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ABSTRACT
IMU based inertial tracking plays an indispensable role in many mobility centric tasks, such as robotic control, indoor navigation
and virtual reality gaming. Despite its mature application in rigid machine mobility (e.g., robot and aircraft), tracking human users
via mobile devices remains a fundamental challenge due to the intractable gait/posture patterns. Recent data-driven models have
tackled sensor drifting, one key issue that plagues inertial tracking. However, these systems still assume the devices are held
or attached to the user body with a relatively fixed posture. In practice, natural body activities may rotate/translate the device
which may be mistaken as whole body movement. Such motion artifacts remain as the dominating factor that fails existing inertial
tracing systems in practical uncontrolled settings.

Inspired by the observation that human heads induces far less intensive movement relative to the body during walking, compared
to other parts, we propose a novel multi-stage sensor fusion pipeline called DeepIT , which realizes inertial tracking by synthesizing
the IMU measurements from a smartphone and an associated earbud. DeepIT introduces a data-driven reliability aware attention
model, which assesses the reliability of each IMU and opportunistically synthesizes their data to mitigate the impacts of motion
noise. Furthermore, DeepIT uses a reliability aware magnetometer compensation scheme to combat the angular drifting problem
caused by unrestricted motion artifacts. We validate DeepIT on the first large-scale inertial navigation dataset involving both
smartphone and earbud IMUs. The evaluation results show that DeepIT achieves multiple folds of accuracy improvement on the
challenging uncontrolled natural walking scenarios, compared with state-of-the-art closed-form and data-driven models.

1 INTRODUCTION
Inertial sensors (IMUs), including gyroscope, accelerometer and magnetometer, have been a standard module in modern mobile
devices, and played a fundamental role in many ubiquitous computing applications. Example use cases include tracking users’
trajectory in VR gaming [37], navigating a user in GPS denied indoor environment [14], serving as a low-power fitness tracker
[40], complementing GPS in last-mile scenarios [34], etc. The underlying algorithms, often referred to as inertial odometry [18] or
dead reckoning [17], aim to estimate the moving direction and distance of the user, relative to the earth’s coordinate, i.e., the global
reference frame (GRF).

Although inertial motion tracking has seen wide adoption in air, ocean and robotic navigation, it remains a fundamental open
problem for daily mobility scenarios involving human users carrying IMU-equipped mobile/wearable devices. IMUs can only
sample the linear acceleration, angular velocity, and magnetic flux density within the devices’ local coordinate, i.e., local reference
frame (LRF). Ideally, an integration of the gyroscope leads to estimation of angular rotation, and double integration of accelerometer
reading estimates radial distance change, within the LRF [32]. However, the LRF motion must be projected to the GRF, in order
to estimate the user’s true location/direction change. The projection essentially offsets a rotation matrix, which represents the
device’s 3D orientation (pose) relative to the global coordinate. The gravity (i.e., acceleration towards the ground) and magnetic
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north can be used as references for the earth’s vertical direction and horizontal plane, respectively. For objects that are static or
undergo smooth/rigid mobility (e.g., ground robots or aircrafts), the gravity involves a constant vector with known magnitude
(9.8m/𝑠2), which can be easily extrapolated.

Unfortunately, to track human mobility with on-body IMUs, the sensor readings are intrinsically noisy. The motion noises are
generated unconsciously and inevitably, either by limb swinging/shaking during normal walking or by ordinary maneuvers such
as phone rotation or moving into pocket. Such motion artifacts are indistinguishable from walking-induced IMU dynamics, and the
resulting error will be further magnified by gyroscope or accelerometer integration, resulting in exponential error propagation over
a walking trajectory. In other words, it is the irregular motion artifact itself that plagues inertial motion tracking in practice. Recent
research has investigated various mechanisms to periodically calibrate the orientation tracking, e.g., leveraging the zero-acceleration
moments for foot-mounted IMUs when the foot touches the ground [16], opportunistically recalibrating when the IMUs become
static [2], or reducing the motion degree of freedom by attaching the IMUs to forearms [33]. However, the underlying assumptions
tend to break in daily ambulant conditions, where the mobile device can arbitrarily change its orientation and position relative to
the user body while walking.
The statistics of IMUs’ intrinsic noise vary drastically across different usage scenarios. Obviously, it is infeasible to derive

a general closed-form framework that deals with the elusive noise. The past two years have seen a trend towards data-driven
approaches [3, 43, 44]. At a high level, machine learning algorithms can establish an implicit representation of the noise distribution
along with the relationship between IMU measurements and location/angle offset. These algorithms often take variants of recurrent
neural network (RNN) as the backbone structure, which captures the temporal continuity of moving trajectory given the input
sensor sequence [39]. However, these approaches do not explicitly model the device orientation. So the motion noise can still
contaminate the location estimation, causing severe drift over time. In fact, the training/testing data of these systems are collected
assuming the user’s smartphone has a stable orientation (held steady facing upwards or in-pocket), which are incommensurate
with many real-world use cases.

In this paper, we propose deep inertial tracking (DeepIT ), a deep learning based sensor fusion framework to enable truly robust
inertial motion tracking in the wild. Our key insight is simple: To combat the motion noise, we need to incorporate additional
IMU sensors whose measurements are not likely to be contaminated, at least not simultaneously with the smartphone’s IMU
measurements. We realize such sensing diversity using smart earbuds, which are emerging as a new generation of wearable
devices. In many of the desired use cases of inertial tracking, such as indoor navigation and outdoor run tracker, the earbuds are
accompanied by the user’s smartphone1. Smart earbuds are far less susceptible to noise pollution than hand-held smartphones,
because head rotation occurs much less frequently and at much smaller scale compared with the body limbs [27].

Our DeepIT model segments the input IMU sequences into small windows, and outputs the polar coordinate representation of
the user’s location. To effectively harness the complementary capability of the smartphone and earbuds, we design a reliability
network which gauges the confidence of sensing from each IMU, i.e., which IMU is suffering less from motion artifacts momentarily.
The reliability network then forwards its output to an attention module, which fuses the two IMUs’ readings based on their
reliability. Observing that the IMU data is a continuous stream of samples; and motion artifacts, despite burstiness, do exhibit
short-term correlation. Therefore, we cast the reliability network design as a sequence learning problem and construct it based on
the LSTM model.
Even with sensor fusion, the angular and radial components of localization are still susceptible to cumulative error caused by

the summation of each window’s offset. Whereas the drift of radial component cannot be compensated by additional measurement,
the angular counterpart can be calibrated by magnetometer reading which is not susceptible to accumulative error. The noise
level of both IMUs, represented by reliability vector, is adopted as a metric to determine how much the magnetometer reading of
the phone’s IMU can be relied on. Based on the value of reliability vector, the magnetometer reading is then fused with angular
component determined by the neural network for a more accurate angular offset estimation.
Aside from the dynamic motion noise, we found that existing state-of-the-art DL based trajectory estimation systems [3, 43]

also face an angle distribution inconsistency problem in practical usage scenarios. When the IMU devices are placed with largely
different angles during training and testing, the model accuracy drops significantly. This is because the angle distribution rules
learned in the training data do not match the testing cases. A straightforward solution is to collect training data to cover all possible
angular distributions, but this is infeasible due to the massive dimensions of angles in the 3D space. We address this problem by
preprocessing the original IMU data and transforming them into virtual IMU (VIMU) samples, which eliminates the impacts of
angle distribution by projecting the IMU data in a unified space anchored by the gravity.

We have implemented the DeepIT deep learning pipeline based on PyTorch. Our IMU sensing data are collected from real users

1While it is unsafe to wear earbuds on a street with heavy traffic, most smart earbuds have an ambient hear-through mode to make the user aware of the
surroundings.
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carrying Android phones while wearing eSense [11], a commercial smart earbuds device that exposes a gyroscope/accelerometer
interface. The data set covers a wide range of scenarios including indoor/outdoor, different walking gaits/postures, various trajectory
lengths, smartphone hardware models and ways of device attachment (handheld, in-backpack), etc.We have also implemented
two state-of-the-art baseline systems (i.e., MUSE [33] and IONet [3]). Our sanity check confirmed that these systems work well
in simple walking scenarios where the smartphone/earbuds device is attached to the user body with a fixed posture, which is
consistent with the original publications. However, in more natural and practical scenarios with occasional phone/head rotation,
their performance drops dramatically due to motion noise. In contrast, DeepIT remains robust across across all the testing scenarios,
achieving meter-level accuracy when normalized over time/distance. For the unnormalized cumulative tracking performance,
DeepIT keeps the error to a few meters for trajectory areas covering a few thousand𝑚2, and 10 to 20 m even for larger trajectories
covering more than 10k𝑚2. In contrast, IONet and MUSE show 50 to 200 m of cumulative error in the same scenarios.

In addition, DeepIT demonstrates strong generalization capabilities across all the settings. Even though the training is conducted
on completely different trajectories/environment/users/attachments, it still maintains a consistent level of accuracy during testing.

To our knowledge, DeepIT represents the first data-driven framework to explicitly address the challenging motion noise problem
in inertial tracking. Our main contributions can be summarized as follows:

• We design the first IMU sensor fusion framework that harnesses the complementary sensing capabilities of smart earbuds
and smartphones. Although recent work employed earbuds for step counting [27], DeepIT is the first to use them for distance
and direction estimation.

