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ABSTRACT

This paper presents a new privacy threat, the Invisible Infrared
Shadow Attack (IRSA), which leverages the inconspicuous infrared
(IR) light emitted by indoor security cameras, to reveal in-home
human activities behind opaque curtains. The key observation is
that the in-home IR light source can project invisible shadows on
the window curtains, which can be captured by an attacker out-
side using an IR-capable camera. The major challenge for IRSA
lies in the shadow deformation caused by a variety of environ-
mental factors involving the IR source position and curtain shape,
which distorts the body contour. A two-stage attack scheme is
proposed to circumvent the challenge. Specifically, a DeShaNet
model performs accurate shadow keypoint detection through multi-
dimension feature fusion. Then a scene constructor maps the 2D
shadow keypoints to 3D human skeletons by iteratively reproduc-
ing the on-site shadow projection process in a virtual Unity 3D
environment. Through comprehensive evaluation, we show that
the proposed attack scheme can be successfully launched to recover
3D skeleton of the victims, even under severe shadow deformation.
Finally, we propose potential defense mechanisms against the IRSA.
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1 INTRODUCTION

Over the past a few years, smart security cameras have been quickly
emerging as a critical element in the smart-home ecosystem. Ac-
cording to market research, around 38% American homes own at
least one security camera [29], more than 40% of which are deployed
indoor. The market size of security camera has reached $3.6 billion
as of 2020, and will surge to $11.6 billion in the next 6 years [29].
The security cameras have been playing a crucial role in monitoring
kids, pets, appliance safety, and in protecting against crimes.
Whereas users may trust such devices’ promise to keep the
video records secure, they may not be aware that these devices
are acting as an infrared (IR) light source, which can create a side
channel to leak user privacy. In this paper, we investigate a novel
attack that makes this possible. Fig. 1 showcases a typical attack
scenario. Most security cameras have a night vision mode [1, 5],
when they illuminate the target scene with a built-in IR LED to
aid low-light video capture. The IR light can easily penetrate thin
opaque materials such as window curtains made of cotton and viole
which are used to block visible light. Thus, when a home resident
stays in between the camera and window, the IR light can project
the resident’s shadow on an opaque curtain. Though invisible to
human eyes, the shadows can be captured by an attacker outside
the home using an IR camera. Now that the IR shadows become
visible video footage, they can reveal private information such as
health/medical conditions, special hobbies, and intimacy between
residents. We refer to such an attack as IR shadow attack (IRSA).
There are two major challenges to carry out the IRSA in reality.
First, the IR shadow may be deformed by multiple unpredictable
environmental factors, which severely disturb the visual features,
making it hard to identify the body contours. These factors in-
clude the IR light source’s projection angle, the distance between
IR source and the curtain, and the irregular curtain surface due to
deformation. We refer to these factors as scene parameters. One
possible solution is to fine-tune and apply existing human body
keypoint detection models [11] on the shadow images. However,
the scene parameters cause huge diversity on the shadow defor-
mation, which will easily fail existing models. To overcome this
challenge, we design a shadow keypoint detection model called
De-Shadow Network (DeShaNet). DeShaNet incorporates a scene
feature fusion module to learn the scene parameters that cause
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Figure 1: An example showcase of the invisible IR shadow at-
tack. A smart home camera emits IR light and projects the
contours of a couple’s bodies onto the curtain while they are
kissing inside, which are then captured by another smart
home camera outside the window. Through the leaked IR
shadow, anyone can clearly observe the private activities of
the victim couple.

shadow deformation. With an explicit representation of the scene
parameters, it recovers the 2D shadow keypoints even under severe
deformation. Additionally, it incorporates a conditional attention
module to increase the detection robustness by automatically evalu-
ating the environment factors and fusing multi-dimensional feature
vectors, e.g., the shadow deformation and movement intensity.

Second, the shadow deformation weakens the geometric relation
between the 2D shadow keypoint positions and 3D body skele-
ton in most cases, making it hard to infer the victims’ activities
merely from the shadow. We thus introduce a scene constructor
scheme, which consists of a scene parameter estimator (SCE) and a
shadow simulator, to explicitly model the scene parameters. The
SCE reverse-engineers 4 major scene parameters (the IR source
angle/distance, limb length and curtain deformation) by analyzing
the deformation characteristics of the shadow. Then, the shadow
simulator, which is essentially a 3D scene simulator, tries to iter-
atively reproduce the same deformed shadow by manipulating a
3D dummy in the corresponding virtual 3D environment. During
this process, the accurate 3D skeletons of the victim are derived as
a byproduct.

