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Radio frequency (RF) sensors such as radar are instrumental for continuous, contactless sensing of vital signs, especially heart
rate (HR) and respiration rate (RR). However, decades of related research mainly focused on static subjects, because the motion
artifacts from other body parts may easily overwhelm the weak reflections from vital signs. This paper marks a first step
in enabling RF vital sign sensing under ambulant daily living conditions. Our solution is inspired by existing physiological
research that revealed the correlation between vital signs and body movement. Specifically, we propose to combine direct RF
sensing for static instances and indirect vital sign prediction based on movement power estimation. We design customized
machine learning models to capture the sophisticated correlation between RF signal pattern, movement power, and vital
signs. We further design an instant calibration and adaptive training scheme to enable cross-subjects generalization, without
any explicit data labeling from unknown subjects. We prototype and evaluate the framework using a commodity radar sensor.
Under a variety of moving conditions, our solution demonstrates an average estimation error of 5.57 bpm for HR and 3.32
bpm for RR across multiple subjects, which largely outperforms state-of-the-art systems.
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1 INTRODUCTION
Continuous tracking of vital signs can be instrumental for eliciting healthy behaviors and assessing physical
status during physical exercises. For example, resting HR in athletes was markedly lower than that in normal
people [20, 34] and fitness crowds usually display longer exhale and inhale cycle time during long time exercise
than normal people. Although current wearable technologies such as wristbands and chest vest can monitor
vital signs, they are uncomfortable for continuous use, and unsuitable for people with skin allergy and dementia.
Radio frequency (RF) signals, as an alternative medium, can overcome such limitations and enable contactless
vital sign sensing.

In the past few decades, radar has been extensively explored as an RF sensor for vital signs [2, 13, 16, 45].
The basic principle is that the rhythmical heart beats and respiration-induced chest movement reflects and
modulates the RF signals, which can be detected by radar using phase [12], frequency [18] or Doppler [16] feature
extraction. Correspondingly, different hardware and signal processing schemes have been investigated to enhance
the sensing range and accuracy. Examples include phased-array radar with high spatial resolution [23], IR-UWB
radar with high time/range resolution [48], etc.
Most of the existing radar vital sign sensing systems work under controlled settings, where a human subject

stays still in front of the radar. Several recent systems investigated restricted mobility scenarios, where the
subjects may perform in-place typing/fidgeting activities or move the body regularly back and forth [2, 39].
However, in practical scenarios, the subject may engage in a much wider scale of body activities, e.g., walking,
household chores, fitness exercises, and random limb stretching. Such ambulant activities may intensively distort
the radar signal pattern, immersing the vital sign induced features, thus inhibiting the parameter estimation. To
our knowledge, RF-based vital sign sensing under ambulant daily living conditions remains an open challenge today.
In this paper, we propose a general model to remove the motion artifacts and enable RF vital sign sensing in

ambulant conditions. Our model was inspired by prior physiological and medical research [25, 30, 31, 35], which
indicated that human vital signs can be affected by body movement in a predictable way. We thus use a radar
sensor to detect vital signs along with motion intensity. Specifically, we opportunistically call on the radar sensor,
using it to obtain a baseline heart rate (HR) and respiration rate (RR) estimation only when the subject is static.
Otherwise, whenever movement is detected, we predict the HR and RR on top of the baseline, rather than dealing
with motion contacted RF signals directly. To incorporate these design principles into a unified framework, we
design a deep learning framework which can extrapolate both HR and RR despite the motion artifacts.

Practical materialization of the above working principles entails several non-trivial design challenges. The first
lies in model generalization across subjects. The mapping between motion intensity and vital sign intensity may
vary among different people [8]. However, it is infeasible to request each user of our system to train a separate
model by collecting ground-truth data and labels. To overcome this challenge, we propose a self-calibrated LSTM
framework, comprised of two mechanisms: (i) an adaptive training scheme, aiming to calibrate the long-term
error by fine-tuning the LSTM model parameters leveraging the accurate measurements at static instances; (ii)
an instant calibration scheme, designed to opportunistically compensate for each single period of motion artifacts
without altering the LSTM parameters, which can take effect even with a few calibration samples.

A second challenge lies in movement intensity detection for different body parts. Due to limited spatial
resolution of commodity radar devices, we cannot easily discriminate different body parts as a Lidar/camera does.
Instead, we design a movement power detection scheme, which estimates the moving intensity of individual
body parts by combining information from reflection power, Doppler speed and distance. Our microbenchmark
evaluation shows that the method can faithfully track the intensity and frequency of body movement from body
parts, and outputs an estimate of the total movement power, which builds the basis for subsequent HR and RR
estimation amid motion artifacts.
To verify the proposed system, we collect vital sign sensing data using a commodity 77GHz FMCW radar,
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and further implement our HR and RR estimation models using the Pytorch [27] framework. We evaluate the
proposed methods on multiple subjects under daily ambulant conditions. Two state-of-the-art RF based HR/RR
sensing systems [2, 29] are also implemented and used as baseline. The results demonstrate an average HR
estimation error of 5.57 bpm and average RR estimation error of 3.32 bpm across the subjects, which outperforms
the state-of-the-art baseline (average HR error 55 bpm [2] and RR error 5.05 bpm [29]) by a large margin. In
addition, our model shows prominent generalization capability across subjects, even with a small number of
automatically generated calibration points (without any explicit labeling efforts from the users).
To our knowledge, this is the first RF vital sign sensing system which can work under unrestricted body

movement. The main contributions of this paper are summarized as follows.
• We propose a novel paradigm to resolve the motion artifacts in RF vital sign sensing. Our system leverages
the empirically verifiable correlation between HR/RR and motion intensity, instead of using time-frequency
analysis which fundamentally suffers from motion-induced interference.

• We design a movement power detection module which performs multidimensional fusion of radar signals to
estimate the motion intensity of individual body parts under ambulant conditions. We introduce analytical
model and LSTM based model to realize explicit or implicit estimation.

• We propose a self-calibrated LSTM model to solve the problem of cross-subject generalization. This
customized LSTM model combines instant calibration and adaptive training to resolve short-term and
long-term generalization errors. Unlike classical transfer learning schemes, our model can adapt to the
vital sign variation patterns of unseen subjects without explicit data labeling.

Note that our model builds on the correlation between vital sign variation and the motion intensity of body parts.
So it is not applicable to the cases where this correlation is corrupted, e.g., for people with certain cardiovascular
diseases such as arrhythmia. However, it can still satisfy the needs of a wide range of ordinary usage scenarios,
such as metabolism tracking at home and fitness tracking on a treadmill, etc. The source code and dataset
generated are available online to promote further research1.