• We design a reliability estimation network which tracks down the motion noise contamination on each IMU. This design
enables DeepIT ’s inertial tracking to be applied in the wild, which involves relative motion between the phone/earbuds and
human body during walking. Furthermore, we propose a reliability aware magnetometer calibration scheme that enables
DeepIT to sense the absolute rather than relative direction, even in challenging scenarios with ferromagnetic disturbances.
In addition, we propose a VIMU mechanism to resolve the angular distribution inconsistency problem which has plagued
existing data-driven inertial tracking systems.

• We design and implement a data collection pipeline which synchronizes the samples from the phone, earbuds and ground
truth. Our data set covers around 214k ft of trajectories and spans a wide range of practical settings which is amenable
for verifying model generalization. Our experiments have validated the superior performance of DeepIT compared with
state-of-the-art baselines.

The source code and dataset generated from DeepIT are available online to promote further research2.

2 A PRIMER ON INERTIAL TRACKING: HEURISTIC PRIOR VS. DATA-DRIVEN PRIOR
Before delving into the DeepIT design, we first introduce the two mainstream solutions in inertial tracking, which build on
data-driven prior knowledge and heuristic observations of motion sensor properties, respectively.

IONet: data-driven inertial tracking. IONet (AAAI’18) [3] represents the state-of-the-art inertial localization solution with
data-driven priors. The key idea is to break the accelerometer/gyroscope sampling sequence into small windows and process them
separately to mitigate error propagation. The change in location displacement is computed over each independent window of 𝑛
time samples: Δ𝐿=𝑛𝑣 (0)𝑑𝑡 + [(𝑛 − 1)𝑠1 + (𝑛 − 2)𝑠2 + · + 𝑠𝑛−1]𝑑𝑡2, where 𝑣 (0) represents the initial velocity. 𝑠𝑖 is the acceleration
sample 𝑖 within the GRF, which can be expressed as: 𝑠𝑖 =C𝑛

𝑏
(𝑡 − 1)a𝑖 − g. Here 𝑎 is the acceleration measured in the LRF. C𝑛

𝑏
denotes

the rotation matrix from the LRF to the GRF. 𝑔 is the gravity vector.
IONet uses an LSTM model to capture 𝐿(·). The input are the linear and angular acceleration samples from a smartphone IMU,

and the states of velocity and gravity are learnt by the LSTM implicitly. This method improves on the problem of inertial drift
under non-periodic motion, e.g., when the IMUs stay in a shopping trolley and baby-stroller, which cannot be easily handled
by closed-form models. However, the underlying model works well only when no rotational motion noise exists. Its performance
deteriorates rapidly when applied under more complicated scenarios involving random rotations, e.g., when the IMUs are handheld,
swinging, and occasionally move close to chest/face positions. These complications also lead to the aforementioned angular
distribution inconsistency between training and testing data. The resulting estimation error will grow quickly towards the end of
each window as more rotational vectors are multiplied together, leading to large cumulative drift over a long moving trajectory. In
effect, although IONet demonstrated reasonable tracking accuracy, the validation experiments are conducted mostly in controlled
scenarios, where the smartphones are keeping steadily in the subjects’ hand or on trolley. When relative motion occurs between
smartphones and subjects, even occasionally, IONet would show large angle deviations, which will become more evident in our
experiments (Sec. 7).

2Project: ℎ𝑡𝑡𝑝𝑠 : //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑗𝑎𝑚𝑒𝑠𝑑𝑒𝑒𝑝/𝐷𝑒𝑒𝑝𝐼𝑇
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MUSE: A closed form model.MUSE (MobiCom’18) [33] is a representative closed-form inertial odometry algorithm. Its key
idea lies in two parts: an improved 3D orientation estimation, and jointly tracking orientation and location using a particle filter.
MUSE first determines the initial vertical tilt of the device using unpolluted (static) gyroscope reading. The 3D magnetic vector in
LRF can then be projected to the GRF using the initial 3D orientation matrix (𝑂 (𝑡0)): 𝑁𝐺 =𝑂 (𝑡0)𝑁 𝐿 (𝑡0), where 𝑁 𝐿 and 𝑁𝐺 are the
3D magnetic North vectors in LRF and GRF, respectively;𝑂 (·) is a 3 × 3 transformation matrix that rotates the object’s GRF to LRF.
The model then combines the orientation obtained from gyroscope and magnetometer using a complementary filter. The intuition
here is that gyroscope integration tends to be accurate over short-term, whereas magnetometer is stable over a long-term despite
occasional ferromagnetic disturbances.
MUSE jointly estimates the location and orientation using a particle filter, particle is defined as a vector composed of three

recent location updates with an angle that models the orientation drift (𝛿) around magnetic North vector at the previous time. On
the other hand, the acceleration can also be approximated using the orientation estimated by magnetometer and gyroscope.

Ideally, the global accelerations calculated from the 3 consecutive locations and from the particle’s orientation projection should
have little difference. The particle filter is then resampled, and its weight is modeled as a zero-mean Gaussian probability density
function on the difference. In order to constrain the state estimation on valid predefined location space, MUSE introduced an arm
motion model (AMM) that reduces the LRF’s spatial degree of freedom (DoF) from 6 to 5. However, when arbitrary rotation occurs
between the phone and the user body, the AMM model’s assumption breaks. The particle filter architecture cannot precisely model
such rotation noise as it may not even follow a tractable distribution. Consequently, MUSE suffers from severe angle errors under
rotational noise. This limitation will be verified in our field tests (Sec. 7).

3 OVERVIEW OF DEEPIT
The diagram in Fig. 1 illustrates the architecture and workflow of DeepIT , which consists of 4 elements. (i) Estimating translation
and angle increment feature. The model estimates the translation increment feature and angle increment feature from the IMUs
(accelerometers and gyroscopes) on the smartphone and earbuds respectively, based on 4 independent trajectory LSTMs (2 l-LSTMs
and 2 d-LSTMs). Although earbuds always come in pairs, the left and right ones are highly correlated. We thus only use one of
them to reduce the processing load on the learning model. (ii) Sensor fusion. We design a deep sensor fusion model to overcome
the motion noise that plagues the smartphone and earbuds. The fusion model assesses the reliability of the sensors based on a
customized reliability LSTM (r-LSTM), and fuses the translation and angle increment features using two attention models. (iii)
Angle drifting compensation. Since motion noise incapacitates the existing orientation sensing methods, we design a reliability
based drifting compensation scheme to stabilize the angle estimation over long trajectories. (iv) Reconstructing the complete
trajectory. By concatenating the refined trajectory increments of each window, we can derive the complete trajectory estimation
with high accuracy.

4 ATTENTION BASED FUSION MODEL

4.1 VIMU: Transforming the IMU Samples to Overcome the Angular Distribution Inconsistency
The accelerometer measurement is a 3-element vector that reflects the walking acceleration along the 𝑥 , 𝑦 and 𝑧 direction of the
device’s body frame (i.e., LRF), and can estimate the translation by quadratic integral. The gyroscope measurement reflects the
angular velocity around the 𝑥 ,𝑦 and 𝑧 axis of the LRF, which can estimate the angular change of device after a first order integration.
Ideally, if the device has a fixed pose relative to the user body (i.e., the LRF and GRF has a stable offset), then by combining the
translation and angular offset, we can infer the walking distance and direction and hence the complete trajectory. At a high level,
DeepIT follows this principle, using an LSTM model (l-LSTM in Fig. 1) to estimate the translation from the accelerometer, and
another LSTM model (d-LSTM in Fig. 1) to estimate the moving direction from gyroscope.
State-of-the-art DL based trajectory estimation models [3, 43, 44] usually divide the input data sequences to independent

windows and estimate a trajectory increment for each. This method forces the model to focus on learning the correlation within a
small time window (e.g., 2 seconds). Specifically, it uses LSTM model to map the input window data with 6 dimensions (3 axes of
gyroscope and 3 axes of accelerometer) to the estimated translation and angle increment. One obvious drawback is that it suffers
large deviation when the training data and testing data have different angle distributions. For example, when the smartphone is
facing upwards during training and facing left with 90◦ during testing, the model would not work properly (as shown in Sec. 7.2).
One may consider collecting data exhaustively in all possible angles to address this problem. However, the 3D angle distribution
is a huge space which is impractical to cover fully. Therefore, existing implementation [3] only covers a narrow set of angular
distributions in their training/test cases (e.g., phone always facing upwards).

We propose a virtual IMU (VIMU) mechanism to overcome this limitation. We leverage the fact that people typically make turns
in the horizontal plane (i.e., x-y plane), which is perpendicular to the direction of gravity. Therefore, to estimate the turning angles,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 62. Publication date: June 2021.



Robust Inertial Motion Tracking Through Deep Sensor Fusion
Across Smart Earbuds And Smartphone • 62:5

Fig. 1. Overall architecture of the DeepIT . The modules wrapped by dotted boxes are implemented by DL models.

Fig. 2. Detailed structure of the DL parts of the DeepIT .

we only care about the angular speed within the x-y plane, which we denote as virtual angular speed (VAS) 𝜔̄ . The 𝜔̄ can be
derived projecting the gyroscope data on the gravity direction: 𝜔̄ = 𝜔 ·𝑎

∥𝑎 ∥ , where 𝑎 and 𝜔 represent the original 3D accelerometer and
gyroscope samples, respectively.
Similarly, we convert the acceleration samples to virtual acceleration (VAC) 𝑎 to reduce the impacts of IMU angle. It is well

known that the accelerometer measures the summary of gravity and IMU motion. Additionally, existing works have shown that
human walking results in a dominating sinusoidal pattern in acceleration [43]. Therefore, the 2-norm of acceleration contains the
necessary information which can be used to infer the walking speed. We thus define the VAC as: 𝑎= ∥𝑎∥2. Since the accelerometer
measures acceleration on 3 orthometric axes, the summary of gravity and IMU motion has different distributions on the 3 axes
measurements when the IMU is placed in different angles. The 2-norm of acceleration eliminates such inconsistency and results in
a unified distribution on arbitrary angles.