We have implemented the DeShaNet using Pytorch [27] and
the scene constructor using Unity 3D [37]. We collect a dataset of
24k video frames to train and test the attack scheme. The dataset
covers a variety of realistic situations, including different IR source
angles/distances, human subjects, security camera hardware, cur-
tain materials, dark/bright environment, etc. From the experiments,
we observe that the DeShaNet framework largely decreases the
shadow keypoint detection error compared with existing models.
Most importantly, the attack scheme can accurately restore the
subject’s 3D skeletons with only a few pixels’ error even under
severe shadow deformation.

To our knowledge, we are the first to propose the concept of
IRSA, and reveal the alarming privacy issues of security cameras
due to their invisible shadow effect. Our main contributions can be
summarized as follows:

e We propose the DeShaNet to detect shadow keypoints, even
when the shadows are severely distorted due to curtain de-
formation.

e We propose a scene constructor design to restore 3D human
skeleton from 2D shadow keypoints, in spite of unknown
scene parameters such as distance/angle of the IR source
relative to the (deformed) curtain.

e We implement the DeShaNet and scene constructor schemes
and conduct extensive experiments to validate the feasibility
of IRSA. Our evaluation also reveals limitations of the IRSA
and hints to possible defense mechanisms.

2 BACKGROUND
2.1 Characteristics of the IR light

The IR light is a kind of electromagnetic wave with a wavelength
of 760nm-1000nm, which is imperceptible by human eyes. But the
modern photosensitive chips used in cameras have a much wider
range of wavelengths, which enables them to capture the IR as well
as visible light. Therefore, the IR light is widely used for auxiliary
lighting on surveillance cameras, which grants night vision for the
cameras without affecting human. However, for normal smartphone
cameras, manufacturers usually insert the IR light filter to reduce
glare from the IR spectrum [38]. Another important property of
the IR light is the penetration ability. Prior work found that the IR
camera can see through cloth, such as T-shirt [45] and clothes[44].
All in all, the invisibility and the penetrability provide necessary
conditions for the IR shadow attack.

2.2 Attack model and assumptions

In IRSA, we assume the victims are located between the IR source
(e.g., the security camera) and a window with curtains. The IR
source casts invisible IR light on the victims and projects their
body contours on the curtains. The projected IR shadows are then
recorded by the IR camera of an attacker outside the victim’s win-
dow. Due to various scene parameters, e.g, curtain deformation and
abnormal IR angle, the recorded shadows are deformed, making it
hard to infer the victim’s activities directly.

Two requirements are necessary for IRSA to succeed. First, the
IR illumination should last long enough, so that the attacker can
observe the victim’s activities continuously through the invisible
shadow and eventually impinge on her privacy. Second, majority
of the shadows should be projected on the window curtain, which
provides opportunities for the attacker outside to capture the shad-
ows and infer private activities. In what follows, we discuss the
likelihood that these requirements are satisfied in practice, and the
corresponding victim population.

2.3 Potential victim population

We now discuss the practical vulnerability factors related to IRSA,
and empirically estimate the victim population.

Global sales volume of smart cameras. According to a re-
search report from Strategy Analytics [33], the global sales volume
of smart cameras was 56 million in 2019, and will increase with an
annual growth rate of around 20%. As of 2021, the sales volume is
around 80 million. Suppose every household consists of 2 users on
average, then around 160 million users will be using smart cameras
in their homes.

IR Angle. We analyze the 10 best-selling smart cameras ranked
by sales volume on two major online retailers [3, 16]. Their average
infrared radiation angle is about 120° (both horizontal and vertical).
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Figure 2: Overall architecture of the invisible IR shadow attack.

As aresult, even if the smart cameras are positioned at arbitrary
horizontal angles within a windowed room, there is still 1/3 chance
of illuminating the window.

