiFi CSI +
IMU + Audio Ego Whole

Apartment
HA + HOI
Captioning

221 Acts
91 Objs

MM
+ SSL

30 S
20 E Smartphone

Table 1. Representative ADL systems using Wi-Fi CSI, IMU and Audio. In “Scenario” column, Ego: Egocentric;
DF: Device-free. In “Task” column, HA: Human Activities; HOI: Human-Object Interaction. HPC: Human Pose
Construction; SE: Sound Event; SEDL: Sound Event Detection and Localization; In “Method” column, SM: Single-
Modal; MM: Multi-Modal; SL: Supervised; SSL: Self-Supervised Learning. In “User Study” column, S: Subjects; E:
Environments. This table focuses exclusively on ADL systems employing Wi-Fi CSI, IMU and Audio. There may exist
additional sensors applicable in ADL systems, such as PIR sensors, magnetic sensors, sonar sensors, etc. [16]

for multi-modal egocentric ADL sensing by using non-visual sensors. Both the platform (https://github.com/
Samsonsjarkal/EgoADL) and dataset (https://doi.org/10.5281/zenodo.8248159) are released to facilitate further
research.

• We design multi-modal fusion approaches to learn the feature representation of multi-sensory data by leveraging
the complementary advantages of audio, motion sensor and wireless sensing.

• We propose an SSL framework that extrapolates single-modal and multi-modal supervisory signals from
unlabeled data, in order to boost the model accuracy, generalization and extensibility.

• We propose to leverage the semantic information from the natural language labels by distilling knowledge
from external text datasets and refining the labels to fit the sensing capability.

2 RELATED WORK
Egocentric vision-based ADL sensing: The wide availability of head-mounted or body-worn cameras has resulted
in massive first-person vision data, and fueled research in egocentric ADL analysis [3–5, 29]. However, egocentric
vision approaches still face fundamental deployment barriers. In particular, wearing a camera is inconvenient and
invasive [30]. Besides, due to the limited field of view (FoV), the egocentric video data are highly heterogeneous and
lack compatibility [3–5]. For instance, the EPIC-KITCHENS [3] captures the users’ hands whereas Charades-Ego
[4] misses them, causing disparate inference results. Recently, more egocentric vision research uses additional
modalities to assist the egocentric vision including audio [8, 9] and motion sensor [10, 11]. However, these
approaches inherit the limitations of camera sensing including privacy intrusive, energy hungry, and crippling for
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continuous sensing. EgoADL proposes to bring the egocentric ambient intelligence to real life by using non-visual
sensors which are less intrusive and insensitive to the FoV problem, yet achieving similar performance as the
vision-based approaches.

ADL sensing using non-visual sensors: There exist a huge portfolio of non-visual modalities for ADL sensing,
including motion sensor [23, 24, 31], audio [17, 25, 32–34], RF signals [19, 21, 35] and others [16].

Within this area, motion sensor-based ADL sensing has mostly focused on classifying a small set of prescribed
activities associated with specific body parts [23, 31]. SSL has been introduced recently to train feature representa-
tion models based on motion sensor data [24, 36–38]. EgoADL wildly expands this strand of research towards
cross-modal SSL, which fuses multiple modalities to log more complex ADL, similar to a human transcriber.

Sound event detection, as one modality to understand ADL, has been extensively studied [17, 25, 32–34].
Existing solutions use an external microphone array, e.g., one equipped on a voice assistant, to capture the sound.
Ubicoustics [26] is the only work that has a smartphone-based egocentric sound capturing setup similar to EgoADL,
but it only classifies 30 acoustic activities. Unlike traditional sound event classification, EgoADL is more extensible
due to its SSL architecture, and evades majority of the labeling burden by SSL and distilling knowledge from
existing sound datasets.

Device-free RF sensing has gained major traction, demonstrating abilities to classify a dozen of prescribed
activities [19, 21, 35]. However, due to limited antenna aperture and hence spatial resolution, commercial RF
signals, like Wi-Fi sensing, cannot capture the nuances of human-object interactions (HOI), unless augmented
with dedicated hardware. For example, LiveTag enables HOI by attaching passive touch-sensitive tags on the
objects [39]. RF-Diary [22] employs a powerful FMCW radar and a floor map of object locations to detect HOI.
Besides the hardware complexity, cost and labeling burdens, the device-free sensing systems bear a few common
limitations. First, the coverage area is typically limited to a single-room. Second, without dedicated hardware
[22, 39], the sensing performance is highly sensitive to environment and transceiver locations. State-of-the-art
device-free WiFi sensing systems can only achieve < 75% accuracy in recognizing 6 activities, when tested across
different environments [20]. In contrast, EgoADL is the first to explore egocentric Wi-Fi sensing by capturing
ambient Wi-Fi CSI using a in-pocket smartphone, combined with other sensors to overcome such limitations.

SSL for ADL sensing: One of the major challenges for ADL analysis is lack of labelled data, especially
for relatively rare ADL [13]. This challenge exists even for egocentric vision due to the limited FoV and the
complexity of ADL. SSL has proven to be a promising solution for vision [40], motion sensor [24, 36–38, 41],
and other modalities [27]. In particular, recent work adopted SSL on unlabeled audio-visual data [42–44]. By
understanding the video-audio correspondence, such methods achieve the state-of-the-art performance on egocentric
ADL recognition. EgoADL introduces new modeling mechanisms (e.g., joining single- and multi-modal SSL) to
tackle a disparate set of modalities. Furthermore, EgoADL distills knowledge from external datasets to guide the
SSL towards a better cross-modal feature representation.

3 EGOADL SETUP AND DATA COLLECTION
EgoADL employs a commodity smartphone as an egocentric sensor hub, which captures the audio, wireless sensing
signals (i.e. Wi-Fi), and motion sensor signals continuously. Users can perform arbitrary daily routines with the
sensor hub, i.e. an in-pocket smartphone, in free-living environments. EgoADL will recognize ADLs including both
human activity and human-object interaction from the sensor data without human intervention. We will first discuss
EgoADL data collection setup and dataset. We include more setup, data collection details in our Methodological
Transparency & Reproducibility Appendix (Sec. 10), and release the source code and datasets to facilitate future
research. Our study was approved by the IRB before all the data collection.

Smartphone as an egocentric sensor hub: The EgoADL data collection app is implemented by JAVA in
Android OS. It simultaneously collects 3 sensing modalities from the user’s smartphone. (i) Audio capturing: We
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Fig. 2. EgoADL data in the time domain, including Wi-Fi CSI, audio, accelerometer signals, ground truth labels and
egocentric video from a head-mounted GoPro for ground truth labeling.

record the monophonic sound at 48 kHz sampling rate through the smartphone’s bottom microphone. (ii) Motion
sensors: We capture the 3-axis accelerometer signals at 200 Hz sampling rate, and log the per-sample timestamp
for later uniform resampling. (iii) Wi-Fi CSI: We use the Nexmon CSI tool [45, 46] to extract the incoming Wi-Fi
packets’ CSI. Our EgoADL prototype uses Nexus 5 for its compatibility with Nexmon [45, 46]. During the data
collection, we employ a commodity 802.11ac Wi-Fi access point (AP) to transmit data at 400 packets/second. Due
to packet losses, the receiving packet rate tends to be lower. Nevertheless, our data collection consistently maintains
a minimum reception rate of 200 Wi-Fi packets/second, ensuring data quality (see Sec. 10 for details).

Data collection procedure and setup: For our data collection, we recruited 30 participants, comprising 8
females and 22 males with an average age of 25.9 (refer to Fig. 9(b) for detailed demographics). We clearly
communicated the data collection objectives to the participants. Each participant was instructed to record data over
a week, aiming for at least 5 hours in total. To guarantee a diverse and sufficient collection of ADL, we advised
them to record during routine activities, excluding stationary periods such as working at a desk or sleeping. We did
not impose any specific ADL types or scripted activities.

Participants were provided with necessary devices, including a Wi-Fi AP and a smartphone equipped with the
EgoADL app, along with instructions for setting up the devices. We asked participants to deploy the Wi-Fi AP
at an arbitrary location in their home and they are required to simply put the smartphone into their left/right
trouser pocket, freely performing daily routines as the data collection app runs in the background. Participants are
also allowed to take the smartphone out of the pocket and use the smartphone freely as usual. Upon reaching a
user-specified time limit (typically 10 to 30 minutes), the app plays a notification sound and saves the sensor data.
For participants who agreed to provide ground-truth labels (7 males and 3 females with an average age of 28.5, Fig.
9(a)), the procedure was identical, with an additional step of wearing a head-mounted GoPro camera. This camera
captured egocentric audio and video at a resolution of 2560 ⇥ 1440, 30 FPS, and with a linear field of view.