2 CHALLENGES OF RF VITAL SIGN SENSING UNDER FREE BODY MOVEMENT

2.1 A primer on RF vital sign sensing
The frequency modulated continuous wave (FMCW) radar is commonly used as an RF sensor for vital sign
detection. FMCW radar emits a signal called a chirp [37], i.e., a sinusoid whose frequency increases linearly with
time. As the distance varies between the target object and radar, the frequency difference between transmitted
chirp and reflected chirp varies linearly. Therefore, the distance of object can be detected by calculating the
differential signal between transmitted and reflected chirps. This differential signal is called an IF signal and is
derived by an analog mixer module on the radar. Higher frequency of the IF signal corresponds to longer range
between the radar and the object. After applying an FFT on the IF signal, we can extract a frequency spectrum
with different range values, corresponding to different reflection points in the target scene. This is referred to as
a range FFT representation. Each FFT bin is thus called a range FFT bin. The total number of range FFT bins is
equal to the total number of samples within a chirp.
The general principle of RF vital sign sensing lies in the radar’s ability to sense the minor distance variation

caused by inhale and exhale on chest. This distance variation is reflected by the phase variation over time of
the range FFT bin corresponding to the chest. After applying another FFT on phase variation, we can extract
the frequency of respiration by selecting the peak on the frequency spectrum. This operation is referred to as
Doppler-FFT [38]. Most existing RF vital sign sensing systems [2, 29] use such frequency domain analysis to
extract the rhythmic features of respiration. The same principle can be applied to extract heart rate because heart

1Project: ℎ𝑡𝑡𝑝𝑠 : //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑗𝑎𝑚𝑒𝑠𝑑𝑒𝑒𝑝/𝑉𝑖𝑡𝑎𝑙𝑆𝑖𝑔𝑛
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Fig. 1. Original phase vari-
ation under static situation.
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Fig. 2. Frequency spectrum
under static situation.
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Fig. 3. Filtered phase varia-
tion under static situation.
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Fig. 4. Filtered frequency
spectrum under static situ-
ation.
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Fig. 5. Original phase varia-
tion under body movement
(jogging).
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Fig. 6. Frequency spectrum
under body movement (jog-
ging).
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Fig. 7. Filtered phase varia-
tion under body movement
(jogging).
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Fig. 8. Filtered frequency
spectrum under bodymove-
ment (jogging).

0 5 10

time (s)

-100

0

100

p
h
a
s
e
 

Fig. 9. Original phase vari-
ation under restricted body
movement (waving arms
while sitting).

0 50 100

frequency (bpm)

0

5

F
F

T
 M

a
g
n
it
u
d
e
 10

4

Fig. 10. Frequency spec-
trum under restricted body
movement (waving arms
while sitting).
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Fig. 11. Filtered phase vari-
ation under restricted body
movement (waving arms
while sitting).
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Fig. 12. Filtered frequency
spectrum under restricted
body movement (waving
arms while sitting).

beats also cause chest fluctuation. Since the vibration of heart beats modulates atop the respiration, we can use
band pass filters with different frequency range to separate them [2].

2.2 Body movement corrupts vital sign features
For static body, the magnitude of vital organ movement easily outweighs noise, and can be discriminated from
high/low frequency noise through a bandpass filter [29]. On the other hand, in order to dodge the impacts of
occasional aperiodic movement, such as raising limbs, an alternative strategy [2] is to discard the radar frames
containing such movement. However, under ambulant conditions, different body parts’ movements can create a
wide range of frequency components spanning a relatively long period of time, which obfuscate the vital sign
features.
In order to demonstrate the limitations of traditional frequency domain analysis, we collect radar sensing
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Fig. 13. Overall architecture of the robust RF vital sign sensing system.

data under different ambulant conditions, and attempt to use the frequency analysis methods to detect the
vital signs (Details of our sensing platform and data collection process is described in Section 7). For each
situation, we respectively demonstrate the phase variation over time, Doppler-FFT spectrum, filtered phase
variation and filtered Doppler-FFT spectrum. The phase variation measurement is extracted from the range FFT
bin corresponding specifically to the distance from the radar-to-chest distance. Therefore, it reflects the actual
distance variation over time. We then apply Doppler-FFT on the time series of phase measurements to generate
the frequency spectrum. In order to extract the weak heart beats from the noisy movement, we apply a band-pass
filter on the phase variation curve with frequency range of 50-180 bpm. Finally, we apply a Doppler-FFT on the
filtered phase variation to observe the frequency spectrum of heart beats. The results are shown in Fig. 1-12.

When the body is static, we can clearly observe the inhale and exhale wave of respiration (Fig. 1). The frequency
spectrum (Fig. 2) exhibits a sharp peak corresponding to the respiration rate. The heart beat frequency is also
visible after applying a band-pass filter with frequency range of 60-90 bpm (Fig. 4).

As a verification of existing methods, we rerun the experiment under restricted movement (waving arms while
sitting), which is consistent to the aperiodic assumption in previous work [2]. Although the phase variation has
continuous drift and noise caused by movement, we can still observe the inhale and exhale respiration patterns
(Fig.9). FFT analysis reveals a sharp peak corresponding to the respiration frequency around 20 bpm (Fig.10). After
applying a band pass filter, we could even observe the wave of heart beats (Fig.11). Subsequently, by applying
Doppler-FFT, the heart rate could be derived by observing the sharp peak of spectrum (Fig.12).

However, with less restricted movement such as jogging (Fig. 5), we see that the phase pattern is corrupted by
noise. In the frequency domain, the heart beats can no longer be observed even after applying the band pass filter
(Fig. 8). Additionally, the respiration peak is also overwhelmed by the body movement (Fig. 6). This benchmark
experiment shows that the unrestricted body movements can affect the radar signal patterns in the same way as
HR and RR. They may cover a similar frequency range with larger magnitude, making it infeasible to extrapolate
the vital signs.

3 SYSTEM ARCHITECTURE
The high-level idea of our system is to sense the body movement and vital signs simultaneously, and leverage
their correlation to reliably predict HR and RR. Fig. 13 illustrates the system work flow, which consists of 4 major
steps.
Stage 1: Static detection. Whenever the subject becomes static, we adopt the traditional frequency analysis

[2] to estimate the HR and RR.
Stage 2: Movement power detection.We use a movement power detection model to continuously derive

the subject’s movement intensity, frequency and patterns.
Stage 3: HR and RR estimation. Under ambulant conditions, we employ two customized LSTM models for

estimating HR and RR from movement power, respectively. The HR model accepts a closed-form movement
power estimation as input and outputs real-time HR. The RR LSTM consists of two stacked LSTMs, one for
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movement pattern estimation and another for RR estimation.
Stage 4: Opportunistic self-calibration of the LSTMs. Whenever the subject transitions from mobility to

static mode, we use the traditional frequency analysis again to detect the vital signs. The result is treated as
ground-truth data and used for the adaptive training scheme to fine-tune the LSTM for model generalization.
Additionally, another calibration scheme, instant calibration, also leverages this detection to calibrate the average
error for each single period of movement.

4 MOVEMENT POWER DETECTION
The movement detection module, as illustrated in Fig. 14, aims to sense the subject’s movement intensity and
patterns (e.g., periodical movement like jogging, versus randommovement like stretching arms or turning around).
More specifically, it needs to detect two movement properties. The first is the relative mass, i.e., physical weights,
of moving body parts. The second is how much force the subject uses to move different body parts. Unfortunately,
the weights cannot be directly detected by radar. Therefore, we design a model that links body parts’ mass with
the radar samples. We can then estimate the movement power of different body parts which sum up as the total
movement power.