The VIMU data is comprised of VAS and VAC. Compared to the raw IMU data, the VIMU data have consistent angle distribution
in any pose. This is because the VIMU data leverages the gravity as an anchor to calculate the reference coordinate, which is
immune to the pose variation. Therefore, it can bridge the gap between the angular distributions of training and testing data. We
note that VIMU assumes the accelerometer can faithfully record the gravity direction during walking. However, this assumption
breaks when large motion noise occurs. The inaccuracy of gravity estimation appears mostly when the sensor is enduring motion
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noise. Therefore, it is natural for the proposed reliability attention to lower the fusion weights of the noisy sensor, and deriving
gravity primarily from the stable sensor.

The smartphone and earbuds have independent trajectory estimation from their own VIMUs. For each input window, the l-LSTM
takes a VAC sequence of length 𝑇 as input. The output is translation feature 𝐹𝑙 , rather than the translation value itself, to prepare
of the feature fusion later. The d-LSTM learns to map the input VAS sequence of length 𝑇 to angle increment feature 𝐹𝜑 . The
d-LSTM and l-LSTM produce results for each input time stamp within a window, but we only use the last output which represents
the cumulative result across the entire window.

4.2 Reliability Aware Attention Fusion Model
DeepIT ’s sensor fusion model aims to synthesize the estimations from multiple sensors and automatically adjust their fusion
weights according to their motion noise levels, in order to mitigate the impacts of the corrupted sensor. For example, when the
smartphone’s IMU data is polluted by rotational/translational noise, the model automatically resorts to the stable earbud as the
main data source for estimation. Although occasional head rotation incurs motion noise as well, this rarely happens simultaneously
with phone rotation. Hence a proper fusion model should be able to harness such complementary sensing properties to improve
reliability.

Reliability network. The reliability network in DeepIT aims to distinguish the regular body moving patterns and the motion-
noise contaminated patterns. As shown in existing studies [33], regular human walking leads to periodic patterns in gyro-
scope/accelerometer measurements when these sensors are rigidly attached to the body (e.g., on arm or foot). The accelerometer
data shows sinusoidal variation while walking, and gyroscope shows tractable patterns while the pedestrian is making a turn.
On the other hand, the subject may engage in unexpected daily activities that bring additional motion on the IMU sensor,

such as large-scale motion (swinging smartphone in hand), aperiodic motion (taking up smartphone to make phone calls), or
the combination of them, while walking, thus inducing motion noise. In such practical usage scenarios, the accelerometer and
gyroscope measurement can be modeled as 𝑎=𝑎∗ +𝑒𝑎 and𝜔 =𝜔∗ +𝑒𝑤 , where 𝑒𝑎 and 𝑒𝜔 represents the motion interference, whereas
𝑎∗ and 𝜔∗ are the components contributed by walking itself. If the 𝑎∗ is close to 𝑎, it means that 𝑎∗ is more likely to faithfully reflect
the walking trajectory. Otherwise, it is unreliable. We use the Euclidean norm to represent the similarity reciprocal between 𝑎 and
𝑎∗. Then, the reliability metric 𝑟 is defined as the combination of similarities between 𝑎∗ and 𝑎, and between 𝜔∗ and 𝜔 :

𝑟 =1/
(
∥𝑎 − 𝑎∗∥2 + ∥𝜔 − 𝜔∗∥2

)
(1)

Since the motion artifacts normally last for a period of time, estimation of the IMU reliability can be cast to a sequence mapping
problem, which is solved by the reliability LSTM (r-LSTM) in DeepIT :

𝐹𝑟 𝑖𝑡 =𝑅(𝑥𝑖𝑡 ), 𝑥𝑖𝑡 = (𝑎𝑖𝑡 , 𝜔̄𝑖
𝑡 ), (2)

where 𝑅(·) represents the r-LSTM function; 𝐹𝑟 𝑖𝑡 denotes the reliability feature of IMU sensor 𝑖 . All the reliability feature are then
concatenated as 𝐹𝑟 and inputted to a fully connected layer to predict the reliability 𝑟 𝑖𝑡 for each sensor 𝑖 .

Sensor fusion. DeepIT ’s fusion scheme builds on a customized attention model. Classical attention mechanism [38] has been
well recognized in natural language processing, and demonstrated its ability to jointly process different data segments (e.g., different
phrases in a sentence), or process the intermediate outputs from different neural layers. It uses a score function to calculate the
weighted coefficients, which is implemented by a feed-forward network. However, the feed-forward network is not suitable for
inertial tracking because it is unable to model the temporal properties of the motion sequence. In DeepIT , we redesign the score
function using the r-LSTM in Equation (2). Since the original reliability value 𝑟 𝑖𝑡 is unnormalized, we can use the softmax layer in
attention model to enforce normalization:

𝑟 𝑖𝑡 =
𝑒𝑥𝑝 (𝑟 𝑖𝑡 )∑𝑀
𝑖=1 exp(𝑟 𝑖𝑡 )

. (3)

where 𝑖 represents the sensor index; 𝑟 𝑖𝑡 is the fusion coefficient of sensor 𝑖 . Then, the translation increment feature 𝐹𝑙𝑖𝑡 and direction
increment feature 𝐹𝜑𝑖

𝑡 are fused according to sensor reliability:

𝐹𝑙𝑡 =

𝑀∑
𝑖=1

𝑟 𝑖𝑡 ∗ 𝐹𝑙𝑖𝑡 , 𝐹𝜑𝑡 =
𝑀∑
𝑖=1

𝑟 𝑖𝑡 ∗ 𝐹𝜑𝑖
𝑡 , (4)

where 𝑀 represents the total number of IMU sensors. Finally, the fused translation increment feature 𝐹𝑙𝑡 and fused direction
increment feature 𝐹𝜑𝑡 are inputted to two fully connected layers to derive translation increment Δ𝑙𝑡 and direction increment Δ𝜙𝑡 ,
respectively.

The value of reliability 𝑟 of the IMU which endures motion noise is less than another IMU, so the noisy IMU data has less impacts
on the fused feature, thus reduces the influence of motion artifacts. One may ask how can the r-LSTM exactly learn to adjust the
reliability of a sensor corresponding noise level. The answer is that the noisy sensor induces noisy data, which makes the training
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of corresponding l-LSTM and d-LSTM not able to converge. In order to make the whole model able to converge, the only way is to
to decrease the corresponding reliability 𝑟 to lower the impacts of the noisy data on the results, which is achieved by the back
propagation scheme itself.

Loss function. The optimal parameters 𝑝∗ of the proposed fusion model can be derived by minimizing a loss function on the
training data set D= (X,Y): 𝑝∗ = arg min{L(𝑓 (X),Y)}. We define the loss function L as the sum of Euclidean distances between
the ground truth (Δ𝑙𝑡 ,Δ𝜙𝑡 ) and estimated value (Δ𝑙𝑡 ,Δ𝜙𝑡 ):

L =
∑

∥Δ𝑙𝑡 − Δ𝑙𝑡 ∥2
2 + ∥Δ𝜙𝑡 − Δ𝜙𝑡 ∥2

2. (5)

5 RELIABILITY AWARE ANGLE DRIFT COMPENSATION
Angle drifting due to IMU sensor noise is well recognized as the key challenge for all inertial odometry systems [25, 33]. Existing
methods have attempted to address this problem by using magnetometer as an angle anchor, facilitated by adaptive filters [24] to
compensate the drifting. However, when disturbed by motion noise (e.g. user arbitrarily rotating the phone by hand), the mag
anchor points to non-walking directions, which misleads the trajectory estimation, worsens the angle drifting and hence the
localization accuracy.
To meet this challenge, we design a reliability aware angle compensation method. One caveat with this design choice is that

commercial smart earbuds are not equipped with any magnetometer [11]. The reason lies in the small package of earbuds. If
it is ever needed, the magnetometer has to be placed very close to the earbud’s speaker, which itself has a magnet and causes
severe interference to the magnetometer [12]. Therefore, we have to handle the motion noise-induced angular drifting using the
magnetometer on the smartphone. Besides motion noise, the magnetometer may suffer from low reliability due to occasional
ferromagnetic interference from ambient environment, which must be accounted for in the angular compensation mechanism.