Data preprocessing: To mitigate the impact of unstable sample timing on Commercial Off-The-Shelf (COTS)
smartphones, we first resample the motion sensor data uniformly to 200 Hz. For the Wi-Fi CSI data, we normalize
the per-subcarrier magnitude by the corresponding automatic gain control (AGC) values to mitigate the AGC
artifacts, and then resample the CSI sequence to 400 Hz. Afterwards, we synchronize the three sensing modalities
based on their sampling timestamp. (We include more implementation details in Appendix 10.)
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Data labeling: Each ground truth label needs to specify the ADL, i.e., an ambulatory action or human-object
interaction event, along with the start and end timestamps. For instance, Fig. 2 shows 1-min labeled data containing
a sequence of ADL. We design a labeling tool to allow playback of the GoPro video/audio recordings and annotating
the data using a set of ADL labels created by existing state-of-the-art video/audio based ADL sensing systems
[5, 13, 15, 47](See more details in our Appendix 10). To ensure accurate labeling, the annotators are exactly the
data collectors, compensating for any limitations in egocentric video field of view (FoV) by using their memory of
the events. They are equipped to segment and label the video footage, either using the provided predefined ADL
labels or by adding new ones as they identify them. This open-ended approach to data labeling and annotation
has yielded a comprehensive dictionary encompassing 1,000 words specifically related to ADL. The maximum
allowable duration for each labeled segment is 10 seconds, aligning with the typical duration of discrete ADL
observed in our studies. We further conduct the user studies with annotators and they empirically separate the ADL
into state-based and event-based ADL [3]. State-based ADL usually last more than 5 s each and often periodically
and continuously, like “walking” and “chopping meat”, etc. Event-based ADL are one-short, like “opening the door”
and “sitting down in chair”, etc.

Dataset Scale: Following the data labeling process, we streamlined the dataset by reducing the representation of
longer-duration event-based ADL, particularly those that span over 10 consecutive minutes. This process yielded
an effectively condensed dataset with an average duration of approximately 2 hours per participant. For the data
without labels, we selectively refined the data by eliminating segments that lacked significant variation across
all three modalities. Finally, we organized the data into three datasets. (i) Labeled dataset. The labeled dataset
contains 20 hours of records from 10 users across 7 homes, area ranging from 600 to 2000 ft2 with a variety of
layouts. It comprises 7, 000 ADL samples, including 221 types of ADL involving 70 actions and 91 objects. A
detailed list is in Appendix 10. This dataset serves as a baseline for preliminary experimentation and few-shot
fine tuning. (ii) Balanced dataset with labels. Remarkably, the uncontrolled user activities manifest an imbalanced
long-tail distribution– more than half of the ADL in EgoADL are infrequent and only have less than 15 samples. To
establish a baseline supervised learning model, we select a subset from (i), which involves 105 ADL each with 15
to 25 samples (2, 500 samples in total), referred to as a balanced dataset. (iii) Unlabeled data. To facilitate the SSL
(Sec. 6), we collected more than 100 hours of unlabeled egocentric data from 30 users in 20 homes.

4 PRELIMINARY STUDY
In this section, we will discuss the advantages of EgoADL design choices, i.e. egocentric sensing and sensing
modalities selection.

Advantages of Egocentric Sensing: To better understand the advantages of the egocentric sensing, we conduct
controlled experiments in a 1400 ft2 apartment, and compare EgoADL against the conventional device-free setup
[48] which captures users’ ADL through off-body non-visual sensors, e.g., voice assistant [26, 33, 34] and Wi-Fi
AP [19, 20]. The details of our experiments are in the Appendix (Sec. 10). We summarize the insights as follows:

i). Sensing Space Coverage: The signal strength of device-free sensing suffers from severe attenuation, diffraction,
and scattering effects and drops dramatically as the user moves away from the Tx/Rx or behind the wall. In
comparison, in the egocentric setup, the sensor hub accompanies the user, so it achieves whole-home coverage with
consistent signal quality for both audio, Wi-Fi CSI and motion sensor.

ii). Resilience to interference: Wi-Fi CSI and audio suffer from interference since they can not distinguish the
motion from targeted subject. In contrast, the egocentric sensing setup makes the presence of an interfering user
impact significant only when it is in close proximity of the target user.

Sensing Modality Selection: There are mainly two reasons why EgoADL combines 3 modalities, i.e. the motion
sensor signals, wireless sensing signals and audio, to sense users’ ADLs.

i). Availability on existing commodity devices: These 3 non-visual sensors are widely equipped on mobile/wearable
devices, including smartphones and smartwatches, which can be easily repurposed as an egocentric sensor hub
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Fig. 3. Venn diagram visualizes the advantages of each modality. For each action/object class, if a modality achieves
comparable top-1 mAP (within 15%) with the best modality, we plot this class in the intersection of two circles
representing these two modalities. Since the results are trained on single-modality data, there may be some
overfitting in this visualization (e.g., Wi-Fi is good at recognizing “mouse” and “egg”).

to log ADL. In particular, the Wi-Fi CSI can be collected on such devices [46] but is heavily underutilized as a
potential sensing modality.

ii). Complementary advantages of each modality: To understand the complementary advantages of different
modalities, we conduct experiments to recognize the ADL by using each single modality data and the DNN model
proposed in Sec 5. We use the balanced dataset with labels (Sec. 3), with a 7 : 1.5 : 1.5 split among training,
validation, and testing set. Fig. 3 visualizes the action and object categories with > 60% mAP for at least one single
modality. We summarize our insights as follows:

• In-pocket motion sensor easily captures ambulatory actions of the leg, e.g., “sitting in the chair”, “lying on the
bed”, etc., but cannot easily capture whole-body motion or object interaction.

• Wireless sensing signals, i.e. Wi-Fi CSI, can recognize certain full-body motion and interactions with ambient
environment, like “opening the door”, “opening the window”, etc., but it falls short in discriminating fine-grained
activities.

• Audio sensing can easily recognize ADL with unique sound events, like “coughing”, “operating vacuum”,
“brushing teeth”, etc., but can hardly identify those with weak or similar sounds.

EgoADL aims to approach near-vision sensing resolution by synergizing the complementary advantages of the
non-visual modalities.

5 EGOADL SUPERVISED LEARNING
5.1 Problem Formulation
Most of the traditional DNN-based ADL analysis models are designed to perform classification [3, 14]. The key
limitation is that they have to prescribe a known set of ADL, which falls short of extensibility when new ADL of
interest emerge. Besides, such models only classify the ADL as integer IDs which do not fully utilize the label
semantics from the natural language level [49].

In contrast, we propose a solution that formulates the problem as a sequence-to-sequence (seq-2-seq) task. Our
approach encodes multi-modal sensory features and decodes them as the label name semantics using a sequence of
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Fig. 4. EgoADL Multi-Modal Frame-Wise Slow-Fast (MMFWSF) transformer design with modality-specific encoders
and a transformer-based seq-2-seq model for translating sensory feature into natural language.

words, rather than simple classification labels. This enables us to capture more nuanced and precise information
about ADL. Specifically, our goal is to translate synchronized signals x = {x(0) , x(2) , x(<) }, where x(0) , x(2) , and
x(<) correspond to audio recordings, Wi-Fi CSI, and motion sensor signals, respectively, into semantic labels y for
ADL in the form of a sequence of words.

5.2 Input and Output Design
As shown in Fig. 4, we first discuss the input feature design.

Audio Recordings: We extract the T-F log mel spectrograms with a sampling rate of 32 kHz, Hamming window
size of 31.25 ms, hop size of 10 ms and 64 mel filter banks [32].

Wi-Fi CSI: We first normalize each CSI subcarrier by mean-std normalization, and then extract the Doppler
spectrogram applying STFT on the time-domain sequence of CSI values across subcarriers. The STFT uses a
Hamming window size of 200 ms, a hop size of 10 ms and FFT size of 128 at 400 Hz sampling rate. The window
size is much larger than audio because the Doppler feature caused by human motion exhibits lower frequency.

Motion Sensor: We utilize the linear acceleration (excluding the effect of gravitational force) as the raw input
data [50], apply mean-std Z-normalization [37, 41], and then extract the motion sensor spectrogram via STFT
on the time domain output of each sensor channel [23, 50, 51]. Such a preprocessing pipeline, as recommended
by existing studies in human activity recognition using motion sensors [23, 37, 41, 50, 51], not only enriches the
time-frequency domain representation but also helps to reduces the impact of variations in device orientation. Note
that we use the same hop size of 10 ms for all 3 modalities to ensure feature alignment in the time domain. For
each modality, the input of the DNN model is a sequence of frequency spectrogram, x = {G1, G2, .., GC }, where C is
the length of the spectrogram in the time domain. For each timestamp 8, x8 = {G (0)

8 , G (2)
8 , G (<)

8 } represent the audio
log-mel spectrogram, Wi-Fi CSI Doppler spectrogram, and motion sensor spectrogram, respectively.

EgoADL outputs a natural language text description of the ADL. As shown in Fig. 4, the output can be
represented as a sequence of tokens. Unlike conventional ASR which uses the subword-level or character-level
tokenizer corresponding to the phonological units, we adopt a word-level tokenizer, corresponding to the basic unit
in ADL semantics. For example, for the “chop vegetables” activity, we expect EgoADL to recognize the action
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“chop” and the object “vegetables”, and generate a sequence of tokens “chop vegetables”. Our tokenizer dictionary
contains 1, 000 frequently-used words for describing ADL from EgoADL dataset labeling (see the data labeling
discussion in Sec. 3). Finally, the output sequence is Y = {~1,~2, ..., ~;}, where ; denotes the number of words in
the output text.

5.3 MMFWSF Transformer
Design Principles: Next, we introduce our Multi-Modal Frame-Wise Slow-Fast (MMFWSF) transformer. Com-
pared to existing methods that fuse traditional modalities such as audio, video, and text [52], the multi-modal fusion
in EgoADL possesses the following unique properties which we can leverage:

• Audio, Wi-Fi CSI, and motion sensor data all have complementary advantages when it comes to capturing
fast-changing motion [53], including both one-shot event-based ADL such as "sit down" and "stand up", and
periodical state-based ADL such as "walking" and "clapping".

• In contrast to Wi-Fi CSI and motion sensor data, which mainly capture fast-changing motion, audio data has a
distinct advantage in capturing continuous scene sounds with specific frequencies, such as "operating a vacuum,"
"shaving bread," and "brushing teeth".