4.1 Body mass estimation from range FFT bins
In classical static radar vital sensing scenarios [2, 45], the radar directly points to the subject. The radar’s frequency
mixer produces an IF signal 𝑥𝐼𝐹 from TX wave 𝑥1 and reflected wave 𝑥2:

𝑥1 =𝐴1𝑠𝑖𝑛(𝜔1𝑡 + 𝜙1). (1)
𝑥2 =𝐴2𝑠𝑖𝑛(𝜔2𝑡 + 𝜙2). (2)

𝑥𝐼𝐹 =
𝐴1𝐴2

2
𝑠𝑖𝑛((𝜔1 − 𝜔2)𝑡 + (𝜙1 − 𝜙2)) . (3)

where 𝜔 represents the frequency of the wave and 𝜙 represents the phase of the wave. Since 𝐴1 is constant, the
amplitude of the IF signal is proportional to the amplitude of received signal 𝐴2.

Now consider a more general situation where the body comprises of multiple reflecting points and radar beam
angle is not 0◦, i.e., it only covers part of the subject’s body. Each body part only receives a small portion of the
transmitted signals, so the amplitude of reflected wave of single body part is decreased to:

𝐴
𝑝

2 =
𝑀𝑝

𝑀𝑤𝑑

𝐴2, (4)

where𝑀𝑝 represents the area of body part 𝑝 ,𝑀𝑤𝑑 represents the radiation area at distance 𝑑 . In our model, we
assume the body can be approximately decomposed into a set of patch areas with similar sizes. A single patch
area does not have to correspond to a specific body part. In contrast, a single body part, e.g., limb, trunk, head,
can be divided into multiple patch areas. The assumption of the patch area aims to emphasize that the adjacent
body areas can be regarded as a unified patch area where their reflection signals are superimposed. Therefore,
all the body parts share the same𝑀𝑤𝑑 .
After applying an FFT on the raw FMCW radar signal, we can extract a frequency spectrum with respect to

different range values, i.e., the range FFT, corresponding to different reflection points in the target scene. Since

Fig. 14. Movement power detection.
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the reflected waves from equidistant body parts bear the same phase, the received power of reflected wave are
superimposed. Therefore, the received power of each range FFT bin is linearly proportional to the body area at a
specific distance 𝑑 :

𝑆𝑘 =𝐷𝑘𝑐𝑘 , (5)
where 𝑐𝑘 is the received power of the 𝑘-th range bin, 𝐷𝑘 is a converting proportional coefficient which converts
received power to body area in the 𝑘-th range bin. The calculation of this coefficient will be explained at the end
of this section.

Let the body part area resolved in the 𝑘-th range bin be 𝑆𝑘 . We assume that the body part volume 𝑉𝑘 is linear
relative to 𝑆𝑘 :

𝑉𝑘 = 𝜇𝑆𝑘 , (6)
where 𝜇 represents an (unknown) proportional coefficient. This assumption means that the thickness of different
body parts (chest, head, thigh... ) are assumed to be close. Therefore, we can simplify the representation of 𝑉𝑘 by
𝜇𝑆𝑘 . Although the exact thickness of different body parts does vary due to the variety of body types, they can be
cancelled out by the self-calibration scheme introduced later.
After that, the mass of moving body part 𝑘 is estimated by:

𝑚𝑘 = 𝜌𝑉𝑘 , (7)
where 𝜌 represents mass density.

By combining equations (5)-(7), we can get:
𝑚𝑘 = 𝜌𝜇𝐷𝑘𝑐𝑘 , (8)

where we can combine the 3 unknown coefficients 𝜌 , 𝜇 and 𝐷𝑘 into one coefficient 𝑌𝑘 :
𝑚𝑘 =𝑌𝑘𝑐𝑘 . (9)

In practice, we do not have to care about the absolute value of body mass𝑚𝑘 because it is proportional to
the reflected power 𝑐𝑘 . Since the actual relation between vital signs and movement power will be learned by
our LSTM model automatically, the relation between𝑚𝑘 and 𝑐𝑘 will be encompassed into the model implicitly.
Therefore, we can set 𝑌𝑘 to an arbitrary constant, such as 1.

4.2 Sensing the driving force of movement
The phase variation of IF signal between two radar sensing frames can be used to estimate the distance variation
of one body part:

Δ𝑑𝑘 =
𝜆Δ𝜙𝑘
4𝜋

, (10)
where Δ𝜙𝑘 represents the phase difference between two adjacent frames, 𝜆 represents wave length, 𝑘 represents
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Fig. 15. Real-time power produced by the movement detection module. The subject experiences 4 movement stages: standing
still, intermediate movement (jogging), fierce movement (running), standing still again.
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range bin index.
Since the adjacent body parts are connected and share similar movements, we make an approximate assumption

that the body parts equidistant to the radar have the same distance variation. Even in exceptional cases where
adjacent body parts have different distance variation, we consider that there exists one dominant value to
represent the distance variation.
With Δ𝑑 , we can derive the speed 𝑣𝑘 and acceleration 𝑎𝑘 of body part 𝑘 :

𝑣𝑘 =
Δ𝑑𝑘
𝑇𝑓

, 𝑎𝑘 =
Δ𝑣𝑘
𝑇𝑓

, (11)

where 𝑇𝑓 represents the period of radar frames. Since 𝑣𝑘 and 𝑎𝑘 are 1𝑠𝑡 and 2𝑛𝑑 order derivatives of 𝑑𝑘 , they may
be more noisy than 𝑑𝑘 itself. We can use a first-order low pass filter to smooth them. The cut-off frequency can
be simply set to the maximum movement frequency, such as 10 Hz.
For body parts equidistant to the radar, we use 𝐹𝑘 to represent the force and calculate it based on the basic

physical force formulation:
𝐹𝑘 =𝑚𝑘𝑎𝑘 . (12)

4.3 Estimation of the total movement power
Since the radar frame is typically quite short (on the order of milliseconds), we assume the force 𝐹 that drives
the body movement remains constant within the period. So the physical workload of the body parts in the 𝑘-th
range bin and 𝑖-th frame is:

𝑊 𝑖
𝑘
= 𝐹 𝑖

𝑘
Δ𝑑𝑖

𝑘
. (13)

The workload for all the body parts of frame 𝑖 can be calculated as:

𝑊 𝑖 =

𝑀∑
𝑘=1

(𝐹 𝑖
𝑘
Δ𝑑𝑖

𝑘
), (14)

where𝑀 represents the total number of range bins. We can convert the physical workload to movement power
by:

𝑃𝑖 =
𝑊 𝑖

𝑇𝑓
, (15)

where 𝑇𝑓 represents frame periodicity.
A showcase of movement power estimation. Fig. 15 showcases the real-time output of the movement

power detection module when the test subject goes through different phases of movement. The power is nearly
zero when the subject is static. Then it increases and manifests regular patterns when the subject performs
jogging at different intensities. The power peaks correspond to the maximum speed of the body parts, likely from
the limbs. The power level variation over time correspondingly reflects the intensity variation of body movement.
This benchmark experiment verifies that our movement power estimation method can faithfully keep track of
the relative intensity of body movement.