5.1 A Primer on Magnetometer Compensation
Consider the case when the magnetometer is parallel to the horizontal plane of the LRF. The yaw angle𝜓 can be represented by
the magnetic field strength 𝐵:

𝜓 = arctan
𝐵𝑦

𝐵𝑥
, (6)

where 𝐵𝑥 and 𝐵𝑦 are components of the earth magnetic field vector, which can be read from the magnetometer.
In reality, the magnetometer is not guaranteed to be parallel to the local horizontal plane. Due to the angular deviation, we need

to use the accelerometer to get another 2 angles: roll and pitch, i.e., rotation around the 𝑥-axis and 𝑦-axis of the LRF. By definition,
the roll 𝜃 and the pitch 𝛾 can be calculated as:

𝜃 = arctan
𝑎𝑦

𝑎𝑧
, 𝛾 = arctan− 𝑎𝑥√

𝑎2
𝑦 + 𝑎2

𝑧

, (7)

where the 𝑎𝑥 , 𝑎𝑦 and 𝑎𝑧 are components corresponding to the acceleration of gravity along the three axes. Thus, the yaw angle𝜓
can be formulated as:

𝜓 =
𝐵𝑥 sin(𝜃 ) sin(𝛾) + 𝐵𝑦 cos(𝜃 ) − 𝐵𝑧 sin(𝜃 ) cos(𝛾)

𝐵𝑥 cos(𝛾) + 𝐵𝑧 sin(𝛾) . (8)

To apply angular compensation to the accelerometer’s estimation, complementary filter based methods are often used [33].
Given the yaw angle increment Δ𝜙 , we can calculate the absolute angle at time 𝑡 as:

𝜙𝑡 =𝜙𝑡−1 + Δ𝜙𝑡 , (9)
And then we calculate the angle of magnetometer anchor𝜓𝑡 following Equation (8). Finally, the compensated angle𝜓𝑡 should be:

𝜓𝑡 =𝑘𝜙𝑡 + (1 − 𝑘)𝜓𝑡 , (10)
where 𝑘 is the compensation coefficient, which can be deemed as a boundary weight assigned between the sensor fusion model
and the magnetometer anchor. 𝑘 should be set close to 1 to prioritize latest samples. We fix it to 0.95 − 0.98 in our evaluation.

5.2 Reliability Aware Drifting Compensation
The aforementioned classical magnetometer compensation method bears one major limitation: It does not consider the situation
when the phone’s angle may vary relative to the user body, which usually happens due to motion noise.

In our experiments, we find that the reliability output from r-LSTM varies according to the duration of the noise in the input
data window. The longer the motion artifacts last, the lower the reliability. Thus, for a fixed time window, we can use the reliability
network (i.e., r-LSTM) to identify whether the smartphone is enduring motion noise or relatively stationary. The same mechanism
can identify reliability drop due to temporary ferromagnetic interference. We introduce a new parameter called interference ratio
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𝑝𝑛 , which represents the degree of interference in the current input data window for each device. It can be formulated as:
𝑝𝑛 =

𝑟𝑠𝑡𝑎𝑏𝑙𝑒 − 𝑟𝑡

𝑟𝑠𝑡𝑎𝑏𝑙𝑒
. (11)

where 𝑎𝑠𝑡𝑎𝑏𝑙𝑒 represents the reliability output without motion noise. Both motion noise and magnetic interference usually occur in
a bursty manner. So we can approximate the stable value 𝑟𝑠𝑡𝑎𝑏𝑙𝑒 by averaging the reliability outputs. A large 𝑝𝑛 implies that the
phone is enduring severe noise/interference, and thus mag compensation should be suspended. We use an empirical threshold 𝑝𝑇ℎ
to identify such cases. Finally, we can update the compensated angle𝜓𝑡 as:

𝜙𝑡 =𝜓𝑡−1 + Δ𝜙𝑡 , (12)

𝜓𝑡 =

{
𝑘𝜙𝑡 + (1 − 𝑘)𝜓𝑡 𝑝𝑛 >𝑝𝑇ℎ
𝜙𝑡 𝑝𝑛 ≤ 𝑝𝑇ℎ .

(13)

6 SYSTEM IMPLEMENTATION
Dataset. There is no public dataset for inertial tracking using both smartphone and earbuds simultaneously. Therefore, we collect
our own dataset with pedestrian carrying Android phones and wearing smart earbuds. We use the eSense [11], an experimental
smart earbuds device developed by Nokia, which can stream gyroscope and accelerometer readings through BLE to an associated
smartphone. Our dataset covers a comprehensive set of real-world usage settings. To examine the performance of DeepIT and
benchmark solutions under different levels of motion noise, the dataset incorporates 3 types of walking patterns: normal walking
(NW), walking while swinging phone occasionally (RP), walking while swinging phones and moving heads alternatively (RPE),
walking while moving heads occasionally (HM). The RPE represents practical scenarios where the user browses the smartphone
while walking on the street. Additionally, 5 different users and 4 different smartphone models are involved. The data are collected
over 10 different places covering both indoor and outdoor. By default, the users are holding the smartphone in their hands, but the
dataset also contains a scenario with phone in a backpack. The total length of dataset is over 30 hours (around 214k ft in length)
with each single trajectory lasting 5-10 minutes. The ground truth data (location and walking direction) is collected by a Google
Tango phone [13]. Tango uses visual inertial odometry techniques to achieve cm precision in motion tracking. Since its accuracy
may be impacted by lighting condition and diversity of visual features, we collect all the data during daytime and in places with
sufficient object diversity. In addition, we tie the Tango in front of the chest to keep its pose relatively stable. The Tango device,
smartphone, and earbuds are synchronized using NTP time stamps. The app running on the smartphone can provide sufficient
precision in synchronization with the earbuds. The app periodically sends data requests to the earbuds, which immediately returns
the sensing data. Based on our tests, the average duration of the process starting from the request to the data capturing is less
than 20 ms. We also manually observed the data features, e.g., plotting the gyroscope and accelerometer curves of earbud and
smartphone, and found average error (distance between data features) is indeed within 20 ms, which is far less than the algorithm
running window time (2s). Therefore, the synchronization should be sufficient and is unlikely to impact the model performance.

Evaluation metrics.We test the localization performance using 5 standard metrics widely adopted by inertial tracking and
visual SLAM systems [35]. In addition, we propose 2 metrics to quantify the microbenchmark performance of DeepIT in comparison
with baselines.

(i) Mean Trajectory Error (MTE).MTE calculates the RMSE of estimated location and ground truth location trajectories, i.e.,

MTE=

√√
1
𝑛

𝑛∑
𝑖=1

∥𝑒𝑖 ∥2
2, (14)

where 𝑒𝑖 is the 𝑖 − 𝑡ℎ location error between the estimation and ground truth and 𝑛 is the total number of location estimations.
This metric reflects the absolute localization error of estimation and is prone to inflate as route length increases.

(ii) Time-normalized Mean Trajectory Error (T-MTE). The T-MTE is used to amortize the impacts of time during of trajectory on
MTE. Additionally, early location errors make larger impacts on T-MTE, so by contrasting MTE and T-MTE we can evaluate the
distribution of the errors.

T-MTE=60 ∗

√√
1

𝑛 − 1

𝑛∑
𝑖=2

∥𝑒𝑖 ∥2
2

𝑡𝑖
, (15)

where 𝑡𝑖 is the time of 𝑖 − 𝑡ℎ location started from 0. Since the original numeric value of T-MTE is too small, we multiply it with
the coefficient of 60 to make it have similar range to MTE.
(iii) Distance-normalized Mean Trajectory Error (D-MTE). D-MTE is used to counteract the impacts of the area covered by the

trajectory on MTE. Compared with T-MTE, D-MTE is less sensitive to long trajectories because it is armortized by the trajectory

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 62. Publication date: June 2021.



Robust Inertial Motion Tracking Through Deep Sensor Fusion
Across Smart Earbuds And Smartphone • 62:9

size, i.e.,
D-MTE=100 ∗ 𝑀𝑇𝐸

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

, (16)

where 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum x-axis values of ground truth trajectory, and 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the maximum
and minimum y-axis values of ground truth trajectory. Since the original numeric value of D-MTE is too small, we multiply it with
a coefficient of 100 to make its range similar to MTE.
Besides the above metrics, we need to separately determine the angle errors and translation errors, so as to track down the

reasons for inaccurate location estimations. To this end, we propose 2 extra metrics as follows.
(iv) Total mean translation error 𝑒𝑙 , computed by averaging the difference between estimated trajectory length and ground truth

trajectory length.

𝑒𝑙 =
1
𝑛

𝑛∑
𝑖=1

(𝑙𝑖 − 𝑙𝑖 ), (17)

where 𝑙𝑖 and 𝑙𝑖 are the 𝑖 − 𝑡ℎ cumulative trajectory length from ground truth and estimation, respectively.
(v) Total mean angle error 𝑒𝑎 in radian, which is the average difference between estimated angle and ground truth angle.

𝑒𝑎 =
1
𝑛

𝑛∑
𝑖=1

|𝜓𝑖 −𝜓𝑖 |, (18)

where𝜓𝑖 and𝜓𝑖 are the 𝑖 − 𝑡ℎ angles from ground truth and estimation respectively.
Model implementation. Our sensor fusion model is comprised of the DL parts and non-DL parts. The DL parts include the

reliability network, translation network, direction network and attention model. The detail structure of the DL parts are shown
in Fig.2. The reliability networks include 2 r-LSTMs, each of which is comprised of 2 stacked bidirectional LSTM cells. These
2 LSTM cells both contain 48 hidden units. Each r-LSTM accepts the VAC and VAS sequence with length of 200 (corresponds
to 2 seconds) as input, and outputs the reliability feature 𝐹𝑟 𝑖𝑡 with size of 48 (the last element from the output sequence). The
l-LSTMs and d-LSTMs share the same structure, which is comprised of 2 stacked bidirectional LSTM cells. These 2 LSTM cells both
contain 16 hidden units. The l-LSTM accepts the VAC sequence with length of 200 as input, and outputs the translation feature 𝐹𝑙𝑖𝑡
with size of 16 (the last element from the output sequence). The d-LSTM accepts the VAS sequence with length of 200 as input,
and outputs the angle feature 𝐹𝜑𝑖

𝑡 with size of 16 (the last element from the output sequence). The attention model consists of a
reliability estimation module, a translation attention module and an angle attention module. The reliability estimation module
first concatenates the two reliability feature 𝐹𝑟 1

𝑡 and 𝐹𝑟 2
𝑡 and use a layer of fully connected layer and a softmax layer to estimate

and normalize the reliability outputs 𝑟 1
𝑡 and 𝑟 2

𝑡 . The two attention modules fuses the translation feature 𝐹𝑙𝑖𝑡 and angle feature 𝐹𝜑𝑖
𝑡

following Section 4.2.
We use Pytorch [28] to implement our fusion model and train it on a server with a cluster of Nvidia RTX 2080Ti GPUs. The

whole DL parts of DeepIT are trained in an end-to-end manner. The training uses the Adam optimizer with learning rate of 0.0005,
and inserts a dropout layer with rate 0.25 between each two LSTM cells to prevent over-fitting. The batch size is setting to 16 and
the total training epoch is 100.