• Another essential aspect of our approach is the use of framewise alignment between multiple modalities. Since
no single modality can fully capture all aspects of ADL, there may always exist modality missing for different
behaviors. For instance, in Fig. 2, the "Drinking" behavior is only captured by Wi-Fi CSI. However, the missing
modality can provide additional supervision, helping us determine whether a specific modality can capture a
specific behavior and what the cross-modal cues are at the frame level.

MMFWSF Transformer design: We design our multi-modal fusion and transformer-based seq-to-seq model to
fully utilize the aforementioned insights.

First, to leverage the complementary advantages of each modality for capturing fast-changing motion, we design
fast pathway CNN-based encoder ⌧ (0)

4=2 5
, ⌧ (2)

4=2 5
and ⌧ (<)

4=2 5
for audio, Wi-Fi CSI and motion sensor, respectively,

to achieve a fine feature representation along the temporal dimension. The basic idea is to design CNN encoders
with a small temporal stride of g , resulting in the length of frequency spectrogram C/g , to guarantee high temporal
resolution. The default value is g = 4 in our experiments. The other parameters of our CNN-based encoders are
shown in Sec. 10. Finally, with the fast pathway CNN-based encoder, the feature representations of audio ( 9 = 0),
Wi-Fi CSI ( 9 = 2) and motion sensor ( 9 =<) are

x( 9)
5 = {G ( 9)

15 , G
( 9)
25 , ..., G

( 9)
C/g 5

} = ⌧ ( 9)
4=2 5

(x( 9) ) (1)

where G ( 9)
8 5

2 R⇠⇥� (8 = 1 ⇠ C/g), ⇠ is the number of channels, and � is the number of frequency bins after fast

pathway CNN-based encoder. The input of the transformer is x(<<)
5 = (x(0)

5 , x(2)
5 , x(B)

5 ).
Second, we design an additional audio slow pathway with a CNN-based encoder ⌧ (0)

4=2B to learn the feature
representation for continuous scene sounds. Basically, we use a large temporal stride of Ug , where U > 1 to focus
on learning frequency semantics [54]. We set U = 16 as default. And the feature representation after the audio slow
pathway CNN-based encoder is

x(0)
B = {G (0)

1B , G (0)
2B , ..., G (0)C

Ug
B } = ⌧ (0)

4=2B (x(0) ) (2)

where G (0)
8B 2 R⇠⇥� (8 = 1 ⇠ C

Ug ).
Third, to learn the feature representation of framewise alignment between multiple modalities, we propose

to further fuse the multi-modal sensory data at the frame level. Note that to make sure the final input sequence
of feature representation can be the input of the transformer-based seq-2-seq model, we need to make sure that
each feature representation is of the same size. Therefore, we train another 3 fast pathway CNN-based encoders
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⌧ (0)
4=2 5 F

,⌧ (2)
4=2 5 F

and⌧ (<)
4=2 5 F

for each modality with⇠/3 channels, so that the feature representation of each modality
G ( 9)
8 5 F

2 R⇠
3 ⇥� , where 8 = 1 ⇠ C/g . Finally, the feature representation of frame-wise fusion is

G (<<)
8 5 F

= 2>=20C (⌧ (0)
4=2 5 F

(x(0) ),⌧ (2)
4=2 5 F

(x(2) ),⌧ (<)
4=2 5 F

(x(<) ),38< = 8) (3)

where G (<<)
8 5 F

2 R⇠⇥� , and x(<<)
5 F = {G (<<)

15 F , G (<<)
25 F , ..., G (<<)

C/g 5 F
}.

Note that to make sure all these representations can fit into the transformer, we intentionally enforce the
feature representation of a single frame as R⇠⇥� . Thus, inspired by vision transformer [55] and audio spectrogram
transformer [56], our MMFWSF transformer model can concatenate the sequence of x(0)

B , x(<<)
5 , x(<<)

5 F along the
temporal dimension and then use the linear projection of flatten patches along the channel and frequency dimension
to fit into the transformer model as shown in Fig. 4. Our transformer model contains 12 encoder layers and 6
decoder layers. All the detailed DNN layer designs are shown in Methodological Transparency & Reproducibility
Appendix (META) (Sec. 10).

5.4 Training Strategy
Training loss design: We use the seq-to-seq loss based on the autoregressive decoder, where the previous output is

fed back into the input, to decode the input sequence to the output token sequence. In the testing phase, the predicted
word label ~̂8 and the hidden state ⌘8 of the decoder at step 8 can be updated as ~̂8 ,⌘8 = Decoder(⌘8�1, ~̂8�1, 28 ),
where 28 is the context vector generate by the encoder. In the training phase, we use teacher forcing methods to
train the model, which means ~̂8 ,⌘8 = Decoder(⌘8�1,~8�1, 28 ), where ~8�1 is the last token of the ground truth label.
The objective is to minimize the corresponding cross entropy loss ;seq2seq.

Beam search during testing: In the testing phase, we use beam search, a widely adopted method in NLP and
ASR [57], to search for the top- candidate sequences. For each step, we predict the  most promising next tokens,
and then feed these  alternatives into the decoder to select the best  hypothesis at the next step iteratively.

6 EGOADL SELF-SUPERVISED LEARNING
We have conducted experiments on the supervised model (Sec. 5) and identified limitations and potential pathways
towards a self-supervised EgoADL model design. We found that while the supervised model performed well on a
balanced labeled dataset, it struggled with overfitting and lack of generalization and extensibility, especially for
infrequent ADL, due to limited ground truth labels. Scaling up the dataset requires an enormous amount of labeling
effort, especially for non-visual sensors. On the other hand, in contrast to vision-based setups that require users to
wear multiple devices (e.g., head-mounted or chest-mounted cameras [3, 5]), collecting large-scale unlabeled data
is much easier with EgoADL, as it is non-intrusive and only requires users to carry a smartphone in pocket. We
harness this unique advantage through an SSL model that can improve (i) accuracy, (ii) extensibility for few-shot
ADL with limited labels, and (iii) generalization across different ADL, users, and environments. Our SSL model
trains more generic encoders (see Fig. 4) by leveraging intrinsic supervisory signals within unlabeled data, and by
distilling knowledge of human behavioral logic from external audio datasets.

6.1 Single-modal Self-Supervised Deep Clustering
We first introduce a self-supervised clustering method to learn the single-modal encoders from unlabeled data.
Inspired by vision-based SSL [58], our deep clustering method takes the input feature x( 9) from a single modality
( 9) as input. For each epoch, the training procedure of the deep clustering method follows the steps 1�� 4� in
Fig. 5(a). First, the single-modal encoder generates the feature representation⌧4=2 ( 9 ) (x( 9) ). Second, an unsuperivsed
clustering method is applied to all the feature representations from EgoADL’s unlabeled training data. Then, we
assign pseudo labels, i.e., the cluster index of each resulting cluster, to the corresponding data. Finally, we append
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Fig. 5. EgoADL SSL methods.

fully-connected layers to the encoders to classify the feature representations to their corresponding pseudo labels
and use the back propagation training algorithm to update the parameters in the encoders. The trained single-modal
feature representations will be used in our later cross-modal SSL stage.

In our implementation, we use the entire 100-hour unlabeled EgoADL dataset to train the encoders for each
modality separately, i.e. ⌧ (0)

4=2 5
, ⌧ (0)

4=2B , ⌧ (2)
4=2 5

and ⌧ (<)
4=2 5

. We choose K-means and 3 fully-connected layers with
ReLU activation functions as the default clustering and classification method, respectively. To optimize the number
of clusters : for K-means, we conducted the end-to-end experiments by varying : on a logarithmic scale during
the hyperparameter tuning phase. These experiments, conducted within the context of the EgoADL dataset,
which encompasses 221 distinct ADL, indicate that a : value within the range of 102 to 103 yielded near-optimal
performance. Consequently, we selected : = 200 as our default configuration.
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6.2 Cross-Modal Self-Supervised Deep Clustering
Second, we also leverage cross-modal self-supervisory to enhance the single-modal deep clustering. More specif-
ically, we leverage the external audio dataset, i.e. AudioSet [17], a massive dataset with more than 5, 000 hours
of labeled audio recordings for 527 event classes from YouTube videos, to first train generic audio encoders, i.e.
⌧ (0)
4=2 5

and ⌧ (0)
4=2B [32]. Then, we use the audio pseudo labels from the same frame to train the Wi-Fi CSI ⌧ (2)

4=2 5
and

motion sensor encoders ⌧ (<)
4=2 5

. The use of audio pseudo labels offers several benefits. First, such labels from the
pre-trained audio feature embeddings help prevent the Wi-Fi CSI and motion sensor models from overfitting to
particular user characteristics, such as Wi-Fi transmission locations and sensor orientations. Second, they harness
the broad sensing capabilities of audio, capturing both the event-based sound and continuous scene sounds for
comprehensive supervision (see Sec. 5.3). Lastly, these labels can accelerate the training of deep clustering models
for Wi-Fi CSI and motion sensor data. Fig. 5(b) shows the training procedure of this mechanism. ! 9&0((! represents
the loss when we use the audio pseudo labels to classify the Wi-Fi CSI or motion sensor feature representations.
The final loss ! 90;;((! = \! 9&0((! + (1 � \ )! 9((!. Our evaluation results show that without using the pre-trained audio
feature embeddings will result in reduction in both accuracy and generalization performance (see Sec. 8.2).