5 HEART RATE ESTIMATION

5.1 Correlation between HR and motion
Our HR estimation model builds on empirical observations and intrinsic physiology of human body. To investigate
the correlation between movement power and HR, we conduct a benchmark experiment to measure a subject’s
ground-truth HR with different movement patterns, including periodical movement (jogging) and random
movement (e.g., swinging arms and turning around). We adopt the Polar H10 heart rate monitor chest strap [26].
The Polar H10 is based on electrocardiograph (ECG) principle, which is also adopted by medical-level equipment
[32]. Additionally, it is specifically designed to guarantee robustness under movement scenarios, particularly
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Fig. 16. Multi-stage HR
variation[35] under periodical
movement. Some common
patterns exist in all people.
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Fig. 18. Heart rate response
delay phenomenon after
movement. The delay is
nearly constant on the same
person.
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Fig. 19. Respiratory sinus ar-
rhythmia (RSA) [31] phenom-
enon observed on a static sub-
ject.

using chest strap to make sure the sensor contact tightly with the body. Therefore, it can serve as HR ground-truth
provider. Fig. 16-19 show the results.
From Fig. 16-17, we observe that the HR rises to a higher level regardless of the type of movement involved.

More specifically, the HR increases rapidly at the beginning of movement, followed by slower increase and then
plateaus at certain level. At the end of the movement (i.e., movement power drops to nearly 0), the HR shows an
inertia effect–staying high for a certain period and then drops to the same level as the static case (Fig. 18). Our
observation echoes previous medical research [21, 35] which involves a large group of human subjects.

Note during the subject’s movement, the HR value shows minor fluctuations even though the subject attempts
to maintain consistency of activities. We conjecture that two factors may cause this phenomenon: respiration and
movement intensity. In clinical and basic cardiology, it is known that respiration can affect HR [31]. HR increases
during inhale and decreases during exhale, an effect generally referred to as respiratory sinus arrhythmia (RSA).
From our measurement in Fig. 19, we also see that the HR exhibits a synchronized fluctuation with the respiration
wave. However, when comparing Fig. 16 and Fig. 19, we can find that the HR fluctuation caused by RSA is roughly
10 times lower than movement power (∼ 2 bpm vs ∼ 20 bpm). It indicates that the RSA phenomenon has a much
lower impact on HR fluctuation, so we may neglect its influence and attribute the HR fluctuation mainly to the
movement power variation. There are also other factors that would impact the HR, e.g., gender, ages, weight. We
summarize them based on existing medical research and list them in table. 1.

5.2 Self-calibrated LSTM model for HR estimation
Based on the above observations, we propose a customized LSTM structure, which can recover the HR patterns
under motion interference.
LSTM [11] is a kind of recurrent neural network (RNN) which learns to map the input data sequence to

ground-truth data sequence. Through the design of “gates”, LSTM achieves better fitting performance on long
sequences than traditional RNN. To map the sequence of noisy radar samples to a sequence of HR estimations,
LSTM is a natural fit. The vanilla LSTM suffers from poor generalization when applied directly to robust HR
estimation. Since the impact of motion on HR may vary among different subjects, the LSTM needs to be trained
separately for each subject. This is unrealistic in practice, as it requires that each subject provide a large training
data set with ground-truth HR labels. To overcome the barrier, we propose a self-calibrated LSTM architecture,
as shown in Fig. 20. To ensure generalization across subjects without per-subject training, we incorporate two
mechanisms: instant calibration and adaptive training, for calibrating the error of each single period of movement
and long-term generalization error, respectively.
Instant calibration. The basic idea behind instant calibration is to calibrate the HR prediction model when

the subject ends a period of movement and becomes static again. When the LSTM begins to apply on a new
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Table 1. Relation between HR and various factors.

Age The resting and average heart rates were not affected by age [14]. In contrast, the age only
affects the maximum tolerable HR, which means that the HR in motion should not exceed it.

Gender The HR of females is averagely higher than male because they have lower global autonomic
activity [19].

Weight The obese people usually have higher HR than normal people [9, 47].
Motion The exact HR during motion is mainly dependent on motion intensity and personal body

physical fitness [20]. The impacts of other attributes (gender, age) are relatively negligible.
subject, its estimated HR would have large error because it has not learned the new HR variation features. For a
continuous period of movement, we assume that majority of the estimated HR values are either above or below
the ground-truth. The sign of the estimation error for a random sample would likely be the same as the sign
of the average estimation error within this period. Since the RF sensing error under static case is negligible [2],
we can regard the direct sensing results at static instances as ground-truth. Therefore, we can use the error at a
static instance to calibrate the average error of the previous period of movement:

𝐻 ′𝑖
𝐶 =𝐻 ′𝑖 − 𝐷𝐻 , (16)

where 𝐻 ′𝑖 represents the estimated HR by LSTM at time 𝑖; 𝐻 ′𝑖
𝐶
represents the calibrated HR; 𝐷𝐻 represents the

estimation error at the moment when the subject becomes static. With a small probability, the sign of 𝐷𝐻 may
not be the same as the average error. Therefore, we add a coefficient 𝑞 to reduce the impact of instant calibration:

𝐻 ′𝑖
𝐶 =𝐻 ′𝑖 − 𝑞 ∗ 𝐷𝐻 . (17)

When 𝑞 is too small (< 0.1), it would take very limited effect for calibration. On the other hand, a large 𝑞 (> 0.5)
may worsen the performance. Our empirical observation shows that a moderate value in the range of [0.2-0.4]
would lead to reasonable results.

Adaptive training. Before applying the model to real users, we first train a generic LSTM based on a single
dataset, which contains the ground-truth HR of multiple subjects under body movement. Whenever the model is
applied to users unseen before, we apply adaptive training to fine tune the parameters, to improve generalization
performance. The physical intuition behind adaptive training is that the HR/RR maintain their levels in a nearly
constant manner right after the change of movement state [21, 35]. For adaptive training, the ground-truth data
is opportunistically obtained at each static moment through direct RF sensing. In practice, the users typically
alternate between static and mobile states, which enables such calibration opportunities. Although this may
require additional training time, it obviates the need for cumbersome equipment such as chest ECG.
Decision of the status (static, movement) of users: since the instantaneous movement power can show the

movement status distinctly, as shown in Fig. 15, we use a simple threshold 𝑝𝑡ℎ to classify the movement status. We
compare the mean value of movement power 𝑝𝑚 to the 𝑝𝑡ℎ . If 𝑝𝑚 is larger than 𝑝𝑡ℎ , it is classified as movement
and vice versa. Since the movement power differs greatly between static status and movement, the classification
accuracy is not sensitive to the exact value of 𝑝𝑡ℎ , which can be set in a large range of [1e6, 1e7]. Through this
simple method, the movement status can be classified very accurately. We list all the tunable parameters in the
proposed model in table. 2.
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Table 2. All tunable parameters.

Tunable
parameter

Usage Suggested
value

𝑞 instant calibra-
tion

0.2-0.4

𝑝𝑡ℎ movement status
classification

1e6-1e7

Fig. 20. Self-calibrated LSTM architecture for HR estimation.