During the testing, we recover the complete trajectory by accumulating the translation increments Δ𝑙𝑡 together with fused angle
𝜓𝑡 . The fusion model predicts the results for every 2-seconds time window with stride of 0.1 second. In other words, the trajectory
is updated every 0.1 second.

As an ablation study, we implement 2 versions of DeepIT with and without using drifting compensation, which are referred to
as DeepIT w/ mag and DeepIT w/o mag, respectively. The above 2 models use VIMU data as input. For VIMU ablation study, we also
implement a special version which uses raw IMU data as input, denoted as DeepIT raw-IMU w/ mag. For single sensor ablation
study, we implement DeepIT -earbud and DeepIT -phone, which only accept single sensor data as input. Compared with DeepIT ,
their r-LSTMs are removed.

Baselinemethods. For comparison, we implement two baseline inertial odometry systems: IONet [3] and MUSE [33], which rep-
resent state-of-the-art data-driven and closed-form algorithms, respectively. We also implement DeepFusion [42], a representative
data-driven multi-sensor fusion model.

IONet. IONet is a deep learning based inertial odometry system. The IONet accepts 6-D IMU data sequence (accelerometer and
gyroscope) as input, which is normalized to [−1, 1]. It outputs translation increment and angle increment for every 2-second
window. IONet uses bidirectional LSTM as basic structure, which is comprised of 2 bidirectional LSTM cells and an MLP layer. All
the LSTM cells have the same hidden layer size of 96 and the MLP layer has an output dimensions of 2. Since the IONet code is
not publicly available, we implement it following the description in the original paper [3, 4]. An Adam optimizer and learning
rate of 0.0005 is used for training. We use Dropout layer in each LSTM cell with 25% dropping rate to prevent overfitting. The
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training/testing is applied to the smartphone IMU data and earbuds IMU data, respectively. To ensure our implementation matches
the original IONet, we have tested our implementation on the published IONet dataset, and the results are almost identical to [3, 4].
However, note that our dataset contains more challenging trajectories — containing sharp turnings (180 degrees), covering larger
areas (maximized to 18000𝑚2), and involving uncontrolled user mobility (and hence motion noise) which is not handled by the
IONet design. Therefore, it is expected that IONet’s performance will degrade when trained/tested on our dataset. In order to make
fair comparison, we also extend the IONet for fusing both smartphone and earbud, named IONet-fuse. Specifically, we fuse the
outputs(translation increment and angle increment) from IONet-phone and IONet-earbud by weighted sum with equal weights for
each window.
MUSE. MUSE is a filter based motion tracking pipeline originally designed to track the position of a subject with restricted

movement (e.g., human-arm motion restricted by elbow and shoulder joints). MUSE takes advantages of the constraint between
IMU reading and object’s location to reduce its valid search space in particle filter, resulting in high localization accuracy. We
have implemented the core pipeline of MUSE, made of a complimentary filter and a particle filter. Since the constraint between
localization and IMU reading no longer exists in general inertial tracking scenarios, we implemented additional constraints on
object’s moving speed (limited between 1m/s and 2m/s).

DeepFusion [42].We use DeepFusion as a benchmark multi-sensor fusion model, to verify the effectiveness of our reliability-based
fusion scheme. DeepFusion comprises several core fusion schemes such as Weighted-Combination Module and Cross-Sensor Module.
We implement the Sensor-Representation Module using two IONet LSTMs with the final FC layers removed, for smartphone and
earbud, respectively. The features output by the two LSTMs are connected in the form of the weighted-combination and cross-sensor
combination, consistent with the original DeepFusion design [42]. Finally, the output features inWeighted-Combination Module and
Cross-Sensor Module are fed into fully-connected layers and added up to generate the angle estimation and translation estimation.

We note that recently there emerged other DL based inertial navigation, such as RoNIN [43]. Similar to IONet, RoNIN assumes
the smartphone is attached to the body without relative motion (such as swinging for a few seconds), and hence negligible motion
noise. From this perspective, there is no fundamental difference from IONet.

7 EVALUATION
We first present the experiment results on the overall performance of our model involving different levels of motion noise. Then,
we evaluate the model’s generalization ability across a wide range of practical usage scenarios, e.g., for different users, mobile
devices, indoor/outdoor and ways of attachment. Finally, we also study the model’s performance in other aspects, e.g., varying
hyper-parameters of magnetometer compensation.

7.1 Performance Under Daily Mobility Scenarios

Fig. 3. Reliability output in NW scenario Fig. 4. Reliability output in RPE scenario

Fig. 5. Reliability output in RP scenario Fig. 6. Phone gyroscope output in RPE scenario

We first test DeepIT ’ performance in 3 scenarios: normally walking (NW), walking with swinging phone casually (RP) and
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Table 1. Performance comparison in NW scenario

model Route1 (32𝑚2) Route2 (3000𝑚2) Route3 (12000𝑚2)
MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎

MUSE 33.327 11.436 2.885 \ \ 43.343 9.755 0.381 \ \ 56.370 20.697 0.154 \ \
IONet-earbud 1.532 0.790 0.097 0.990 0.389 25.207 5.337 0.238 5.054 1.649 50.257 17.084 0.162 2.214 0.546
IONet-phone 1.945 0.801 0.124 0.736 0.639 35.205 6.319 4.411 1.522 1.735 41.997 14.111 0.135 3.168 0.377
IONet-fuse 1.834 0.794 0.116 0.630 0.482 31.699 5.821 0.299 1.470 1.750 47.675 16.153 0.153 2.594 0.485
DeepFusion 1.441 0.708 0.087 0.782 0.430 25.694 4.682 0.242 13.185 1.356 29.337 11.316 0.094 3.691 0.168

DeepIT -earbud 1.550 0.792 0.101 0.895 0.412 24.197 4.983 0.215 4.188 1.357 34.412 11.659 0.118 3.867 0.479
DeepIT -phone 1.867 0.759 0.117 0.815 0.612 34.459 8.308 0.325 2.550 1.655 30.031 9.682 0.096 9.222 0.306
DeepIT w/o mag 0.855 0.354 0.054 0.468 0.293 21.416 4.263 0.202 2.376 1.525 16.319 6.534 0.053 1.956 0.118
DeepIT w/ mag 0.848 0.413 0.054 0.468 0.256 20.616 4.139 0.195 2.376 1.444 15.800 6.364 0.051 1.956 0.089

Table 2. Performance comparison in RP scenario

model Route1 (32𝑚2) Route2 (3000𝑚2) Route3 (12000𝑚2)
MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎

MUSE 41.070 12.922 3.139 \ \ 36.913 16.710 0.319 \ \ 40.752 20.527 0.124 \ \
IONet-earbud 3.362 1.356 0.203 3.491 1.076 10.542 5.697 0.097 4.428 0.267 26.978 8.714 0.100 1.385 0.225
IONet-phone 5.658 2.822 0.342 8.007 1.462 29.859 10.234 0.274 11.169 0.919 58.128 19.570 0.215 1.831 0.455
IONet-fuse 3.786 1.691 0.229 9.839 0.943 18.669 8.512 0.166 13.518 0.303 42.251 13.971 0.156 1.751 0.333
DeepFusion 3.144 1.602 0.193 1.398 0.876 19.996 11.152 0.230 4.229 0.824 34.865 13.180 0.122 0.744 0.275

DeepIT -earbud 2.396 0.967 0.165 3.982 0.906 11.691 6.644 0.114 4.345 0.284 31.512 11.331 0.131 0.923 0.653
DeepIT -phone 5.980 2.937 0.373 3.088 1.467 27.585 9.808 0.264 13.464 0.843 53.087 18.244 0.196 1.418 0.399
DeepIT w/o mag 1.410 0.733 0.085 4.372 0.275 13.089 4.617 0.120 3.714 0.661 26.723 8.875 0.099 0.653 0.166
DeepIT w/ mag 0.734 0.428 0.044 4.372 0.146 5.763 2.420 0.053 3.714 0.143 15.763 5.946 0.058 0.653 0.132

Table 3. Performance comparison in RPE scenario

model Route1 (32𝑚2) Route2 (3000𝑚2) Route3 (18000𝑚2)
MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎

MUSE 38.243 27.384 3.006 \ \ 81.563 32.367 0.697 \ \ 154.418 46.579 0.428 \ \
IONet-earbud 4.273 2.464 0.333 6.187 1.704 21.638 7.654 0.208 1.464 1.022 237.368 71.051 0.803 3.652 1.791
IONet-phone 12.886 9.534 1.005 29.856 1.594 22.275 11.214 0.215 1.074 0.542 96.019 26.942 0.325 7.401 0.903
IONet-fuse 8.748 6.158 0.737 20.847 1.646 21.738 8.382 0.214 1.384 0.837 175.482 51.320 0.594 6.532 1.472
DeepFusion 7.069 3.767 0.551 2.755 1.758 27.799 9.863 0.260 1.017 1.169 64.925 20.368 0.219 5.182 1.051