After training the single-modal encoders for each of the 3 modalities, we employ cross-modal deep clustering
to fuse the modalities and learn their correspondence. As shown in Fig. 5(c), we concatenate the representations
of the 3 modalities encoders (⌧ (0)

4=2 5 F
, ⌧ (2)

4=2 5 F
and ⌧ (<)

4=2 5 F
) from the same frame to perform the training of the

cross-modal deep clustering. The training procedure of the cross-modal deep clustering follows the same steps as
the single-modal case as discussed in Sec. 6.1. After finishing cross-modal deep clustering training, the resulting
fast multimodal framewise encoder generates the multi-modal feature representation x(<<)

8 5 F
. In contrast to training

single-modal deep clustering and directly concatenating the feature representations of 3 modalities, cross-modal
deep clustering tries to automatically learn the co-occurring features from different modalities, which helps the
DNN model understand the correspondence from different modalities.

Finally, after the SSL training, we use the cross-modal SSL models to replace the supervised encoders (see Fig.
4). We then use the small labeled EgoADL dataset to train the entire model end to end.

7 KNOWLEDGE DISTILLATION FROM NATURAL LANGUAGE LABELS
Given that the output of EgoADL materializes in the form of natural language text, it opens up opportunities for
leveraging the inherent semantics of natural language labels to enhance performance even further. In this section, we
embark on two approaches. First, we introduce a label refinement mechanism aimed at ensuring that the granularity
of labels remains congruent with the capabilities of the sensors. Subsequently, we put forth the idea of utilizing
pre-existing natural language text to cultivate contextual reasoning for sequences of ADLs.

7.1 Label Refinement
To understand the limits of non-visual sensors, we compare EgoADL with egocentric vision-based methods (see
Sec. 8.4). While most ADL show reasonable accuracy, we observed that several ADL had significantly lower
accuracy. This is because we annotated and labeled the EgoADL dataset by manually observing the egocentric
video and audio. Nevertheless, as we discussed in the previous sections, the non-visual sensors (audio, motion
sensor, and wireless sensing) have limited resolution compared to visual sensors, which may have impacted the
labeling accuracy. To better understand the limits of EgoADL, we propose to refine the labeling by merging ADL
that are difficult to distinguish using EgoADL non-visual sensors. Our label refinement involves three steps: i)
ranking ADL based on mean average precision (mAP), ii) visualizing the confusion matrix of ADL with less than
n, and iii) merging actions or objects in ADL based on both the confusion matrix and our knowledge. We have
empirically set n to 30%, predicated on the observation that EgoADL’s overall system mAP is approximately 60%,
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Fig. 7. BERT-based EgoLM design, which learn the contextual information of ADL.
and its discriminative power is significantly reduced for ADL with an mAP below 30%—a scenario applicable
to roughly 30/105 of the ADL. We summarize the representative label refinements in Fig. 6. The refined labels
consist of 75 frequently-used ADL, 38 object interactions, 41 actions, 29 state-based ADL, and 46 event-based
ADL (see Sec. 10). When employing these labels to assess the performance of EgoADL, the achieved results
notably surpass those attained from labels derived from egocentric video and audio sources. This disparity is
attributed to the fact that the former set of labels encapsulates the intrinsic capacities of the sensors. Note that our
current method requires to refine the labels manually. To further understand the boundary of EgoADL, we need to
design an automatic label refinement solution for each modality and multimodal fusion, as well as fine-tuning the
hyperparameter n. This will be left as our future work.

7.2 Distilling Contextual Information from Text
The above models only process the short segments of sensor data for single human behavior (with each segment
varying in length but not exceeding 10 seconds, as detailed in Sec. 3). Longer segments of input may provide
contextual information to boost the performance. But it will dramatically increase model complexity, and lead to
severe overfitting due to the limited multi-modal dataset. In EgoADL, we harness existing natural language text to
learn the contextual reasoning instead.

Inspired by the language model in NLP [59], our idea is to learn a “contextual language model” for ADL, referred
to as EgoLM. Unlike traditional NLP which calculates the probability distribution over sequences of words, EgoLM
outputs the probability of a given sequence of ADL via natural language text. As shown in Fig. 7, EgoLM is fine
tuned from the celebrated Bidirectional Encoder Representations from Transformers (BERT), a transformer-based
NLP model pre-trained by Google [59]. In the training phase, EgoLM takes the text description of a sequence
of 30 s ADL as input, and uses a comma to mark the end of the last ADL. During the training phase of EgoLM,
we experimented with various masking strategies, including masking a word-level token or an entire ADL, and
then we utilize the contextual information from surrounding ADLs to predict the masked elements. Unlike the
traditional BERT approach of word-level masking, we choose to mask an entire ADL (as shown in Fig. 7), the
strategy that resulted in the most optimal performance (see Sec. 8.5).

To make EgoLM more general, we collect the training text corpus from not only the EgoADL dataset but also
existing video-based domestic ADL datasets, including Charades [13], CharadesEgo [4], EPIC-KITCHENS [3]
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and EGTEA-GAZE [60]. We extract the text corresponding to the sequence of ADL within a 30 s period from
these datasets, which typically contains 3 ⇠ 8 ADL. Note that most of the datasets segment the ADL in 10 s units.
However, the state-based ADL (see Sec. 3) typically last for more than 10 s, and the same ADL labels may appear
consecutively. We thus merge these ADL to prevent replication of state-based ADL in the sequence. Overall, our
EgoLM text corpus has 3, 000 and 34, 000 sequences of ADL from EgoADL dataset and 4 external datasets. We first
use the whole EgoLM text corpus to train the original BERT model [59], and then fine tune it with the EgoADL
dataset.

EgoLM can be applied to any EgoADL models, that we discussed previously, in the testing phase. We first use
EgoADL model to generate the potential prediction of each single ADL via beam search, and save the score of the
loss function from the EgoADL DNN model. And then, we apply a second round of beam search to combine the
EgoADL loss with the language model loss ;all = W;EgoADL + (1 � W);EgoLM, where ;EgoADL learns the information
from the raw data in the current segment, and ;EgoLM learns the contextual information in a long period (30 s) before
current segment. Finally, we select the ADL with the lowest score of ;all to output the top- prediction.

8 IMPLEMENTATION AND EXPERIMENTAL EVALUATION
8.1 EgoADL Implementation and Evaluation Metrics

DNN Implementation: The EgoADL DNN model is implemented in PyTorch. For training, the self-supervised
feature embedding DNN models for 3 modalities are first trained separately using single-modal SSL and then
jointly using cross-modal SSL, as discussed in Sec 6. Next, we freeze these models and train the end-to-end seq2seq
model as discussed in Sec. 4. We use the Adam optimizer with a 14 � 4 initial learning rate followed by annealing.
The current EgoADL implementation has 421.6 M parameters in total.

Evaluation Metrics: We evaluate EgoADL using classwise mAP metrics and captioning metrics which are
adopted in egocentric video-based ADL recognition and captioning [61]. We measure the mAP for the aforemen-
tioned “action” and “object” categories, along with “state-based ADL” and “event-based ADL” (Sec. 3), and an
“overall ADL” (aka. “ADL”) which is the superset of the 4 categories. Our EgoADL dataset contains 35 state-based
and 186 event-based ADL classes, the former typically have more labeled data samples because state-based ADL
last longer. We use two captioning metrics to measure the similarity between predicted and reference captions [62],
i.e. BLEU and SPICE, which are based on n-gram overlapping and scene graph similarity, respectively.

8.2 Micro Benchmark Analysis of EgoADL Supervised Learning Model
We conduct an ablation study to compare the EgoADL design across different modality fusions. As shown in
Tab. 2, we evaluate EgoADL in 7 settings by using a single modality and combining multiple modalities by using
supervised learning models. 5 different methods are evaluated: (i) “Fast-only” for single modality, (ii) “Modalwise”
where the multi-modal features are fused along the modality dimension (iii) “Framewise” where the multi-modal
features are fused along the frame dimension, (iv) “MMFW” where the multi-modal features are fused along both
modality and frame dimensions without audio slow pathway (see Sec. 5.3), (v) “MMFWSF” represents to “MMFW”
with audio slow pathway (Sec. 5.3). For a fair comparison, all the methods are trained using a balanced dataset
with 2, 500 labeled samples. We employed an 8 : 2 split between training and validation with 5-fold cross validation.
For testing, we use the remaining unbalanced 2, 800 samples. It is important to note that this unbalanced testing set
does not skew our final results, as all outcomes are reported on a classwise basis (average acorss different ADL).
The distribution of samples from all 10 users is balanced across the training, validation, and testing sets.