6 RESPIRATION RATE ESTIMATION

6.1 RR patterns under different kinds of movement
To gain insights into the correlation between movement power and RR, we measure the ground-truth RR under
periodical movement and random movement from different persons, similar to the HR measurement setup in
Sec. 5.1. The ground-truth RR is collected by using the Go Direct Respiration Belt [41], which essentially senses
the variation of force throughput caused by the respiration fluctuation on the chest. The Belt’s sensing accuracy
is determined by the force sensor resolution of data collection, i.e., 0.1 Newton. Even under motion, a subject’s
respiration produces 5 − 10 Newton variation on the belt. Therefore, the resolution of the belt is sufficient to
monitor respiration despite the motion artifacts.

From the result in Fig. 21, we find that the duration of a full cycle of inhale and exhale contains a fixed number
of movement power peaks. It implies that the respiration pattern is synchronized to the fluctuation of movement
power. The observation corroborates existing physiological research on the mutual influence between respiration
and body movement [25, 30], which showed that the mutual influence between respiration and body movement
is general in human. During any physical activities, a subject needs to keep her movement and respiration
synchronized, to avoid extra energy consumption due to the out-sync. Whenever out-sync occurs, she would
adjust them and resync unconsciously to save energy. Additionally, different from HR variation, we find that RR
does not increase obviously by the increase of movement intensity. It seems to more related to the movement
frequency.
In the random movement experiment (Fig. 22), we find that RR does not change much under low movement

intensity. On the other hand, with more intensive movement, the RR value shows a more complicated relation
with movement without any tractable patterns.

6.2 Stacked LSTM for movement pattern and RR estimation
To capture the sophisticated correlation between movement and RR especially under random activities, a data-
driven model with higher representation capacity is needed. We thus design a stacked LSTM model, whose
structure can leverage the aforementioned experimental insights.

As shown in Fig. 23, the model comprises two sub-LSTMs, which first explicitly classifies the movement patterns,
and then runs the RR estimation. The reason for using two sub-LSTMs instead of a single comprehensive one
for RR estimation is that we find that explicitly estimating the RR patterns can help boost the RR estimation
accuracy. The first sub-LSTM is trained to learn the RR patterns explicitly and the second sub-LSTM adopts
both the RR patterns and the movement power to give more accurate estimation. The bottom LSTM accepts
the original movement power sequence as input. It contains 3 LSTM cells with decreasing kernel size of 128,
64 and 32, respectively. A dropout layer [10] is inserted between each two LSTM cells to prevent overfitting.
The final layer is a softmax structure which outputs the probability of each movement pattern. Our current
model incorporates two classes of patterns, i.e., periodical and random. As for the top LSTM, the input is the
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Fig. 23. Stacked LSTM architecture for RR estimation.

concatenation of movement patterns and movement power. It contains 2 LSTM cells with the same kernel size of
32. We find through experiments that using the same kernel size here shows best accuracy/size ratio compared
with other structures (such as decreasing kernel size). The final layer is a dense layer that outputs the estimated
RR. The estimated RR does not involve normalization because the top LSTM is shallow (2 LSTM cells) and the
gradient vanish problem is unlikely to take effect. Additionally, since the length of all data sequences in our
dataset (refer to Section 7) is the same, the output length of dense layer is set to the same length as the data
sequence (300 samples in our implementation) for faster training.
We train the two sub-LSTMs separately. Specifically, we first collect data for each type of movement to train

the bottom LSTM. Then we freeze its parameters and train the top LSTM. To ensure cross-subject generalization,
we apply the the adaptive training scheme (Section 5.2) again when applying the model across different subjects.

7 SYSTEM IMPLEMENTATION
RF sensing hardware. We use the TI 77 GHz millimeter-wave (mmWave) FMCW radar as the sensing platform
[36], as shown in Fig. 24. The main advantages of mmWave radar, in comparison to low-frequency RF devices, lie
in its high range resolution. Owing to the short wavelength, the radar’s return signal phase is highly sensitive to
tiny subject movement. In addition, the wide bandwidth (4 GHz) translates into high time-of-flight resolution.
Such high spatio-temporal resolution ensures that the signal features likely embody the minute movement of
body parts and vital organs.

Table 4. Baseline HR and RR errors in static circumstances (bpm). The ‘be’ represents before movement and ‘af’ represents
after movement.

Model HR-be HR-af RR-be RR-af
VitalRadio[2] 1.62 2.81 0.26 0.38

DopplerSleep[29] 1.34 5.60 0.25 0.40
Data collection. We collect a dataset on 14 different subjects, covering 5 ethnicities and different height,

weight and gender. The statistical information of these subjects are listed in Table 3. For each subject, 18-45 groups
of data are collected, each lasting for 30 seconds and containing a mix of static and moving scenarios. During
the data collection, a subject performs a wide range of typical daily activities, such as normally walking, doing
fitness exercises and stretching limbs. The subject also varies his/her position, distance and relative orientation
to the radar. For comparison, we collect the ground-truth HR and RR by using medical-grade equipment: Polar
H10 monitor chest strap [26] and Go Direct Respiration Belt[41], as shown in Fig. 25.

Meanwhile, the radar continuously transmits signals towards the subject, which stays within the radar’s field
of view despite movement. The ground truth HR and RR data are streamed to a PC host through Bluetooth, and
eventually synchronized with the radar data through the PC’s time stamping. In practice, we can also use the
static detection method in [2] to opportunistically obtain accurate HR/RR sensing data when the subject is in a
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Table 3. Statistical information of participants.

Age 19-23 (4), 24-28 (7), 28-30 (3)
Height 1.60-1.70m (3), 1.70-1.80m (8), >1.80m (3)
Gender Male (13), Female (1)
Weight 48-60kg (4), 60-70kg (3), 70-80kg (4), 80-90kg (2), >90kg (1)

static state. The method is reported to achieve an accuracy of 99%, which suffices for our adaptive calibration
mechanism.
Since there is only one female in our dataset and all subjects are under 30 years, one may wonder whether

gender and age would affect the HR. We think gender and age would not affect the performance of our model for
three reasons: First, existing medical research has shown that gender and age would not have major impacts
on HR. The exact HR during motion is mainly dependent on motion intensity and personal fitness [20]. The
impact of gender is negligible. The resting and average heart rates are not affected by age [14]. In contrast, the
age only affects the maximum tolerable HR, which means that the HR in motion should not exceed it. Second,
the weaker heart beats of women and elders would not affect our model because our model does not directly
sense the vibration of heart beats. Instead, our model senses the body movement intensity, which can be easily
detected in people with any ages and gender. Third, although weaker heart beats of women and elders may affect
the static HR detection, we note that our model is able to predict HR during movement. The heart beats after
movement is much stronger than peace and thus are easier to be detected.
Model implementation. We use Pytorch [27] to implement the deep learning models for HR and RR estima-