IR distance. The median housing area of all countries around
the world is about 1000 sq ft [23]. Considering that the most com-
mon house type is 2B1B with living room, the maximum distance
inside the house (the diagonal distance of a square house) with
an area of 1100 sq ft is less than 5 meters, and 70% of the interior
of the house with an area of 2200 sq ft is less than 5 meters. On
the other hand, the effective distance of the IR light can reach 5
meters, even for the low-profile camera used in our experiments,
and similarly for other commodity security cameras [42, 43]. High
end smart cameras may have an even longer range. Considering
the population distribution and housing area of each country [30],
94.5% of households have a maximum distance of less than 5 meters,
which meets the distance requirement of IRSA.

User habits. The smart cameras are typically used for moni-
toring pets, babies and identifying emergency. So they are usually
installed in the main areas of the house, such as bedrooms and
living rooms. So it is reasonable to assume that smart cameras can
capture a wide range of activities (including privacy sensitive ones),
and there is a non-trivial probability that the camera’s field of view
(FoV) covers a user and part of the window.

Private activity time. People’s private activities usually occur
after they return home at night, when the light intensity is low and
the infrared light tends to be triggered. According to existing tests
of smart cameras [42, 43], the IR light can be automatically triggered
even under the illumination of typical ceiling lights or desktop lamp,
i.e., the ambient environment does not have to be completely dark.
On the other hand, many private activities are performed at low
ambient illumination, such as masturbating, sexual intercourse, etc.
Overall, when the infrared light is triggered, it happens to be the
peak time of private activities.

Ratio of curtains/blinds. According to a survey of the global
window covering market [12], the ratio of curtains among all kinds
of window covers is over 30% in 2018. Therefore, we can assume
over 30% of homes use curtains as their window cover.

Based on the above analysis, we can gauge the number of people
vulnerable to IRSA. At present, at least 160 million users are engaged
with smart cameras at home. Consider the attrition factors, i.e.,
IR distance (94.5%), IR Angle (33%), curtain/blinds ratio (30%), the
potential victim population of IRSA is about 160 #0.945%0.33%0.3 =

15 million, which is alarming and will grow over time as the smart
camera market expands.

2.4 Significance of the attack

How would people react when their activities at home are exposed
to others? In principle, the invisible IR shadow can reveal any kinds
of activities, after the 3D keypoints are recovered by the proposed
framework. According to the survey by Choe et al. [9], 1400 types
of in-home activities are considered private, and more than 39%
percent of respondents thought exposure of such activities would
make them feel extremely embarrassed and uncomfortable. We
note that some activities are not so obvious but considered private
by many people, e.g., eating (indicating unhealthy behavior espe-
cially when it lasts long), body twisting (associated with intimate
behavior for some people).

The shadow keypoints and 3D skeleton outputs from DeShaNet
can potentially leak more information than the activity alone. Exist-
ing studies [15, 28, 32, 40] have shown that human shadows reflect
walking gestures, which can be used to distinguish different people.
With sufficient video footage from public figures, the attacker can
train a model to associate the shadow records with the people iden-
tities, which poses a more severe privacy threat. Besides the smart
security cameras, other popular in-home devices such as Kinect
emit IR lights in a similar manner. Many other devices, such as
smart display or video call portal, do not have night-vision yet. But
they may incorporate this function in the near future and become
the vulnerable point for ISRA. Therefore, we believe the ISRA is an
alarming issue that should be investigated immediately.

3 SYSTEM OVERVIEW

The proposed IRSA consists of two key steps, as shown in Fig. 2.
First, the attacker captures the IR video and feeds it into DeShaNet,
which extracts the keypoints of the (deformed) shadow for each
video frame. Second, the attacker uses the scene constructor to
map the keypoints to a 3D skeleton. More specifically, the scene
constructor estimates a set of scene parameters (SPEs) based on the
keypoint positions. It then employs a shadow simulator to imitate
the realistic shadow in this virtual scene by optimizing the 3D
skeleton layout. The final output of the system is the optimized 3D
skeleton, which can be used to extract private information such as
activity and identity [28, 40].
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Figure 3: Realistic deformed IR shadows captured by IR cameras under different scene parameters. (a) A person is picking nose
in place captured by an interior IR camera. (b) W/o deformation. (c) Curtain deformation: U-shape. (d) Curtain deformation:
vertical. (e) IR angle: 30°. (f) IR angle: 60°. (g) IR distance: 1m. (h) IR distance: 5m.