Performance gain due to multiple modalities: As shown in Tab. 2, “Audio” is the most informative modality
among these three modalities. Compared to audio-only solution, the multi-modal fusion achieves an overall 13.5%
and 16.6% improvement for top-1 and top-5 overall ADL mAP, respectively. Fig. 8 demonstrates the performance
gain introduced by the EgoADL multi-modal fusion design. With the motion sensor located at users’ trouser pocket,
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Modal Methods Top-1 mAP (%) Top-5 mAP Captioning
ADL A O S E ADL A O S E BLEU SPICE

Audio Fast-only 44.1 56.0 54.3 71.3 31.7 62.6 75.3 67.1 82.4 53.5 0.42 0.40
Wi-Fi Fast-only 25.9 37.0 36.1 49.7 15.0 51.6 71.9 57.8 80.4 38.3 0.29 0.28

Motion Fast-only 23.0 32.8 30.0 41.6 14.5 44.5 53.9 51.2 61.6 36.6 0.28 0.23

Audio
+
Motion

Modalwise 50.7 61.1 61.0 73.0 40.5 67.2 80.8 81.7 90.5 56.5 0.48 0.46
Framewise 46.4 59.1 55.8 71.7 34.8 67.1 79.2 77.1 87.0 57.9 0.46 0.44

MMFW 51.5 63.8 61.9 73.8 41.3 67.4 80.7 78.3 89.4 57.3 0.48 0.45
MMFWSF 52.1 64.0 62.0 75.0 41.6 67.8 81.7 78.5 90.2 57.5 0.49 0.45

Audio
+
Wi-Fi

Modalwise 47.4 58.5 59.2 71.3 36.4 67.8 78.5 81.3 90.5 57.3 0.46 0.43
Framewise 47.9 57.8 56.3 72.8 36.5 64.0 74.5 78.6 86.5 53.7 0.44 0.43

MMFW 48.6 62.6 62.9 73.1 37.4 70.1 82.3 81.6 90.2 60.8 0.49 0.46
MMFWSF 49.2 62.9 63.5 74.5 37.5 71.0 82.5 81.9 90.5 62.1 0.49 0.46

Wi-Fi
+
Motion

Modalwise 40.2 51.9 46.9 66.2 28.2 64.4 78.1 72.1 84.2 55.2 0.43 0.41
Framewise 41.1 50.6 46.9 66.8 29.3 64.6 78.9 72.6 84.5 55.5 0.43 0.41

MMFW 41.3 53.1 48.0 66.8 29.5 65.0 78.2 73.1 83.9 56.1 0.43 0.41

Audio+
Motion+
Wi-Fi

Modalwise 51.5 63.4 62.7 73.8 41.2 76.1 85.2 86.9 90.8 68.3 0.52 0.51
Framewise 53.8 66.7 64.1 76.7 43.2 74.7 86.5 87.1 90.6 67.4 0.53 0.52

MMFW 54.6
± 2.1

67.6
± 1.8

66.2
± 1.7

76.0
± 1.5

44.8
± 2.8

76.6
± 1.9

86.6
± 1.2

88.0
± 1.5

90.7
± 1.2

70.1
± 2.5

0.54
± 0.02

0.52
± 0.02

MMFWSF 55.3
± 2.0

68.1
± 1.5

65.8
± 1.9

77.0
± 1.3

45.3
± 2.4

78.1
± 1.2

87.8
± 0.9

88.4
± 1.1

92.5
± 1.0

71.5
± 1.4

0.56
± 0.02

0.52
± 0.01

Refine 68.2
± 1.5

70.4
± 1.6

72.2
± 1.4

83.2
± 0.8

55.9
± 2.0

87.3
± 1.3

90.1
± 1.9

92.3
± 1.4

94.8
± 1.0

82.7
± 2.2

0.65
± 0.01

0.63
± 0.01

Table 2. EgoADL micro benchmark. We benchmark 5 categories of ADLs. “ADL”, “A”, “O”, “S”, “E” represent to
“Overall ADL”, “Action”, “Object”, “State” and “Event”, respectively (see Sec. 3). “Refine” represents the case where
the non-ambiguous labels for non-visual sensors, as discussed in Sec. 8.4. The number below the mAP result is the
95% confidence interval for the mAP.

EgoADL is able to recognize more actions and objects related to lower body, including “Sit in a chair”, “Bend
down”, “Mop the floor”, etc. Wi-Fi CSI further characterizes the full-body motions with large environment changes.
ADL, like “Open/close the door”, “Open/close the window”, etc., are easily recognized through EgoADL’s multi-
modal fusion. Besides, we also find that, compared to the “Audio” which is effective in identifying event-based
ADL, both “Motion” and “Wi-Fi” have advantages in recognizing state-based ADL, which may involve periodic
motions. As shown in Fig. 8, the multi-modal fusion only incurs slightly lower accuracy for few ADL, like “Dry
hand”, “Grab tissue”, etc.

Performance gain due to MMFWSF fusion design: As shown in Tab. 2, compared to traditional modalwise/
framewise fusion algorithms, our MMFWSF fusion achieves better performance for all kinds of ADL. By utilizing
the complementary modalities of different modalities, EgoADL further pushes the limits to achieve 55.3% and
78.1% top-1 and top-5 overall ADL mAP. Further, the 95% confidence intervals for the mAP across all categories
are within ±2.5%, indicating the consistent performance of EgoADL.

8.3 Accuracy, Generalization and Extensibility of EgoADL SSL Model
In this section, we evaluate the EgoADL models using various SSL training methods (Sec. 6), focusing on
improvements in accuracy, generalization, and extensibility. The EgoADL models are trained by 3 different training
approaches: i).“W/o” for without SSL, ii).“SM” for single-modal SSL (Sec. 6.1), iii). “CM” for cross-modal SSL
(Sec. 6.2). Initially, models are pretrained using 100 hours of unlabeled data from 20 additional subjects. This
is followed by fine-tuning the models using a balanced dataset comprising 2,500 samples for training, and an
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Fig. 8. Venn diagram visualizes the advantages and limitations of EgoADL multi-modal fusion. Actions/ objects with
> 80% top-1 mAP are in the circle for different modality fusions

unbalanced dataset with 2,800 samples for testing, with the same 5-fold cross validation setup described in the
previous section.

Accuracy gain due to SSL: Table 6 shows that leveraging SSL into EgoADL yields a marginal Top-1 mAP
enhancement across various ADL categories when compared to the non-SSL EgoADL models. Notably, the
adoption of cross-modal SSL (Sec. 6.2) allows EgoADL to capitalize on audio pseudo labels derived from
pre-trained audio feature embeddings, culminating in a further 2.9% mAP increment for the overall ADL.

Generalization gain due to SSL: For generalization evaluation, the models are trained and tested using a
leave-one-out cross-validation approach, to evaluate on unseen users (UU) and unseen environments (UE). Table 4
shows the top-1 mAP. The baseline model shows poor generalization, with 35.3%, 27.7% top-1 “ADL” mAP and
large 95% confidence interval for UU and UU+UE respectively. In contrast, with the “Cross-modal SSL” design,
EgoADL achieves 47.7% and 47.1% in the same metrics with a smaller 95% confidence interval. Additionally, when
we fine-tune the EgoADL model with 200 labeled samples for a specific user (“Personalized fine tuning” in Tab. 4),
the model reaches 77.1% and 91.5% top-1 mAP for “ADL” and “state” respectively.

Extensibility gain due to SSL: For extensibility assessment, we focus on 116 event-based “tail” ADL, which
refers to the ADL with less than 15 data samples in our labeled dataset. Training and validation utilize a balanced
set of 2,500 labeled samples, supplemented by 1,000 “tail” ADL samples. In total, 3,500 out of 7,000 labeled
samples form the training set while the remaining 3,500 unbalanced labeled samples form the test set. As shown in
Tab. 5, our SSL approach yields substantial increases in mAP for these “tail” classes: 39.8% top-1 and 62.3% top-5.
Further fine-tuning with an additional 3 samples per “tail” class significantly boosts these metrics to 60.2% top-1
and 74.1% top-5.

8.4 Evaluating the Limits of Non-Visual Sensors
To understand the limits of non-visual sensors, we compare EgoADL with egocentric vision-based methods. We
reimplemented the SOTA methods, i.e. Ego-exo [63], on two egocentric vision datasets, i.e. Charades-Ego [4] and
GTEA-GAZE [6]. The ADL sets differ across datasets. For a fair comparison, we only consider the classes which
have the same labels in both the egocentric vision and EgoADL datasets (see detailed ADL sets in Fig. 19). For
EgoADL, we use the model trained in the previous section. For Ego-exo [63], we employed models fine-tuned with
the Charades-Ego [4] and GTEA-GAZE [6] datasets. The models are evaluated not only on the egocentric video
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Top-1 (%) Top-5 (%)
ADL A O S E ADL A O S E

W/o 55.3
± 2.0

68.1
± 1.5

65.8
± 1.9

77.0
± 1.3

45.3
± 2.4

78.1
± 1.2

87.8
± 0.9

88.4
± 1.1

92.5
± 1.0

71.5
± 1.4

SM 56.3
± 1.3

67.5
± 1.0

66.9
± 1.2

77.5
± 0.9

46.6
± 1.6

78.5
± 0.8

87.1
± 1.0

89.5
± 1.3

93.0
± 0.7

71.8
± 1.3

CM 59.2
± 1.0

68.5
± 1.2

68.9
± 1.4

79.5
± 0.8

49.8
± 1.1

79.8
± 1.0

87.6
± 1.1

90.6
± 1.2

92.8
± 0.6

73.8
± 1.3

Table 3. Accuracy of EgoADL SSL. “W/o”, “SM” , “CM” represent to “W/o SSL”, “Single-modal SSL”, “Cross-modal
SSL”, respectively. “ADL”, “A”, “O”, “S”, “E” represent to “Overall ADL”, “Action”, “Object”, “State” and “Event”,
respectively. The number below the mAP result is the 95% confidence interval for the mAP.