tion. For HR estimation, we use a 2-cell LSTM comprised of dense layers with kernel size 128. We use Stochastic
Gradient Descent (SGD) with weight decay of 1𝑒−4. The initial learning rate is 1𝑒−2 and the momentum parameter
is 0.8. Simple mean square error (MSE) is adopted as loss function. The batch size is set to 8 and the total training
epoch is 200. For RR estimation, we also use a 2-cell LSTM, but the kernel size is set to 256, the initial learning
rate is 5𝑒−3 and the momentum parameter is 0.9. The average training time of each epoch is 6 minutes for HR
estimation and 8 minutes for RR estimation on a server with GPU of Nvidia RTX 2080 and CPU of i9-9980XE. The
self-calibrated LSTM model is able to run on a common personal computer with standalone GPU, e.g., LEGION
Y7000P with GPU of GTX 1660 and CPU of i7-8750H. The inference time for a 30 seconds input sequence is
usually within 5 seconds (on a laptop with NVIDIA 1660), which should suffice for near real-time applications,
such as fitness tracking. To identify proper hyper parameters, we empirically balance the model overfitting and
underfitting. We adjust the parameter size by observing the training loss and validation loss. When the model is
overfitting (low training loss and high validation loss), we decrease the parameter size and vice versa.
Baselinemethods. For comparison, we implement two state-of-the-art RF vital sign sensing systems: Doppler-

Sleep [29] and VitalRadio [2]. Since the original source code is not publicly available, we implement them based
on their description. DopplerSleep is a representative frequency analysis method. It aims to sense vital signs
in sleep scenarios where the subject’s movement is constrained to low speed, such as turning over on the bed.
Following [29], we set the RR estimation range to 9-20 bpm and the HR estimation range to 45-80 bpm. We use a
bandpass filter with stop band frequencies at 0.1 Hz, 0.8 Hz and pass band frequencies at 0.3 Hz, 0.7 Hz for RR
noise reduction. Similarly, we use use a bandpass filter with stop band frequencies at 1 Hz, 3 Hz and pass band
frequencies at 1.5 Hz, 2.5 Hz to remove the noise in the HR sensing spectrum. For both filters, we set the pass
band ripple and stop band attenuation to 1 dB and 60 dB respectively.
We further implement the VitalRadio approach [2], which adopts a periodicity interval method to isolate

aperiodic movement artifacts. Following [2], we set the length of observing time window to 30 seconds. We set
the band-pass filter with pass frequency range of 40-200 bpm and stop band attenuation to 60 dB.

In order to verify the performance of the implemented baseline models, we evaluate them in static situations.
The test datas are divided into two situations: standing still before movement and standing still after movement.
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Fig. 24. Experiment setup. Fig. 25. RR and HR ground-truth devices.

The results in Table. 4 show that the DopplerSleep and VitalRadio have average HR errors of 3.47 and 2.21 bpm
and average RR errors of 0.33 and 0.32 bpm, which are pretty close to their original results. The VitalRadio has
lower error on ‘after movement’ due to two reasons: First, the HR and RR after movement is larger than the
‘before movement’ situation and has higher frequency. Second, the DopplerSleep is designed for sleep monitoring
applications, which essentially has an unsuitable filter range for movement cases.

8 SYSTEM EVALUATION

8.1 HR and RR estimation at a fixed position
In this experiment, we vary the distance between the radar and subjects from 1m to 3m. Under each distance setting,
the subject performs different kinds of body parts movement at a fixed position, including periodical movement
(jogging) and random movement (stretching arms and turning around). The training data and validation data
come from the same subject, but are orthogonal to each other. We will evaluate the cross-subject generalization
later.

We validate the proposed HR estimation model using a leave-one-out method, i.e., among the 𝑁 groups of data,
one is selected as validation set and the other 𝑁 − 1 groups constitute the training set. We repeat the validation
experiment 𝑁 times. For this experiment, we do not use the self-calibration method.
Table 5. HR estimation errors under different motion and different distance (unit: bpm). The ’per’ refers to ’periodical
movement’. The ’ran’ refers to ’random movement’.

model 1 meter 2 meter 3 meter averageper ran all per ran all per ran all
VitalRadio[2] 43.57 52.62 48.10 57.83 44.94 51.38 52.50 46.51 49.51 49.66

DopplerSleep[29] 20.24 15.67 17.96 14.54 19.06 16.80 13.22 14.65 13.94 16.23
LSTM(HR) 4.94 4.15 4.54 9.01 5.27 7.14 8.12 4.44 6.28 5.99

Table 6. RR estimation errors under different motion and different distance (unit: bpm). The ’per’ refers to ’periodical
movement’. The ’ran’ refers to ’random movement’.

1 meter 2 meter 3 metermodel per ran all per ran all per ran all average

VitalRadio[2] 6.76 5.22 5.99 5.95 6.78 6.36 5.72 6.03 5.87 6.07
DopplerSleep[29] 5.81 4.13 4.97 4.30 5.92 5.11 4.62 5.51 5.07 5.05

LSTM(RR) 5.61 1.49 3.55 2.93 3.08 3.01 2.14 1.93 2.03 2.86
Table 5-6 show the HR and RR estimation results respectively. The proposed model has an average HR and RR

error of 5.34 and 3.63 bpm, which outperforms all the state-of-the-art baselines. In addition, our model performs
similarly under periodical and random movement, indicating the design of the movement detection module is
robust to the variation of movement patterns. In different distance settings, the proposed model does not show
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obvious performance difference, indicating that it is insensitive to signal strength variations.
In comparison, the frequency analysis based DopplerSleep [29] shows an average HR and RR error of 16.23

and 5.05 bpm, which is unreasonably high (around 203% and 39% higher than our model). Since this method is
designed for restricted scenarios, it fails even under mild motion artifacts. Additionally, we test the periodicity
interval method to isolate movement artifacts in VitalRadio [2]. The average HR error is 49.6 bpm, which is
the highest among all methods. This approach assumes that the movement is aperiodic and rare, which is not
applicable to certain daily activities like jogging. Additionally, VitalRadio also leads to large errors in random
movement scenarios, because our dataset contains normal ambulant activities with frequent limb motion.

8.2 HR and RR estimation under daily ambulant conditions
We now conduct experiments in more realistic situations where the subjects can walk normally in a square area
in front of the radar without any restriction of position and direction. The radar-to-subject distance ranges from
1-6 meters and direction varies by ± 60◦. In the ‘front-back’ setting, the subjects walk in a straight line back and
forth, so only the distance varies. In the ‘left-right’ setting, the subjects walk in a straight line from left to right in
front of the radar, so the direction variations dominate. In the ‘comprehensive’ setting, the subjects are asked to
walk along arbitrary trajectories. Similar to the previous experiment, the training data and validation data come
from the same subject and the leave-one-out validation method is used.