4 DESHANET DESIGN

4.1 Shadow Deformation Caused by Scene
Parameters

The shadow deformation can severely distort the IR shadow appear-
ance. We showcase the problem in Fig. 3. We identify 3 major scene
parameters causing the shadow deformation: curtain deformation,
IR angle and IR distance (i.e., angle/distance of the in-home security
camera relative to the curtain surface). In an ideal scenario where
the curtain is flat, the IR angle is 0° and distance is short (3m), the
attacker-captured IR shadow (Fig. 3(b)) is almost the same as the
ground-truth captured by an in-home camera (Fig. 3(a)).

Curtain deformation. Fig. 3(c,d) show two deformed shadows
with different curtain deformations: U-shape and vertical. We see
that the shadows are deformed obviously, especially on the small
body parts (hands and arms). If we can extract the features of the
projection surface (i.e., window curtain in this case) by observing
the shadow variation, then we may reconstruct the exact positions
of the shadow keypoints.

IR angle. Fig. 3(e,f) show two deformed shadows under different
IR angles. In general, a larger IR angle stretches the shadow more,
and causes the curtain itself to create shadows. For example, the
victim’s hand can be identified at 30°, but occluded by the curtain’s
shadow at 60°.

IR distance. Longer IR distance has a much lower shadow con-
trast and size (Fig. 3(g,h)). Additionally, combined with the curtain
deformation, the size variation also changes the shape of the shadow.
For example, the hand of the shadow can be clearly seen when the
IR source is near but distorted afar.

4.2 Design Motivation and Details

To detect the keypoints under shadow deformation, our DeShaNet
solution framework incorporates three sub-modules: 1. An A-LSTM
and scene feature fusion module, which can extract the features re-
lated to scene parameters, and hence adapt to the scene variations. 2.
A trajectory aware module which introduces visually independent
features, such as coordinate vectors, to improve the stability under
fuzzy shadows with varying deformation. 3. A condition attention
module, which improves the detection robustness under dynamic
situations. Next we describe each module in detail.

Choice of feature extraction backbone. The state-of-the-art
video keypoint detection models, such as 3D mask R-CNN, do not
fit our scenario because their region proposal network does not
support global image feature, which is essential to solve the shadow
deformation problem. The global image feature refers the high-level
image feature with acceptance field covering the overall image. In
contrast, our DeShaNet architecture (Fig. 4) aims to capture global
image features, which contain rich information related with the
scene parameters.

Specifically, we use pretrained convolutional neural network
(CNN) stacks from the Resnet-50 [14] to extract global image fea-
tures F. Since the features of IR shadows are very different from
RGB images, the pretrained CNN backbone needs to be fine-tuned
on a large number of IR shadow images. To reduce the amount of
new training data needed, we freeze the parameters in the bottom
layers of the pretrained CNN backbone and fine-tune the parame-
ters in the top layers. To find the best balance between generaliza-
tion ability and training data requirements, we try different com-
binations of frozen layers and fine tuning layers, and empirically
choose the combination (freezing the first 3 layers and fine-tuning
the rest) that achieves best performance when tested on real data.
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Figure 4: Overall architecture of the DeShaNet.

Scene feature fusion module (SFFM). We design the SFFM to
extract the correlations between the three major scene parameters
and dynamic shadow features (Section 4.1). SFFM builds on the
video feature extraction module (A-LSTM). The visual feature F,
output by the A-LSTM implicitly contains information of the scene
parameters. We thus feed F, into 3 MLP branches, each of which
learns to predict one scene parameter, as shown in Fig. 4. All the
parameters (IR angle/distance and curtain deformation level) are
normalized.

Since the shadow deformation is a product generated by all
scene parameters, knowing one of them can help estimate others.
Therefore, the SFFM adopts a two-stage architecture. In the first
stage, the output features are trained to learn the scene parameters.
Then these outputs are fused by concatenation and fed into the
second stage, which is trained to reach higher accuracy. The final
output features are fused again to produce the scene features F,
which are then fed into the condition attention module for feature
fusion. In our implementation, the first stage comprises 2 layers
of MLP with kernel size of 64, and the second has 2 layers of MLP
with kernel size of 96.