UU (Top-1 mAP %) UU + UE (Top-1 mAP %)
ADL A O S E ADL A O S E

W/o 35.3
± 6.3

46.3
± 5.5

36.6
± 6.9

48.5
± 3.3

29.3
± 7.4

27.7
± 6.6

36.6
± 5.8

34.5
± 7.0

41.3
± 4.1

21.5
± 8.0

SM 41.9
± 4.1

52.6
± 3.7

54.5
± 4.0

60.3
± 2.8

33.4
± 4.8

42.8
± 4.4

48.5
± 3.4

52.1
± 4.0

65.5
± 3.5

32.2
± 5.0

CM 47.7
± 3.5

56.1
± 3.3

62.5
± 4.0

69.7
± 2.9

37.6
± 4.5

47.1
± 3.8

55.8
± 3.2

60.9
± 3.9

68.5
± 2.0

37.2
± 4.0

P 77.3
± 2.3

88.2
± 2.1

87.3
± 1.8

93.0
± 1.3

70.1
± 2.7

77.1
± 2.5

87.9
± 2.0

87.5
± 2.4

91.5
± 1.9

70.5
± 3.0

Table 4. Generalization of EgoADL SSL. “UU” and “UE” represent to “Unseen user” and “Unseen environment”.
“W/o”, “SM” , “CM” represent to “W/o SSL”, “Single-modal SSL”, “Cross-modal SSL”, respectively. “P” represents to
“Personalized fine tuning”. “ADL”, “A”, “O”, “S”, “E” represent to “Overall ADL”, “Action”, “Object”, “State” and “Event”,
respectively. The number below the mAP result are the 95% confidence interval for the mAP.

Tail Classes
Top-1 (%) Top-5 (%)

E A O E A O
W/o 22.8 38.5 41.2 43.2 50.2 53.5
SM 35.6 51.9 55.0 58.2 62.3 65.5
CM 39.8 53.5 58.3 62.3 70.9 72.3

P 60.2 69.3 71.2 74.1 80.2 83.1
Table 5. Extensibility of EgoADL SSL. “W/o”, “SM” , “CM” represent to “W/o SSL”, “Single-modal SSL”, “Cross-modal
SSL”, respectively. “P” represents to “Personalized fine tuning”. “E”, “A”, “O” represent to “Event”, “Action”, “Object”.

# of
ADL

Top-1 mAP (%)
ADL A O S E

EgoADL v.s.
Charades-Ego v.s.
EgoADL vision

40 (105)
40 (157)
40 (105)

48.8
39.9
31.1

56.3
41.2
40.5

57.5
34.5
31.3

46.4
25.0
21.1

50.4
46.3
35.3

EgoADL v.s.
EGTEA-GAZE v.s.

EgoADL vision

40 (105)
40 (106)
40 (105)

47.3
46.9
40.0

54.8
57.9
42.6

50.0
56.4
41.8

65.3
67.3
40.3

48.3
42.2
39.8

Table 6. Comparison between EgoADL and egocentric vision. “ADL”, “A”, “O”, “S”, “E” represent to “Overall ADL”,
“Action”, “Object”, “State” and “Event”, respectively. “EgoADL vision” means that we evaluate egocentric vision
models using the testing video data collected by ourselves, which is originally used for labeling.

dataset but also on the egocentric video data from the EgoADL dataset, which is originally used for labeling. For a
fair comparison, all evaluations are conducted in the "UU + UE" scenario.
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Methods Top-1 mAP (%) Top-5 mAP (%)
ADL A O S E ADL A O S E

EgoADL w/o LM 68.2 70.4 72.2 83.2 55.9 87.3 90.1 92.3 94.8 82.7
EgoADL w/ LM, Word Masking 69.9 70.4 72.2 83.8 59.6 88.5 90.9 92.9 94.6 83.2
EgoADL w/ LM, ADL Masking 72.5 75.3 76.5 85.9 65.8 90.8 92.1 93.4 94.5 83.9

Table 7. Performance gain due to EgoLM. “ADL”, “A”, “O”, “S”, “E” represent to “Overall ADL”, “Action”, “Object”,
“State” and “Event”, respectively.

Tab. 6 shows the results compared with egocentric vision. We found that testing on the egocentric vision data
collected by ourselves (see “EgoADL vision” in Tab. 6) has much worse performance than testing on existing
egocentric vision datasets. This is because that egocentric vision datasets require the users to adjust the camera FoV
or use specialized cameras with a larger FoV to capture the subject hand and interaction objects. In contrast, our
collected egocentric vision data will only be used by data labeling. Therefore, we use a commodity camera with
limited FoV. Part of our egocentric vision data is not able to capture the hand motion and interaction object of the
subject. This does not affect the data labeling as users can remember what they are doing and label the ADLs based
on their memory. However, directly using such data will unfairly degrade the performance of other datasets. We
also evaluate egocentric vision using their dataset and comprare the results with EgoADL. We found that EgoADL
achieves comparable performance with vision-based methods for the overlapped classes between the egocentric
vision datasets and the EgoADL datasets. The performance of both highly depends on the label type and granularity
(Tab. 6), because they both have unique advantages and limitations, which we summarize as follows:

Adv: EgoADL shows remarkable advantages in recognizing state-based ADL with unique motion patterns or
sound events. It achieves a top-1 "state" mAP improvement of 21.4% over Charades-Ego [4], as most state-based
ADL cannot be entirely captured by egocentric vision with limited field of view.

Limit1: EgoADL is limited in recognizing ambiguous actions, i.e., actions that are similar to non-visual sensors
but can be described by natural language in different ways. For example, human actions, i.e. “grab”, “put”, “take”,
“hold”, “pick”, “throw”, all involve humans using their hands to fetch something. Our classwise detailed experiments
in Fig. 8(a) and Fig. 17 show that EgoADL can only achieve < 30% mAP on average to distinguish these few
actions. Further such actions are not only hard to recognize for non-visual sensors, but also for vision-based
methods without detailed contextual information [6].

Limit2: Without vision information, EgoADL is limited to recognize detailed objects. Although audio can capture
the specific sound of human-object interaction to distinguish different objects, without vision information, non-
visual sensors can only recognize the object with coarse granularity. For instance, when subjects are chopping
something in the kitchen, the vision-based methods will be able to recognize the detailed type of objects, like
“carrot”, “potato”, “watermelon”, “beef”, etc.. However, EgoADL can only recognize the “chop” action but not
the type of objects. In EgoADL, we do not label the objects with such granularity. Thus, in Tab. 6, EgoADL even
achieves higher performance for “object” mAP as it can recognize many objects outside camera FoV.

8.5 Evaluation on Knowledge Distillation from Natural Language
Label refinement for non-visual sensors: We follow the steps discussed in Sec. 7.1. The refined labels consist

of 75 frequently-used ADL, 38 object interactions, 41 actions, 29 state-based ADL, and 46 event-based ADL. As
shown in Tab. 2 and Fig. 18, with the label refinement, EgoADL achieves an overall mAP of 68.2%, with 83.2% and
55.9% for state-based and event-based ADL, respectively. This is significantly higher than the labels obtained from
egocentric video and audio.

Performance gain due to EgoLM: To evaluate the performance gain due to EgoLM, we need to use continuous
testing samples in the time domain since EgoLM takes the prediction text of EgoADL in a long period (30 s) as the
input to learn the contextual information. So we use 24 continuous recordings, each lasting 5-min, as the EgoLM
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testing dataset (2 hours in total). Tab. 7 summarizes the results. We evaluate the EgoLM with two different masking
strategies, masking i). a word-level token, and ii). an entire ADL. Tab. 7 indicates that masking an entire ADL
led to a notably improved performance compared to merely masking word-level tokens. This outcome suggests
that masking complete ADL is more effective in enabling the EgoLM model to grasp the contextual relationships
integral to ADL. EgoLM gains an additional 4.3% (from 68.2% to 72.5%) top-1 overall ADL mAP for EgoADL,
matching the intuition that EgoLM can better understand the contextual information when the original model
performance is sufficiently high. Besides, EgoLM is proficient in enhancing the mAP of event-based ADL which
tend to have more contextual information.

8.6 Energy Consumption
In this section, we evaluate the energy consumption associated with the sensing capabilities of EgoADL, while
a detailed discussion on computational resource consumption is provided in Sec. 9. We conduct a preliminary
profiling of the EgoADL sensor data capturing app by using Android’s native battery usage measurement. During
the measurement, EgoADL collects the audio recordings, Wi-Fi CSI and motion sensor signals in the background
with the display off. We found that EgoADL only consumes less than 60 mAh per hour on a Nexus 5 smartphone.
That means EgoADL can work on a Nexus 5 with 2300 mAh battery for about 7.6 days if it continuously records
the multi-modal sensing data for 5 hours a day. All the 3 sensor modalities are significantly more energy efficient
than a camera (more than 600 mAh per hour) [64], making it a promising potential in practical scenarios.

9 DISCUSSION AND LIMITATIONS
Privacy consideration: EgoADL requires capturing the egocentric audio signals, which may inadvertently

include users’ daily conversations. However, thanks to the EgoADL DNN design, we can separate the audio branch
from the whole model, and calculate the audio feature embedding on-device without uploading raw audio data to
the edge/ cloud devices to protect users’ privacy. To this end, we can employ the model designed to be deployed on
smartphones or edge device [65] as the basic feature embedding network. Another potential solution is to selectively
anonymize or mask the speech data [66] from audio recording. These privacy enhancement mechanisms are left for
our future exploration.

Generalization of EgoADL dataset: Due to the availability of Wi-Fi sensing, one of the limitations of EgoADL
is that the dataset is only collected by a single type of commodity smartphone (i.e. Nexus 5). However, it will not
significantly affect the generalizability of the dataset because of the following reasons: i). There is no limitation
imposed on the placement of Wi-Fi AP nor on the manner in which users carry the smartphones in their trouser
pockets when collecting the data. Therefore, this leads to greater variability in the data than the type of device used,
owing to the variability in Wi-Fi AP locations, which can vary by several meters, and the differences in smartphone
Wi-Fi antenna positions, which can vary by several centimeters. ii). We focus on the Wi-Fi CSI Doppler shift
induced by human motion and environment factors. Given that the Wi-Fi signal’s wavelength at a frequency of
5 GHz is approximately 6 cm, the resultant Doppler shift predominantly reflects motions with displacements on
the order of tens of centimeters. Therefore, such features are not significantly influenced by variations between
different smartphone models. Another limitation of EgoADL dataset is the demographics of participants (see Sec.
10). We hope that, by open-sourcing EgoADL, we can encourage a broader spectrum of participants and researchers
to contribute to the EgoADL data collection, thereby enhancing the demographic diversity of our dataset.