DeepIT -earbud 7.503 3.582 0.585 2.814 1.451 28.420 12.975 0.273 1.165 0.684 116.469 35.568 0.393 6.007 1.396
DeepIT -phone 5.232 3.157 0.408 2.275 1.762 23.774 11.482 0.234 1.451 1.157 158.757 50.406 0.536 15.412 1.862
DeepIT w/o mag 2.754 1.524 0.215 4.291 0.469 15.215 5.900 0.147 0.275 0.531 34.750 11.442 0.117 3.315 0.323
DeepIT w/ mag 2.699 1.697 0.211 4.291 0.242 8.554 3.802 0.082 0.275 0.104 20.464 5.984 0.069 3.315 0.159

Table 4. Performance comparison in HM scenario

model Route1 (32𝑚2) Route2 (3000𝑚2) Route3 (18000𝑚2)
MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎

MUSE 48.543 37.585 4.158 \ \ 76.278 29.254 0.685 \ \ 135.547 40.547 0.354 \ \
IONet-earbud 6.575 3.478 0.458 9.187 1.684 61.573 19.067 0.507 4.464 1.322 107.348 45.584 0.518 5.278 1.278
IONet-phone 3.894 1.820 0.251 4.573 1.857 28.478 10.482 0.257 2.277 1.673 31.275 10.964 0.118 3.478 0.428
IONet-fuse 5.278 2.167 0.398 6.365 1.781 45.548 14.562 0.363 3.982 1.518 64.731 25.280 0.335 4.548 0.808
DeepFusion 5.038 1.885 0.335 8.860 1.259 28.319 8.858 0.242 0.899 0.527 92.787 37.068 0.363 1.030 1.290

DeepIT -earbud 6.967 3.742 0.464 8.252 1.359 55.696 17.704 0.477 5.855 1.138 78.242 34.856 0.306 7.010 1.450
DeepIT -phone 3.677 1.778 0.245 5.135 1.770 30.608 11.515 0.262 3.518 1.718 26.818 9.723 0.104 4.411 0.665
DeepIT w/o mag 3.197 1.322 0.213 8.037 0.372 20.482 7.023 0.173 1.543 0.590 23.040 6.779 0.098 1.891 0.463
DeepIT w/ mag 2.578 1.157 0.186 8.037 0.257 11.576 4.158 0.086 1.543 0.285 15.675 4.687 0.079 1.891 0.169

walking while swinging both phone and earbud casually (RPE). The motion interference intensity increases from NW to RP and
RPE. For each case, we evaluate 3 different routes, i.e., route 1 to route 3, with increasing trajectory length and area coverage. For a
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fair comparison, we always train DeepIT and IONet using the same datasets, and similarly for testing. All the training and testing
data in this experiment are collected by the same subject and same device. We will evaluate the generalizability in the next section.
The NW scenario is the baseline scenario used in existing inertial odometry methods [3, 33, 43], in which the subjects were

asked to handhold their phones with a fixed pose while walking. The experimental results for NW are summarized in Table 1.
We find that DeepIT w/ mag achieves the lowest D-MTE amongst all DL models, i.e., 0.054, 0.195, and 0.051m, along route 1, 2,
and 3 respectively. It is 1.5× lower than IONet-phone, 2× lower than IONet-earbud, 1.7× lower than IONet-fuse and 11× lower
than MUSE on average. The reason behind its performance advantage is that both the translation and angle drifting are largely
decreased by the dual-sensor feature fusion. Although IONet-fuse also leverages sensor fusion, the results show that the simple
weighted sum based sensor fusion adopted by IONet-fuse performs much worse than DL based sensor fusion. As shown in the
table, both the 𝑒𝑙 and 𝑒𝑎 of DeepIT are lower than the IONet models, indicating DeepIT ’s ability to combine the merits of multiple
sensors.

Notably, IONet achieves a reasonable MTE of 1 to 2m along route 1, which is consistent with the original paper [3]. However, it
exhibits much worse performance of 40 to 50m along route 2 and 3. The reason lies in the larger turning angles along these routes.
The turning angles in the IONet dataset [3] are usually within 90◦, whereas routes 2 and 3 here contain close to 180◦ turning angles.
The larger turning angles are easier to produce large motion noise and angle drifts, and thus worsens the localization accuracy.

We further examine the reliability network output of the smartphone and earbud and plot the results along one representative
route in Figure 3. We can see that the reliability of the phone is always higher than the earbud in NW. This is because the phone
endures clearer periodic walking patterns than the earbud, so its translation estimation is more accurate.
In the RP scenario, the subjects may swing the phone casually just as in practical daily walking, which incurs continuous

relative motion between the phone and user body. This breaks the assumption of stable phone attachment in existing inertial
odometry systems [3, 33, 43]. From the results in Table 2, we see that DeepIT w/ mag achieves the lowest D-MTE, amongst all DL
models, i.e., 0.044, 0.053, and 0.058m, along route 1, 2, and 3 respectively. This is around 5× lower than IONet-phone, 2× lower
than IONet-earbud, 3.4× lower than IONet-fuse and 20× lower than MUSE on average. Additionally, we observe that the D-MTE
improvement of DeepIT over IONet is larger than in the NW scenario. This is because DeepIT effectively assigns proper fusion
weights according to the sensors’ reliability and thus reduces the impacts of motion noise. From the corresponding reliability
network output in Figure 5, we see a completely reverse pattern compared to the NW scenario. Here the earbud’s reliability is
always higher than the phone. This matches our expectation because the phone endures more motion noise in this scenario.

The subjects were asked to look forward while walking in the above two scenarios, so their heads (earbuds) remain in a relative
stable posture relative to the body. The third scenario, RPE, is more challenging, as the subjects can swing both their phones
and heads casually. The corresponding experimental results are shown in Table 3. We can find that DeepIT w/ mag consistently
demonstrates superior performance, with almost 5× lower D-MTE than IONet-phone, 4× lower D-MTE than IONet-earbud, 4.5×
lower D-MTE than IONet-fuse and up to 12× lower than MUSE, across all test routes. Although the earbud also endures motion
noise in this scenario, the relative performance gain of DeepIT is almost unaffected. It indicates that DeepIT effectively adjusts the
fusion weights according to the sensors’ reliability.

Compare to the RP scenario, DeepIT ’s own performance does degrade noticeably, which is due to the increase of motion noise
levels on both sensors. The corresponding reliability network output (Figure 4) is more complicated than the previous 2 scenarios.
Interestingly, the two sensors’ reliability level change alternately. Comparing with the original IMU data within the same time
frame in Fig. 6, we find that the lower reliability period precisely corresponds to the moments when the sensor endures motion
noise. This indicates our reliability aware attention scheme faithfully tracks the motion noise intensity and adjusts the fusion
weights accurately.

In realistic usage scenarios, the head motion is very common. We thus examine the model performance under the HM setup.
The corresponding experimental results are shown in Table 4. We observe that DeepIT w/ mag still performs the best among all
the models, with almost 1.5× lower D-MTE than IONet-phone, 2.5× lower D-MTE than IONet-earbud, 2× lower D-MTE than
IONet-fuse and up to 22× lower than MUSE, across all test routes. In addition, the models with only earbud as input (DeepIT -earbud
and IONet-earbud) show worse results than their corresponding smartphone competitors (DeepIT -phone and IONet-phone),
which indicates that the complementary sensing capability of the smartphone is necessary to improve the overall model robustness.

In order to verify that the superior performance of DeepIT mainly comes from the reliability based fusion scheme rather than
the additional capacity brought by multiple LSTMs, we implement and study the performance of DeepIT with a single sensor.
The results are shown in Table 1-4. We draw three main conclusions. (i) The average D-MTEs of the DeepIT -earbud and DeepIT
-phone are worse than DeepIT in all four scenarios, with 2.2× and 2.3× higher. It indicates that the reliability based fusion scheme
is better than single-sensor models. (ii) In HM scenario, the average D-MTE of DeepIT -phone is 1.9× lower than DeepIT -earbud.
In RP scenario, the average D-MTE of DeepIT -earbud is 2.3× lower than DeepIT -phone. It indicates that different sensors have
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their own advantages in corresponding scenarios, thus the fusion is a necessary choice. (iii) The overall performance of DeepIT
-earbud and DeepIT -smartphone are similar to the corresponding IONet competitors. But the advantage of DeepIT single sensor
version is distinct when there exists inconsistent data distribution, as shown in Section 7.2.

Another data-driven multi-sensor fusion model DeepFusion [42] is also compared in all four scenarios, with 1.5×, 1.4×, 1.9× and
2.7× higher D-MTE in scenario NW, RP, RPE and HM respectively. It indicates that the reliability based fusion scheme is more
effective than the general sensor fusion scheme proposed in DeepFusion.

7.2 Generalization Capability
We now conduct a series of experiments where new scenarios, users and devices are involved in the testing stage to verify the
generalizability of the DeepIT model.