Trajectory aware module. To deal with some extreme cases
when the shadow parts are deformed severely or merged together,
our trajectory aware module leverages the motion continuity so
that the keypoints of deformed shadows can be inferred from his-
torical keypoint trajectory explicitly. This module consists of a
coordinate estimation module (CEM) and an M-LSTM. The CEM
predicts the keypoint coordinates from historical images ClN -M
CIN ~1 by CNN stacks and MLP layers. It comprises 3 layers of MLPs
with hidden size of 64, 96 and 18. The next step is to predict the
coordinate feature Fy, of the current image from these coordinates,
which is essentially a sequence to sequence learning problem [35].
Therefore, it is natural to use the LSTM for this task, which excels
at modeling temporal information from long sequences. This LSTM
model (referred to as M-LSTM) comprises two layers of LSTM cells
with hidden layer size of 96.

Condition attention module (CAM). Three feature vectors
(Fy, Fm and F;) are involved for the final keypoint coordinates pre-
diction. However, these feature vectors have completely different
physical meanings and may become less reliable under specific situ-
ations. Specifically, the visual feature vector F;, will be less reliable
when the shadows become fuzzy due to high dynamic movement
or severe occlusion. When the shadow movement speed becomes
relatively slow, the trajectory feature vector Fy, does not contain

much useful information. The scene feature vector F, should have
less impact when the scene parameters do not cause much shadow
deformation. To fuse these highly heterogeneous feature vectors,
we custom build an attention module called CAM. The CAM com-
prises of a feed-forward network to calculate the fusion weights
71, 7% and 73, which are then multiplied with the 3 feature vectors
and fed into an MLP layer to predict the final coordinates CLY. The
size of the feed-forward network is the sum of the 3 feature vectors
and the size of the MLP layer is the same as one of the feature
vectors. The C,IIV contains the normalized 2D (x, y) coordinates for
9 keypoints.

5 SCENE CONSTRUCTOR DESIGN

DeShaNet can recover the 2D keypoint positions from the shadow,
but these still need to be converted to a 3D skeleton to enable human
activity recognition. Unlike classical 3D skeleton detection tasks
in computer vision, restoring 3D skeletons from the 2D deformed
shadow images is essentially an undetermined problem. Our scene
constructor framework aims to overcome this hindrance by filling
in environmental information. It estimates the scene parameters
by modeling and simulating the shadow projection process in a
virtual 3D environment. The 3D skeleton of the victim is derived as
a byproduct of this process. The overall architecture of the scene
constructor is shown in Fig. 5.

5.1 Design principle of the scene parameter
estimators

The scene constructor consists of 3 scene parameter estimators
which we detail below. To ease the exposition, we summarize the
related math symbols in Table 1.

IR Source Parameter Estimator (IRSPE). Intuitively, the IR
distance affects the shadow size and the IR angle causes horizontal
stretching. Therefore, by analyzing the shadow distortion, we can
infer the IR distance/angle. As shown in Fig. 6, we denote the
IR distance as h, and denote the horizontal distance between the
shadow edge and the IR source as x. Further, we denote the angle of
the IR source relative to the edge of shadow as 6. Through simple
geometries, we have:

x = h = tan(0). (1)
Let the width of the shadow be Ax, then we have:
x + Ax = h = tan(0 + AO). (2)
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Table 1: Annotations and abbreviations in this paper.

Symbols | Description

Ck,C, |Shadow  keypoint  coordinates  from  De-
ShaNet/simulation, where k refers the keypoint

id.
Wy, |Input sequence of the head width on the shadow
h Distance between the IR source and the curtain

Xr horizontal distance between the IR source and the right
edge of the curtain
Lp, L;, Relative limb length from input/simulation, where p
refers the index of limb pairs
vy, v; Local shadow speed from input/simulation

Cyp Curtain vertex coordinates

wi  |Rotation angle of all 3D skeleton joints, where k refers
to keypoint id
wg | Rotational angle of the overall skeleton
Cs 3D skeleton position coordinates

Then we subtract equation (2) by (1):
Ax = h = (tan(0 + AO) — tan()) ~ h = (1/cos(0)?). 3)

Equation (3) shows the relationship between the shadow width,
the IR source distance and the IR source angle. Since the shadow
width Ax varies at different locations, we can infer the h and 0 by
sampling the Ax when the victim moves across multiple locations.
However, estimating h and 6 simultaneously is an undetermined
problem. Our IRSPE adopts an iterative simulation driven solution
with the following high level work flow. It simulates a massive
number of distance and angle settings of the IR source. For each
simulation sample, the shadow is projected on a virtual curtain and
its width is compared with the realistic shadow width. Then, we
calculate the difference between the simulated shadow width and
the realistic shadow width. Finally, the IR source angle/distance
with the smallest difference is regarded as the optimal estimation.