Potential Missing Data: Generally, smartphones are capable of continuously capturing both audio and motion
sensor data with minimal data loss. However, due to packet losses, the receiving packet rate of Wi-Fi CSI tends to
be lower, especially when there is significant distance between the subject and Wi-Fi AP. In our data collection
within apartments up to 2000 ft2, and where the distance between the Wi-Fi AP and the smartphone is impeded
by fewer than two solid walls, we observed negligible loss of Wi-Fi packets. Conversely, in scenarios where the
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distance exceeds 15 meters or involves more than three solid walls, we noted a notable decrease in packet reception,
resulting in a lower packet rate for Wi-Fi CSI. To ensure the data quality, we ensured a minimum packet reception
rate of 200 packets per second on smartphones during data collection, corresponding to a 50 Hz Doppler shift akin
to daily human motion maximum speed (about 3 m/s). In practical scenarios, if reception rates drop below this
threshold, we can alternatively use EgoADL models that operate without Wi-Fi CSI data requirement.

System resource consumption of EgoADL: EgoADL focuses on improve the performance of ADL sensing
performance, rather than optimizing the system resource usage. Currently, the computational resource requirement
is relatively high. We notice that most of the parameters (275.5 M) are contributed by the self-supervised feature
embedding VGG-like DNN models (Sec. 6). We plan to replace them using more efficient DNN models, like
MobileNet [65], without losing significant accuracy. Further, a full-fledged implementation of EgoADL needs to
carefully split the on-device vs. in-cloud processing, and strikes a balance between computation and communication
energy cost. This is left for our future work.

Applicability for EgoADL device: Currently, smartphones serve as the device for EgoADL, primarily chosen
for their availability to capture Wi-Fi CSI. However, it is noted that smartphone is not always carried by users,
particularly among the elderly population. We recognize that wearable devices, such as smartwatches, may present
a more suitable option for EgoADL. One promising direction to explore in future work is to include a more diverse
set of wireless sensors, i.e. low-cost ultrasound sonar, UWB radar or mmWave radar, on wearable devices [67].

Integrating Large Language Model (LLM) into ADL sensing: EgoADL fine-tunes a language model, i.e.
BERT [59], to extract and distill contextual information pertaining to human behaviors, as detailed in Section 7.2.
While the current implementation deals with computational complexities by fine-tuning a more manageable model
size, the approach can be scaled to accommodate the fine-tuning of a larger language model in the future. Moreover,
given that large language models are designed for general natural language processing tasks, it may be feasible for
EgoADL to bypass fine-tuning altogether. Instead, EgoADL could provide its generated sequence of words and
the corresponding probability distribution and organize them as the input prompt directly to the LLM. This would
allow the LLM to employ its robust contextual capabilities to refine and correct the word sequence autonomously.
We posit that EgoADL paves the way for a novel integration of sensory data with natural language processing.
Moving forward, our research will explore to leverage LLMs to enhance the perception and understanding of ADL
through different sensing technologies.

10 CONCLUSION
This paper presents the first study that uses a commodity smartphone as an egocentric multi-modal sensor hub to
recognize unrestricted user behaviors in free living environment. Although the absolute sensing accuracy of the
proposed EgoADL system still leaves room for improvement, its performance is already comparable to state-of-
the-art egocentric vision-based solutions. EgoADL verifies several promising mechanisms, such as a joint design
of self-supervised single-modal and multi-modal clustering, and context distillation from generic data, which
can overcome the fundamental barriers–particularly the generalization and labeling–in ubiquitous sensor-based
behavior analysis. Our EgoADL dataset will be released as open source to promote research in both ubiquitous
computing and machine learning.
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METHODOLOGICAL TRANSPARENCY & REPRODUCIBILITY APPENDIX (META)
Demographics of Participants in Data Collection
For our data collection, we engaged 30 participants, comprising 8 females and 22 males, as shown in Fig.
9. The participants had an average age of 25.9 years. Among them, 10 participants (3 females and 7 males)
consented to provide ground-truth labels for our study. One notable limitation of our current dataset is the
underrepresentation of female and elderly participants. To address this and to support future research, we released
our dataset (https://doi.org/10.5281/zenodo.8248159), data collection and labeling platform, processing source
code (https://github.com/Samsonsjarkal/EgoADL) to facilitate further research. We hope that by sharing these
resources, we can encourage a broader spectrum of participants and research institutes to contribute to the EgoADL
data collection, thereby enhancing the demographic diversity of our dataset.
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Fig. 9. Demographics of Participants.

Data Preprocessing and Labeling
Fig. 10 summarizes the preprocessing pipeline. To mitigate the impact of unstable sample timing on COTS
smartphones [68], we first resample the motion sensor data uniformly to 200 Hz. For the Wi-Fi CSI data, we
preprocess it as follows: 1) Discard the frames without < 80 MHz bandwidth, and only keep the data frames with
80 MHz; 2) Compensate the automatic gain control (AGC) to guarantee the stable amplitude of Wi-Fi CSI signals
in the time domain; 3) Discard the subcarriers without Wi-Fi CSI; 4) Resample the Wi-Fi CSI uniformly to 400 Hz
sampling rate. Afterwards, we synchronize the three sensing modalities based on their sampling timestamp.

We use egocentric video and audio to assist ground truth labeling. To achieve accurate timestamp labeling, we
first synchronize the data collected by smartphone with the egocentric video and audio collected by GoPro. We
perform the cross correlation between existing audio recordings from the smartphone and GoPro to achieve the
synchronization between data from smartphone and GoPro, as shown in Fig. 10.

Each ground truth label needs to specify the human behavior, i.e., an ambulatory action or human-object
interaction event, along with the start and end timestamps. Fig. 11 illustrates the UI of our labeling tool. It allows
playback of the GoPro video/audio, and annotating the data using a set of human behavior labels created by two
state-of-the-art video/audio based ADL sensing systems [5, 13, 15, 47]. To ensure accurate labeling, the annotators
are exactly the data collectors, compensating for any limitations in egocentric video field of view (FoV) by using
their memory of the events. They are equipped to segment and label the video footage, either using the provided
predefined ADL labels or by adding new ones as they identify them. The maximum allowable duration for each
labeled segment is 10 seconds, aligning with the typical duration of discrete ADL observed in our studies. To
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Fig. 10. Implementation pipeline of the EgoADL preprocessing and labeling.

accelerate the labeling, we adopt Angular Typeahead [69]–an input field API allowing a user to quickly type and
select from a list of matching labels, or create their own. If the volunteer can not find their preferred ADL labels,
they can manually add new ADL labels via the UI of our tool. Note that we only annotate a single most relevant
label when multiple behaviors are involved simultaneously.

The labeled dataset comprises 7, 000 human behavior samples, including 221 types of human behaviors
(Fig. 16(a)) with 70 actions (Fig. 16(b)) and 91 objects (Fig. 16(c)). We also separate the human behavior set into
35 state-based behaviors (Fig. 12) and 190 event-based behaviors (Fig. 13), The former typically last more than 5 s
each and often periodically and continuously, like “walking” and “chopping meat”, etc. The latter are one-short
behaviors, like “opening the door” and “sitting down in chair”, etc. Fig. 12 and Fig. 13 visualize the frequency of
state-based behaviors and event-based behaviors, respectively.

Search for Matched 
Human Behavior Labels

Fig. 11. EgoADL labeling tool
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Details of Neural Network Design
In our main paper, we omit the detailed design of the neural network design.

Tab. 8 shows the design of different CNN-based encoder parameters. To make sure all the representations after
encoders can fit into the transformer, we intentionally enforce the feature representation of a single frame to be the
same size. Therefore, the “Slow-pathway” encoders will have more channels than the “Fast-pathway” encoders
while the “Modalwise” encoders will have more channels than “Framewise” encoders. Our transformer network
architecture is based on [70]. It comprises 12 encoder layers and 6 decoder layers. Positional encoding is employed
to capture temporal dynamics in sensory time-series data. Within the multi-head attention mechanism, we have
configured 8 heads, and the dimensionality of the feedforward network is set at 3072 as default.

We released DNN source code (https://github.com/Samsonsjarkal/EgoADL) to facilitate further research.
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Fig. 12. EgoADL State-based human behaviors

Slow-
pathway

Fast-
pathway

Fast-pathway
(Framewise)

Modality Audio Audio Acc CSI Audio Acc CSI

Spectrogram (t, 64)
C:1

(t, 64)
C:1

(t, 64)
C:3

(t, 64)
C:208

(t, 64)
C:1

(t, 64)
C:3

(t, 64)
C:208

Stride (8,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

CNN 3*3,
C:120

3*3,
C:30

3*3,
C:30

3*3,
C:30

3*3,
C:10

3*3,
C:10

3*3,
C:10

Activation BatchNorm2d+LeakyReLU + Dropout(0.1)
Stride (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

CNN 3*3,
C:240

3*3,
C:60

3*3,
C:60

3*3,
C:60

3*3,
C:20

3*3,
C:20

3*3,
C:20

Activation BatchNorm2d+LeakyReLU + Dropout(0.1)
Stride (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

CNN 3*3,
C:480

3*3,
C:120

3*3,
C:120

3*3,
C:120

3*3,
C:40

3*3,
C:40

3*3,
C:40

Concat / / / / Framewise Concat
Concat Modalwise Concat

Table 8. CNN-based encoders parameters (C: Channel).
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Fig. 13. EgoADL Event-based human behaviors
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Fig. 14. Egocentric v.s. Device-free Sensing SNR for audio and Wi-Fi. “User squeezing plastic bootle” sound and
“Sit down in chair” motion are used as benchmarks sound event and human activity for audio SNR and Wi-Fi CSI
SNR measurements. The heatmap in (a) represents the SNR as we vary sound source locations while fixing the mic.
The heatmap in (b) and (c) represents the Wi-Fi CSI sensing SNR of specific location.