Table 5. Performance of different models in indoor places, RP scenario

model Indoor 1 Indoor 2 Indoor 3
Indoor 4

(strong mag
interference)

Indoor 5 Indoor 6

D-MTE 𝑒𝑎 D-MTE 𝑒𝑎 D-MTE 𝑒𝑎 D-MTE 𝑒𝑎 D-MTE 𝑒𝑎 D-MTE 𝑒𝑎
MUSE 0.163 \ 0.230 \ 0.193 \ 0.410 \ 0.454 \ 0.242 \

IONet-fuse 0.339 1.018 0.438 1.267 0.445 1.026 0.366 1.112 0.968 1.116 0.289 1.362
DeepIT w/o mag 0.135 0.769 0.333 1.256 0.198 0.821 0.108 0.385 0.301 1.517 0.192 0.675
DeepIT w/ mag 0.107 0.303 0.202 0.465 0.162 0.242 0.163 0.555 0.092 0.216 0.108 0.105

Table 6. Performance comparison under different attachments, NW scenario

model In-Backpack Handheld
MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎 MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎

MUSE 20.147 15.207 0.871 \ \ 10.546 7.590 0.661 \ \
IONet-fuse 13.951 6.231 0.467 12.824 1.695 11.983 4.641 0.65 27.542 1.198

DeepIT w/ mag 9.037 6.877 0.303 12.633 1.488 7.575 4.39 0.411 1.397 0.757
Table 7. Performance comparison of different models with a variety of devices, RP scenario

model Black shark Xiaomi Max2 Google Pixel 2 Xiaomi Mi5
D-MTE 𝑒𝑙 𝑒𝑎 D-MTE 𝑒𝑙 𝑒𝑎 D-MTE 𝑒𝑙 𝑒𝑎 D-MTE 𝑒𝑙 𝑒𝑎

MUSE 0.276 \ \ 0.176 \ \ 1.584 \ \ 0.594 \ \
IONet-fuse 0.471 3.584 1.484 0.159 4.898 0.763 1.078 3.476 1.449 0.567 17.327 1.635

DeepIT w/ mag 0.068 7.706 0.181 0.109 4.982 0.305 0.441 7.556 0.704 0.445 6.141 0.612
Table 8. Performance comparison of different models with a variety of users, RP scenario

model User 1 User 2 User 3 User 4 User 5
D-MTE 𝑒𝑙 𝑒𝑎 D-MTE 𝑒𝑙 𝑒𝑎 D-MTE 𝑒𝑙 𝑒𝑎 D-MTE 𝑒𝑙 𝑒𝑎 D-MTE 𝑒𝑙 𝑒𝑎

MUSE 0.401 \ \ 0.333 \ \ 0.250 \ \ 1.586 \ \ 0.599 \ \
IONet-fuse 0.337 12.26 1.284 0.344 12.303 1.713 0.43 3.763 2.249 1.078 3.476 1.449 0.65 27.542 1.198

DeepIT w/ mag 0.09 1.815 0.213 0.165 8.567 0.544 0.092 5.532 0.261 0.441 7.556 0.704 0.411 1.397 0.757

Table 9. Ablation study for VIMU. Training and testing have different
angle distributions. Training: both smartphone and earbud face upward.
Testing: both smartphone and earbud face left by 90 degrees.

model Different angle distribution
MTE T-MTE D-MTE 𝑒𝑙 𝑒𝑎

IONet-fuse 167.765 78.575 1.486 8.576 1.765
DeepFusion 138.542 65.276 1.228 11.576 1.537

DeepIT raw-IMU w/ mag 158.849 71.171 1.406 13.871 1.429
DeepIT w/ mag 21.661 9.798 0.191 8.999 0.794
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Fig. 19. Performance comparison of different models with a variety of
users, RP scenario.
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Fig. 8. Medium trajectory (3000𝑚2) in NW
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Fig. 9. Large trajectory (12000 𝑚2) in NW
scenario, outdoor.
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Fig. 10. Small trajectory (32 𝑚2) in RP sce-
nario, outdoor.
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Fig. 11. Medium trajectory (3000𝑚2) in RP
scenario, outdoor.
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Fig. 12. Large trajectory (12000 𝑚2) in RP
scenario, outdoor.
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Fig. 13. Indoor trajectory (office building) in
RP scenario.
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Fig. 14. Indoor trajectory (office building2)
in RP scenario.
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Fig. 15. Indoor trajectory (indoor parking lot)
in RP scenario.
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Indoor/outdoor scenarios.Due to the impacts of ferromagnetic materials in indoor environment (e.g., metal frames in walls and
furnitures), the magnetometer is easier to be interfered than outdoor. To verify whether DeepIT is robust under such disturbances,
we evaluate 6 indoor sites, covering student center building, electronics laboratory, indoor parking lot filled with vehicles, along
with 3 outdoor sites near residential buildings. In order to guarantee the generalization test, we ensure that none of the tested routes
exists in the training data set. Since we focus on evaluating the generalization ability in this and following experiments, we use
D-MTE as the main metric to normalize the impacts of the trajectory length. The numerical results of indoor experiments are
shown in Table 5 and Fig. 16, and outdoor results are summarized in Table 2.
From the outdoor results, we find that the DeepIT fusion model with mag compensation shows best localization accuracy on

all routes. The average D-MTE improvements compared with IONet-fuse, fusion w/o mag and MUSE are over 2×, 1.5×, and 20×
respectively. Our fusion model effectively combats the interferences from motion artifacts, and lowers the average angle error 𝑒𝑎
by 0.84 rad and 0.23 rad compared to IONet-fuse and fusion w/o mag respectively. Among all the DL models, the IONet-fuse model
shows worst results because the handheld smartphone is affected most by motion noise.
The outdoor sites demonstrate a similar trend. The average improvements of D-MTE, compared to IONet-fuse and MUSE, are

almost 3× and 2× respectively. Overall, the results indicate that the DeepIT fusion model is still effective indoor. However, we find
an exception for indoor site 4, where the D-MTE of DeepIT w/ mag increases compared with the w/o mag case. The reason is that
indoor site 4 contains many metal handrails which severely distort the magnetometer readings.

In summary, the inertial tracking systems’ behaviors in indoor environments are usually more complicated than outdoors. They
contain more turnings, which worsen the impacts of angle drifting, and hence reduce the localization accuracy. Additionally,
more magnetic field interference is induced by metal sundries, which may disturb the angle compensation. However, our angle
compensation method still achieves the best performance compared with the state-of-the-art baselines. Fig. 7-15 visualizes a few
example trajectories in our experiments. It is clear that DeepIT suffers from much less drift compared with IONet, and its trajectory
is much closer to the ground truth (GT).

Different ways of carrying the mobile devices. We include an additional challenging experimental scenarios, namely in-
backpack, to evaluate our DeepIT ’s generalization across different ways of attachments. The in-backpack scenario mixes the
periodic pattern caused by both human steps and sway of backpack. While rich features on human step are contained in the
measurement, a higher degree of noise is also introduced as a by-product of reciprocating motions, potentially jeopardising the
performance of existing inertial tracking methods. We emphasize that the training data are all from the handheld attachments
scenario, so the additional testing attachment do not appear in the training data. The experimental results are shown in Table 6
and Fig. 17.

In the in-backpack attachment, the DeepIT model has the lowest D-MTE which is 0.303m. It is almost 1.5× lower than IONet-fuse
and 3× lower than MUSE. The backpack endures more fierce walking shakes than the handheld attachments. However, it does not
cause large deviations on the localization results because the walking patterns can still be discriminated by the inertial tracking
algorithms, be it closed-form or data-driven. Therefore, the performance gain of DeepIT is relatively lower compared with other
scenarios.
In the handheld attachment, DeepIT achieves lower MTE (7.575m) among these two attachments, which is 1.46m lower than

’in-backpack’. This is expected since the model is trained under the handheld attachment (although with orthogonal data samples).
Generalization across different mobile devices.We further verify the effectiveness of DeepIT on different smartphone (and

hence IMU) hardware. We adopt 4 different devices (Xiaomi Mi5, Google Pixel 2, Blackshark V1 and Xiaomi Max2), and ask the
same tester to collect the IMU data in the RP scenario. The training data is collected from one devices (Blackshark) and the testing
data from others. The results are shown in Table 7 and Fig.18. On average, DeepIT shows the lowest D-MTE (0.27m) on all devices,
2.5× lower than IONet and 3× lower than MUSE. This implies the performance gain of DeepIT is consistent across different devices.
Additionally, the D-MTE on different devices varies slightly. This is caused by the difference of test routes. The test routes collected
by Google Pixel 2 and Xiaomi Mi5 have more turnings than the other 2 routes, leading to larger tracking error.

Generalization across users. We recruit 5 users with varying height and gait to collect data in the RP scenario. Users 1-3 run
data collection in one site, while users 4-5 in another. To guarantee the rigor of evaluation, no subject in the test has participated in
the training data collection. The results are shown in Table 8 and Fig. 19. The DeepIT fusion model shows obvious improvement on
D-MTE on all users, which is almost 2.5× better than IONet-fuse and 3× better than MUSE on average. The experiment implies
that DeepIT generalizes well across users. The major difference among different users lies in their walking speed. Therefore, we
inspect their walking speed by observing the total length of route in unit time. We find that the walking speed difference impacts
the translation estimation error 𝑒𝑙 . The larger difference between the training set and the validation set leads to larger 𝑒𝑙 . DeepIT
shows lower 𝑒𝑙 on average than IONet and MUSE, indicating that it generalizes better than the baseline models, and is less sensitive
to walking speed variation.
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Ablation study to validate VIMU. We verify the effect of VIMU by intentionally choosing a testing usage pattern that is not
covered in the training data’s angular distribution. For training, both the smartphone and earbuds face upwards; For testing, both
are placed vertically facing the user’s left. The test trajectory is similar to those in Fig. 11. We create two test cases, using original
IMU data and VIMU data as input, labeled as DeepIT raw-IMU and DeepIT , respectively. The results in Table 9 show that the
improvement of VIMU compared with IMU is larger than 7.5×, which indicates that the VIMU scheme effectively eliminates the
impacts of angle distribution and thus enables more robust trajectory estimation.