Table 7. HR errors in ambulant conditions (bpm). The ’Com’ refers to ’Comprehensive’.

model 1-3 meters 4-6 meters averageFront-back Left-right Com Front-back Left-right Com
VitalRadio[2] 47.83 55.33 55.11 52.54 49.75 53.66 52.37

DopplerSleep[29] 18.57 12.37 13.59 17.85 20.13 19.86 17.06
LSTM(HR) 3.36 3.29 4.62 4.15 5.27 4.66 4.22

Table 8. RR errors in ambulant conditions (bpm). The ’Com’ refers to ’Comprehensive’.

model 1-3 meters 4-6 meters averageFront-back Left-right Com Front-back Left-right Com
VitalRadio[2] 6.57 6.83 7.22 6.62 7.76 7.25 7.04

DopplerSleep[29] 5.81 4.37 5.05 5.86 6.03 5.79 5.48
LSTM(RR) 1.99 2.59 3.23 2.78 3.25 3.64 2.91

Table 7-8 show the HR and RR estimation results respectively. Our model has an average HR and RR error of
4.22 and 2.91 bpm in all the ambulant conditions, which outperforms all the baseline models. In addition, we
find that our model performs similarly under different ambulant situations, indicating its robustness under daily
ambulant conditions and the ability to accommodate both direction and distance variations.
Similar to the fixed-position experiment in section 8.1, DopplerSleep and VitalRadio suffer from severe

performance degradation under motion, showing large deviation off the ground-truth (around 15% and 35%
deviation for HR and RR by DopplerSleep, and 60% deviation for HR by VitalRadio). It indicates that they both
fail under motion interference caused by daily ambulant activities.
We also provide a detailed trace showing the instant HR and RR errors in Fig. 26, which corresponds to the

‘comprehensive’ setup. From the illustration in Fig. 26 we can draw 3 major conclusions. First, the average HR
and RR errors within 1-3m are 3.76 and 2.6 bpm, which are relatively lower than over longer distances (over 4m).
Second, longer distances correspond to larger HR and RR errors. For HR Estimation, the average error of 4-6m
is 4.69bpm, which is 25% higher than 1-3m. for RR Estimation, the average error of 4-6m is 3.22bpm, which is
24% higher than 1-3m. The main reason for the increase in error is the limitation of radar power. As the distance
increases gradually, the reflected signal of the target becomes weak and is easily interfered by the ambient noise.
By using more powerful mobile radar (such as AWR2243), it is possible to achieve high precision detection over a
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long distance. Third, the errors close to both sides are larger than middle areas. For HR estimation, the errors
over 90° is about 5.23 bpm, which is 21% larger than within 90°. For RR estimation, the errors over 90° is about
2.79, which is 43% larger than within 90°. The main reason is that the radiation intensity of radar is smaller on
both sides but larger in the middle, which makes the reflected signals on both sides vulnerable to environmental
noise interference. This phenomenon tends to occur over long distances and can be also resolved by using the
more powerful mobile radar.
Existing medical research [24] shows that the HR estimation accuracy of most accurate commercial devices

(Polar H7 band, iWatch) are 96%-98%, which are equivalent to 6bpm-3bpm estimation errors. Therefore, the
average error 4.22 bpm of our model is sufficient for monitoring accurate HR during fitness. Existing medical
research [40] also shows that the average RR detection error of 7.9 bpm leads to 96% of adequate treatment
decisions. Additionally, the expected error for 100% adequate treatment decisions corresponds to an RR error
of 2bpm. Therefore, the average error of 2.91 bpm of our model is very close to achieving the requirement for
clinical judgement.

8.3 Generalization capability of the model
8.3.1 Generalization across subjects. In this section, we verify the proposed self-calibration schemes for improving
the generalization performance.

We conduct experiments with the training and validation sets coming from same/different subjects, respectively.
Each subject generates 18 groups of data, involving 12 groups of fixed-positionmovement and 6 groups of ambulant
movement. The specific movement types are similar to Section 8.1-8.2. In the ‘self’ setting in Fig. 27, all the
subjects are trained and tested using their own data by the leave-one-out method, which guarantees orthogonality
of training and testing sets. In the ‘cross’ setting in Fig. 27, the training set for each subject comes from another
subject. The HR estimation results, marked as “self” and “cross” accordingly in Fig. 27, show that the cross-subject
estimation error increases obviously compared to the “self” setup, almost for all the subjects (12 out of 14). In
particular, the maximum cross-subject error increases by 15.7 bpm for person 7, which is nearly 2× compared to
the “self” error. The results imply that the HR patterns differ across people even under similar motion artifacts.
Similarly, the cross-subject RR estimation error (Fig. 28) increases for more than half of the subjects (8 out of 14).
We now verify the effectiveness of the proposed self-calibration methods, i.e., adaptive training and instant

calibration. Recall that adaptive training opportunistically leverages the static moments to create calibration
instances. We thus truncate the collected data to different lengths to create an enriched dataset to emulate different
segments of ambulant conditions. For each segment of data, we only use the last point of data to mimic the static
instances in practical scenarios that involve a mix of ambulant and stationary periods. We use the “n-point” term
to denote that 𝑛 points of data are used for adaptive training. All the LSTM models have been pretrained using
the aforementioned “cross” setup, denoted as “cross” in Fig. 27. After applying 2-point adaptive training, the HR
estimation errors of all subjects are decreased by 18% on average. Subject 13 benefits the largest error reduction
of 11.3 bpm, whereas the lowest error reduction is 0.4 bpm on person 1. The difference is likely because the
estimation error of person 1 is already quite low. The RR comparison results in Fig. 28 show that the 2-point
adaptive training show 9% error reduction compared to the ‘cross’ setup, indicating that the adaptive training
scheme is also effective for generalizing RR estimation. Remarkably, after applying 4-point adaptive training,
all subjects achieve even lower HR and RR estimation error, i.e., 6.02 and 3.23 bpm, respectively. Therefore,
more calibration points help reduce the generalization error, bringing it closer to the single-subject case. But the
improvement becomes marginal as more calibration points are added beyond 4, as the bottleneck may be bounded
by the noise and the model capacity itself. Additionally, we also notice that there are some unexpected results.
In Fig. 27, the ’cross’ errors of subject 2 and 5 are lower than the ’self’ setup. We note the error differences are
only 0.79 and 0.82 bpm, which are only one seventh of the average error difference (5.53 bpm). Therefore, these
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Fig. 26. Visualization of the instant HR and RR errors by trajectory. We use the symbols of blue circles and green rectangles
to represent the HR and RR estimation error. The size of the symbols refer to the error value.

error differences can be regarded as normal model noise. Another unexpected result is that the self-calibration
errors of subject 2,5 and 14 with 2-point have higher error than ’cross’ and ’self’ setup. The main reason is that
the self-calibration process may introduce errors due to the instant calibration when the calibration iteration is
not enough. As explained in Sec. 5.2, a large 𝑞 of instant calibration may worsen the performance. However, we
should notice that the induced errors are only 13% of the ‘cross’ setup on average, which do not cause obvious
performance loss. Additionally, we can find that the 4-point calibration eliminates these errors, indicating that
the problem can be addressed by more calibration iterations.

8.3.2 Generalization across environment. Different environment may experience different RF background reflec-
tions to radar, and thus may impact the detection performance in different ways. Therefore, we run the vital sign
estimation model on 3 different places to check how it performs in new environment. All 3 places are indoor
with rich multipath reflections, caused by furniture, appliances, room layout, etc. Place 1 has no furniture inside
the experimental area; Places 2 and 3 have sofas and chairs. The training data only comes from place 1 and the
validation data comes from all 3 places. Table 9-10 show the HR and RR estimation results respectively. We can
find that both the HR and RR estimation errors in the other 2 places do not have obvious difference from place 1,
indicating that our model model can effectively work across different environment. Besides the learning model
itself, this is also attributed to the simple filter preprocessing which mitigate background noise by subtracting
static reflections.