APPENDIX
Preliminary Study on EgoADL
EgoADL employs a commercial smartphone as an egocentric sensor hub, capturing audio, wireless sensing signals
(i.e. Wi-Fi), and motion sensor signals continuously. Users can perform arbitrary daily routines with the sensor hub,
e.g., an in-pocket smartphone, in free-living environment. To better understand the advantages of the egocentric
sensing, we conduct controlled experiments in a 1400 ft2 apartment, and compare EgoADL against the conventional
device-free setup [48] which captures users’ behaviors through off-body sensors, e.g., voice assistant [26, 33, 34]
and Wi-Fi AP [19, 20]. We only examine the audio and Wi-Fi CSI modalities here since motion sensors are already
widely used in egocentric setup [23, 24], which characterize a specific body part motion without any interference
from other users.

Sensing Space Coverage: To control the audio sensing setup, we use a loudspeaker to replay a benchmark
sound of “user squeezing plastic bottle” at a constant 68 dBA SPL, to emulate the corresponding user activity. For
Wi-Fi CSI sensing, we use “sit down in chair” as the benchmark activity. In the device-free scenario, we vary the
sound source location and the location of human activity while fixing the sensor hub at a specific location (3 in
Fig. 14(a) and Fig. 14(b)). In the egocentric scenario, the users put the sensor hub, i.e. smartphone, in their trouser
pocket. As shown in Fig. 14(a), in the device-free setup, the microphone is sensitive to wall blockage, and can
only sense the activity sound at single-room coverage. Meanwhile, Fig. 14(b) shows that, the signal strength of
device-free Wi-Fi sensing drops dramatically as the user moves away from the Tx/Rx or behind the wall. This is
because it relies on the NLoS signals bouncing off the target user’s body, which suffers from severe attenuation,
diffraction, and scattering effects. In contrast, in the egocentric setup, the sensor hub accompanies the user, so it
achieves whole-home coverage with consistently high SNR (> 25 dB) for both audio and Wi-Fi CSI.

Resilience to interference: Since the device-free setup achieves low whole-home SNR even without the
interference source, we only examine the resilience to interference under the egocentric setup. Here the targeted
user stays at a fixed location, while another (interfering) user performs the benchmark activity at arbitrary locations.
We measure the SINR, where the desired signal power equals to the variance of egocentric signals caused by the
targeted user’s activities, whereas the interference is that from the interfering user. As shown in Fig. 15, for both
audio and Wi-Fi CSI sensing, the presence of an interfering user will noticeably impact the egocentric SINR (from
25 dB to 10 dB) only when it is in close proximity (< 2 m) of the target user or blocking the LoS path between the
Tx and Rx for Wi-Fi CSI sensing.
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Fig. 15. Egocentric SINR for the same benchmark sound event and human activity as in Fig. 16. The targeted user
with egocentric sensor hub is fixed at the location of 3. The heatmap in (a) and (b) represents the SINR of audio
and Wi-Fi CSI of the targeted user when there is an interfering subject performing the benchmark activity at each
location.

somew
here

put
ope
n

turn

food
bottle

take

washclose
pou
r

glass

cup

clot
hes

phone

pot

play

stand

cho
p

door

chair

something

move

vegetable

hand

closet

cabinet

sit

plat
e

dish water
stove
use

eat

refrigerator

light

faucet

mouse

box
clea

n
hold

sofa

couch

throwsqu
eezevacuum

window

cut

con
dim
ent

type

garbage
disp

osa
l

rice

lid

spoon
cook

mop

laptop

egg

operate
watch

bed
keyboa

rd

walk
work

meat

drink

scrol

video ben
d

shave

bea
rd click

nail

trash

peel

wipe

brush

teeth

run

fill

blind
rins
e

mouth

floo
r

table
drawer

dry

grab

tissue

soap

vr

knock

coughcrack

kneadpick

face

knife

talk

sprinkl
e

spatula

lie

bea
t

fruit

microwave

bag

boa
rd

blan
ket

adju
st

gop
ro

serv
e

plastic

wrap

scroll

trackpadscrape

pan
fix

yell

glove

hair

cover

toothpaste

tidy

flush

toilet

towel

wear

trim

pack

tableware

sink

cable

organiz
e

oil

back

music

lipstick

paper

blendin
g

sneeze

arrange

trashbin

clap

plug

n

dumpling

air

valve

boil

note
boo
k

spic
e

cooker

hood

chopsti
ck

blow

nose

socket

kick

cam
era

item

fridg
e

laugh

curtain

look

outside

(a) Behavior Words

put
open

turn

take

wash
close

pour

play

stand

chop
move
situse eat

clean

hold

throw

squeeze cut

type

cook

mop

operate

watch

walk

work

drink

bend

click

peel wipe

run

fill

rins
e

dry

pick

talk

sprinkle

lie

beat

adjust

serve

scra
pe

fix
yell

cover

tidy

flush

wear

trimpack

organiz
e

sneeze

arrange

plug
boil

blow

kick

laugh

exercise

shave
brushgrab

knock

cou
gh

crack

knead
scroll

(b) Action Words

mop food
bottle

glass

cup
clothes

phone
pot

doo
r

chair

vegetable

hand
closet

cabinet
platedish

water

stove

refrigerator

light

faucet mouse

box
sofa

couch

vacuum

condiment wind
ow

garbage

disposa
l

rice
lid

spoon
laptop

egg

bedkeyboard

trash

meat

video
mouth

bea
rd

teet
h nail

blind

draw
er

table
floor

soa
p

tissue

vr

face

knife

someone

spa
tula

microwave

fruit

board
bag

blanket

wrap

gopro

pan

trackpad

glove

hair

towel

toothpaste

toilet

tabl
ewa

re
cable

sink

music

pap
er

trashbin

lipstick

oil

valv
e

dumplin
g

camera

sock
et

nose

chopsti
ck

curtain

spice

item

fridge
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Fig. 16. EgoADL Dataset Labels Word Cloud

To sum up, compared to conventional device-free setup, egocentric sensing significantly improves the operating
range and anti-interference ability for both Wi-Fi CSI and audio sensor. Although close-by interferers may still
impact the SINR, we anticipate the motion sensor along with deep modality fusion can neutralize such impacts.
Thus, in EgoADL, we do not restrict the presence of interference–all the data are collected in daily living settings
with multiple coresidents.

The labeled dataset comprises 7, 000 human behavior samples, including 221 types of human behaviors
(Fig. 16(a)) with 70 actions (Fig. 16(b)) and 91 objects (Fig. 16(c)). We also separate the human behavior set into
35 state-based behaviors (Fig. 12) and 190 event-based behaviors (Fig. 13), The former typically last more than 5 s
each and often periodically and continuously, like “walking” and “chopping meat”, etc. The latter are one-short
behaviors, like “opening the door” and “sitting down in chair”, etc. Fig. 12 and Fig. 13 visualize the frequency of
state-based behaviors and event-based behaviors, respectively.
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(b) Event-based human behaviors

Fig. 17. EgoADL classwise mAP

Detailed Experimental Results
In this section, we present the classwise performance of each human behavior to provide a comprehensive
understanding of the strengths and limitations of EgoADL. Our evaluation methodology is as follows: We first
train the encoders with the cross-modal self-supervised learning approach described in Sec. 6, using 100 hours of
unlabeled data. This is followed by fine-tuning the “MMFWSF” sequence-to-sequence model using a balanced
dataset of 2,500 labeled samples. The classwise mean Average Precision (mAP), both top-1 and top-5, is evaluated
using an unbalanced set of 2,800 labeled samples, incorporating 5-fold cross-validation. This evaluation ensures a
balanced distribution of samples from all 10 users across training, validation, and testing sets. Figure 17 shows
the top-1 and top-5 mean Average Precision (mAP) for each ADL. Our results show that EgoADL achieves an
overall mAP of 59.2%, with 79.5% and 49.8% for state-based and event-based human behaviors, respectively. For
Fig. 18, the only difference in the training, validation, and testing settings is the application of refined labels (Sec.
7.1). After label refinement, we achieve an top-1 overall mAP of 68.2%, with 83.2% and 55.9% for state-based and
event-based ADL, respectively.

We have also provided the detailed labels that both appeared in both the egocentric vision and EgoADL datasets.
We use these labels to compare the performance between EgoADL and egocentric vision in Sec. 8.4. Fig. 19(a) and
Fig. 19(b) shows EgoADL overlapped ADL labels with Charades-Ego [4] and EGTEA-GAZE [6], respectively.
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Fig. 18. EgoADL classwise mAP with label refinement

(a) Overlapping between EgoADL and Charades-
Ego [4]

(b) Overlapping between EgoADL and EGTEA-
GAZE [6]

Fig. 19. Overlapped ADL labels between EgoADL and egocentric vision
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