Reliability output in a mixture of motion modes. We test DeepIT when different motion modes are mixed, i.e., the user
randomly switches between different motion modes, including standing still (ST), normal walking (NW), swinging smartphone in
hands (RP), moving heads to see around (HM), swinging smartphone and moving heads alternatively (RPE), running with both
smartphone and earbud interfered (RS). Figure. 20 shows the reliability outputs for both sensors. Regardless of the motion patterns,
we see that the higher-reliability sensor tends to toggle between the earbud and smartphone, implying that the proposed reliability
model indeed can adapt to different motion patterns by attending to the most reliable sensor.

Hyper-parameters for the reliability based magnetometer compensation.
We now evaluate the influence of the hyper-parameter 𝑝𝑇ℎ of the magnetometer compensation. We compare 4 model settings:

1*DeepIT w/o mag and 3*DeepIT w/ mag with different 𝑝𝑇ℎ . The average MTEs in 4 scenarios: NW, RP, RPE and HM, as shown in
Table 10. We can see that the 𝑝𝑇ℎ of −0.1 shows best average performance in all four scenarios, although different values only have
subtle influence. In addition, all the models using magnetometer compensation show better results than the DeepIT w/o mag,
which show that the system performance is not very sensitive to the selection of 𝑝𝑇ℎ .

Table 10. Ablation study for different value of 𝑝𝑇ℎ . The
w/o refers to DeepIT w/o mag.

𝑝𝑇ℎ
Average MTE

NW RP RPE HM
w/o 15.56 17.57 13.74 12.85
0 12.78 10.48 11.167 10.164

-0.1 12.42 7.42 10.57 9.94
-0.2 12.13 9.49 12.16 9.85

Fig. 20. Reliability variation under combined motion modes.

8 RELATED WORK
We summarize existing research in inertial motion sensing in 4 categories according to their methodology and design principles.

Closed-form Newtonian motion models. In early inertial navigation system design, the IMU is typically rigidly fixed on
some parts of the user body, e.g., foot or arm. The relative position and orientation deviation from an initial state can then be
obtained by double integrating the accelerometer reading and integrating the gyroscope reading [16]. However, many real-world
experiments have demonstrated that the integration of velocity is easily diverging due to the accumulation of error and noise
of IMU sensors. More advanced step counting system design leveraged the unique human walking constraints to alleviate the
drifting problem [1, 22, 36]. These systems accurately model the walking speed range, step size and other prior knowledge to
restrict the estimation space. However, this method fails to generalize because the constraints they build inevitably vary across
different people.

Filtering and calibration. Various kinds of adaptive filter methods have been merged into inertial tracking algorithms to
improve the localization performance, such as Kalman filter [7, 15, 46], particle filter [33] and complementary filter [20, 21].
Kalman filter models the sensor data processing as a continuous time linear system, and elaborately handles the sensor noise by
assuming the error model as Gaussian distribution. However, such an assumption only approximately works under slow rotational
motion. It often fails in real scenarios involving sophisticated body parts motion along with walking. Particle filter can handle
any arbitrary error distribution by representing the system as a set of samples (particles). However, prior physical constraints
have to be accurately modeled in this method to restrict the computation space, which hampers its practical effectiveness, because
accurately modeling motion constraints for daily mobility scenarios with high degree of freedom is infeasible. Complementary
filter can mitigate the long-term angle drifting problem by fusing the magnetometer anchor with the integrated gyroscope angle
estimation. However, for trajectory estimation, it still heavily relies on double integration which is prone to error accumulation.

Machine learning models.More recently, there have been attempts to use sequential deep learning models to realize data-
driven inertial navigation systems [9]. IONet [3, 6] is an end-to-end deep learning model that predicts location transform in
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Polar coordinate from raw IMU data. It aims to solve the inertial system drifting problem by breaking integration into separate
windows and achieve meter-level accuracy, under the condition of simple trajectories and fixed phone posture (relative to user
body). Robust Neural Inertial Navigation (RoNIN) [43] is another DL based model that takes a ResNet backbone combined with
LSTM to reduce velocity error and increases the accuracy of prediction. Unlike such prior work, DeepIT represents the first to
tackle the problem of motion noise due to varying IMU postures relative to the user body. DeepIT also represents the first to
leverage a smart earbuds device, i.e., eSense 3, to improve inertial tracking accuracy. DeepIT incorporates a few novel mechanisms
in its DL model design, e.g., utilizing the attention based sensor fusion scheme to synthesize the smartphone and earbuds sensors,
combined with a reliability estimation network to further push the accuracy to its limit. With this measure, it can operate under
more noisy and complex settings and handle different walking and running postures that are typical in practice.

Sensor fusion algorithms. Sensor fusion has been widely used to integrate multiple modalities and improve a system’s
robustness in real life applications. One early application of DL based sensor fusion is object detection, e.g., combining RGB and
depth image through convolutional neural networks to enhance the ability of detection [10]. Similar approach has also been used to
fuse data from camera, LiDAR, IMU and even radar sensors [26, 29, 30], particularly for self-driving applications. Sensor fusion can
also be applied on IMU and other mobile sensors to enhance the system performance [8, 23]. Muzner et al. used a CNN-based sensor
fusion techniques for multi-modal human activity recognition [23]. More recent works focused on time-related sensor fusion
architecture. Ming et al. [47] proposed an LSTM based multi-sensor fusion architecture to recognize human actions from continuous
data observations. Yao et al. proposed an innovative self-attention based DL model fuse heterogeneous Internet-of-Things devices to
a unified framework [45]. Recently, deep sensor fusion has been successfully applied to processing heterogeneous data modalities,
such as millimeter-wave radar and IMU [19], heterogeneous mobile device sensors [42], visual sensors and IMU [5], RGB images
and thermal cameras [31], WiFi and acoustic devices [41]. Compared with existing sensor fusion methods, the unique aspect in
our DeepIT design lies in the reliability estimation network which assesses the motion noise level of heterogeneous IMU sensors
and fuse the estimation via an attention model. This model incorporates physical meanings and shows remarkable advantage
under daily ambulant scenarios.

9 DISCUSSION

9.1 Stability of earbuds and smartphones
Previous IMU based navigation systems [33] have shown that the IMU data on earbud, especially the accelerometer data, usually
shows more stable patterns than smartphones. This raises an interesting question: would the earbud sensor data be enough for
inertial tracking? Through the foregoing experiments, we observe that the earbud mainly benefits from the combination with
smartphone sensors in three aspects: (i) The walking patterns sensed by the accelerometer on earbuds are too weak to infer
walking speed. Due to the stability of the earbuds, the accelerometer data on the earbuds are filtered by nature, making it difficult
to distinguish walking speed, thus causing errors on translation estimation. The smartphone does not have such issues and can
thus complement the earbuds’ limitation. (ii) Compensation of head motion noise. Head motion is very common in realistic cases.
For instance, the head moves up/down when the user is browsing/texting on smartphone while inspecting the road situation
ahead. Another common example is the head moving left/right when the user is distracted by ambient environment, or when the
user is talking to people nearby. In these cases, the smartphone is necessary to provide more stable sensing output that reflects
the actual movement of the user’s body. (iii) Drifting compensation by smartphone magnetometer. Commercial earbuds usually
avoid magnetometers as they may be impacted by the magnetic field in the loud speakers. Therefore, the drifting compensation of
earbuds has to rely on the magnetometer on the smartphones using the proposed reliability aware angle drift compensation method
described in Sec.5.

9.2 Real-time performance
DeepIT aims to run on smartphones and ideally the entire inference model needs to be processed in real-time. Although the 6
LSTMs seem to have a large computational burden, we find that the overall parameter size of DeepIT (75716) is only a fraction (1/4)
compared with the IONet model (302978). This is due to the VIMU scheme in DeepIT , which not only decreases the overall input
dimension from 6 (3 gyro and 3 accel) to 2 (1 virtual gyro and 1 virtual accel), but also decouples the gyroscope and accelerometer.
By this means, the required parameter size of each single LSTM is largely decreased.
To test the real-time performance, we implement DeepIT along with IONet on Android using Pytorch. We run the inference

model and feed the sensor data collected from the smartphone and earbuds in real-time. Then we repetitively run the inference
model and calculate the average frame rate. We use a relatively low-end smartphone, XiaoMi BlackShark (Qualcomm Snapdragon

3To the best of our knowledge, eSense is the only publicly-available smart earbud to date that exposes the IMU sensor interface for data collection.
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845) in the tests. The average frame rate of DeepIT is around 8Hz and the IONet is about 15Hz. The results indicate that, DeepIT
can still meet the requirements of real-time inertial tracking. Even though it needs to process a higher dimension of sensor data, its
processing speed is not fundamentally degraded owing to the smaller model size than IONet.

10 CONCLUSION
In this paper, we argue that motion noise remains as a major obstacle for IMU based location tracking in the wild. Without an
explicit attack at this problem, existing methods can only work under controlled mobility, e.g., holding a smartphone rigidly
level on the hand or attaching it on legs while walking. Our DeepIT model fills the gap and marks a major step towards more
usable inertial navigation applications. Through a reliability based sensor fusion scheme and drifting compensation algorithm,
DeepIT achieves a large performance margin compared with state-of-the-art systems across diverse scenarios. Nonetheless, the
performance of DeepIT is still not ideal for extremely long trajectories. We believe further refinement of its deep learning model is
needed and can easily builds on our smartphone/earbuds dataset.
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