Table 9. HR estimation errors in different places (bpm).

place 1 place 2 place 3
periodical 6.95 4.56 2.27
random 4.76 3.07 3.06
ambulant 4.64 7.53 4.35

Table 10. RR estimation errors in different places (bpm).

place 1 place 2 place 3
periodical 5.21 1.20 3.44
random 1.56 1.76 3.60
ambulant 1.48 1.68 2.69

8.4 HR and RR estimation in noisy environment
Table 11. HR errors in noisy background (bpm).

periodical random ambulant All
w/o noise 4.83 3.37 3.03 3.74
w/ noise 4.62 5.37 3.34 4.45

Table 12. RR errors in noisy background (bpm).

periodical random ambulant All
w/o noise 3.93 4.90 2.90 3.91
w/ noise 5.70 2.14 1.62 3.15

In reality, multiple people may be co-located in the same environment. We now evaluate the performance
of our vital sign sensing model subject to interference from ambient activities. During the testing, the subject
performs various kinds of movement, such as periodic, random and ambulant activities, similar to those mentioned
in sections 8.1-8.2. Another person acts as an interfering user walking around the subject to create ambulant
background noise. During the testing, the interfering user continuously walks around the subject with distances
of 1.5-2m. The walking area is always within the +- 60° view of radar. Table 11-12 show the resulting HR and RR
estimation, respectively. We can find that the largest deviation between w/ and w/o noise in table 11 is 2 bpm
of random activity, which is equivalent to only 1.3% of the average HR. Also, there is no obvious performance
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Fig. 27. Cross-subject generalization capability of the HR estimation model.

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

e
s

ti
m

a
ti

o
n

 e
rr

o
r 

(b
p

m
) 

Different Persons

Self
Cross

2−Point
4−Point

Fig. 28. Cross-subject generalization capability of the RR estimation model.

deviation between w/o and w/ noise in table 12, indicating that the model is robust to background human
activities. Additionally, we find that RR estimations with noise gain much lower errors than without noise in
12. The main reason is that the noise does not have an obvious impact on RR estimation. Therefore, the error
deviation between w/ and w/o noise in table 12 is not caused by the noise but the model estimation itself.

9 RELATED WORKS
Radar based vital sign sensing technologies date back to the 1970’s [17], and have been revisited over the past
decades as new RF hardware and use cases emerge [2, 29]. Early studies mostly focused on controlled scenarios
with a single subject sitting still near the radar [16]. More recent work addressed more challenging scenarios
involving multiple persons [45] and longer range [2]. To fully explore the potential of radar, certain specialized
cases have also been investigated, such as recovering the breathing signals of multiple subjects very close to each
other [49] and monitoring vital signs by attaching radar in tricky position (waist) of body [7]. Besides high-end
radar devices, commodity communication devices such as WiFi can track RR and even HR [43, 46]. In effect, the
phase change rate and micro-Doppler profile [28] can be extrapolated from the WiFi channel state information
(CSI), and mapped to vital activities.

Nonetheless, conventional RF vital sign detection algorithms only work for static subjects, as vital sign induced
signal features can easily become immersed under motion artifacts. Recent work attempted to mitigate the
motion artifacts through adaptive filtering techniques. For example, Mostafanezhad et al. employed empirical
mode decomposition to cancel the motion artifacts [22], but the solution only applies to restricted vibration
movement. Sharafi et al. [33] used a correlation algorithm to improve the vital sign SNR in the presence of motion
interference. Tu et al. [39] extended the scenario to 1-D whole-body movement and extracted respiration rate.
Adib et al. [2] addressed the smart home scenarios where the subject is seated and performing in-place activities
such as typing. All these schemes assume restricted movement activities, so the motion artifacts can be isolated
through filtering. In contrast, our work tackles the more general and practical scenarios where the subject can
move freely, without restricting the movement forms, position and direction.

The impact of random body movement can potentially be alleviated through sensor fusion. Gu et al. [12] used
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a camera to capture simple back-and-forth body movement, and compensate for the phase variation of radar
signals. Wang et al. [42] proposed to fuse the signals from two radars placed on the front and back side of the
subject, thus suppressing the noise caused by periodic movement (e.g., jogging). These proposals entail more
costly hardware and further limit the usage scenarios.

RF based vital sign sensing has been explored in a variety of usage scenarios, such as elder care [6] and sleeping
monitoring [29]. The actual sensing problem in these scenarios are similar to those under restricted position and
limited body movement.
Besides mmWave radar based methods, alternative sensing paradigms exist for vital signs. Leal et al. [15]

used polymer optical fiber materials which can be woven into clothes to sense the in-body vibration. Brink et
al. [4] adopted four high-resolution force sensors under bedposts to sense the vital signs. Wearable devices like
smartwatches use Photoplethysmogram (PPG) to realize unobtrusive monitoring of heart rate [1, 3]. Unlike RF
based solutions, these systems require close contact between the sensors and human body. Since Kinect [5]
can extract distance variation to the subject, it can be used to monitor the respiration fluctuation on the chest.
Additionally, by placing color fiducials on the chest of subject, optical flow [44], which is an vector representation
of movement extracted from video, can also be used to sense respiration fluctuation from chest. However, these
camera based solutions require the subject being fixed in position or direction.

10 LIMITATIONS
Although the proposed methods can address the HR/RR detection under daily ambulant environment, there exist
a few limitations that deserve further research.
(1) Impacts of daily objects on users. All subjects in our experiments wear normal clothes and do not have

any personal objects on their bodies (e.g., handbag and exercise equipment). Large objects may temporarily
increase the estimated weights during the movement power detection, causing higher estimated HR/RR. One
possible solution is to combine with other sensors, e.g., smart scale and smart in-home camera, and mitigate the
drifting through a learned fusion model.
(2) Application to users with certain cardiovascular diseases. Our approach targets daily usage scenarios

such as metabolism and fitness tracking. Our model builds on the correlation between vital sign variation and
the motion intensity of body parts. So it is not applicable to the cases where this correlation is corrupted, e.g., for
people with certain cardiovascular diseases such as arrhythmia. One possible solution is using static detection
method to detect the abnormal HR/RR variation and infer the cardiovascular diseases, which is used as additional
information to build more accurate model for movement estimation. This is left for our future work.

11 CONCLUSION
Despite decades of research, RF vital sign sensing systems remain in controlled settings with static subjects or
restricted mobility. In this paper, we have demonstrated the feasibility of RF vital sign sensing with free body
movement, just as in daily living conditions. Our system pinpoints a new principle to isolate the motion artifacts,
by reusing the RF sensor to extrapolate an additional dimension of information (i.e., movement power), and using
customized deep learning models to capture its correlation with vital signs. As future work, we plan to explore
additional feature dimensions, such as visual information from cameras, which can potentially handle more
challenging setup (e.g., multiple co-located subjects).
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