In practice, the shadow width can also be impacted by curtain
deformation, the distance variation between the victim and the
curtain, and body postures. We thus introduce the following mech-
anisms to counteract these factors.

Limb length estimator (LLE). We introduce an LLE scheme to
reduce the skeleton estimation error due to the limb length variation
across people. Intuitively, the 3D limb length is proportional to
the 2D projected limb length on the shadow. However, two major
factors can weaken this correlation: 1. Body posture. The varying
distance between two keypoints on the shadow reaches maximum
when their connecting line is parallel to the window curtain. At this
time, the distance between all pairs of keypoints have exactly the
same deformation. Therefore, we can use the maximum 2D distance
of all pairs of keypoints to approximate the 3D limb length. 2. The
residual errors of the DeShaNet keypoint output. It is well known
that the keypoint detection errors of DL models follow a Gaussian
distribution [18]. The 2D projected limb length can be calculated
from the distance between keypoint locations. Therefore, the true
value of limb length should lies in the top-N 2D distance instead
of top-1. We then take the median of the top-N distances as the
estimated 2D limb length.

For match score calculation, we use the ratio between the abso-
lute limb length and an anchor length as metric. Since the distance
between the head and the shoulder is relatively stable under dif-
ferent body postures and viewpoints, we use it as the the anchor
length.

Curtain deformation estimator (CDE). The curtain deforma-
tion stretches the shadow, making the shadowed body parts merge
together or changing their shapes. To overcome this issue, our CDE
scheme explicitly reconstructs the deformed surface of the curtain
in a virtual environment, and reproduces the same deformation ef-
fect as that observed by the attacker’s camera. As the victim moves
across locations, the movement of the observed shadow exhibits
different levels of fluctuations due to curtain deformation. A wrin-
kled curtain surface will fluctuate the shadow moving speed more
than a smooth curtain. Fig. 7 clearly showcases this relationship.

To simplify the explanation of CDE, we define the local moving
speed of keypoint [ as vy, local deformation angle 6;, mean angle
between curtain and attacker 6,, mean moving speed between
curtain and attacker V;,. Intuitively, when v; decreases, 8; becomes
larger. During the aforementioned simulation process, the 6; can be
altered by modifying the coordinates of the vertices of the virtual
curtain. We iteratively adjust 0; to make the distribution of all



simulated speeds vs most close to the distribution of v;. This in turn
leads to a curtain deformation closest to reality.

5.2 The shadow simulator

The shadow simulator aims to simulate shadows and make their
keypoint coordinates match the input shadow keypoint coordinates
which are derived from the DeShaNet. It achieves this by placing
and modifying virtual components in a Unity 3D environment,
including the IR light source, body skeleton model and window
curtain. Among these components, the IR light source, the window
curtain and the skeleton limb length are estimated by the afore-
mentioned 3 scene parameter estimators, respectively. The shadow
simulator mainly aims to derive the parameters of a 3D dummy
skeleton, including: (i) Skeleton rotational angles: the rotational
angles of the overall skeleton (w,) and of all keypoints (wg). (ii)
Skeleton position Cs: the (x,y) coordinates of the overall skeleton.

The implementation of the shadow simulator follows 2 steps:
parameter generation and match score calculation.

1. Parameter generation: For each parameter, the shadow simula-
tor exhaustively tries all possible values in empirically predefined
scopes and intervals (listed in Table 2).

2. Match score calculation: After each parameter is updated, the
shadow is refreshed accordingly. We then calculate the match score,
defined as the difference between the keypoint coordinates of the
simulated shadow C;< and that of the input shadow Cj from De-

ShaNet: S = Y ||Cr — C;<||2' The parameter set with the lowest
match score will be used as the optimal estimation.

To reduce the huge search space caused by possible combination
of skeleton parameters, the shadow simulator groups the parame-
ters according to each parameter’s impacts on others, and updates
them sequentially in descending order. The impact of a skeleton pa-
rameter is determined by its number of leaf nodes. For example, the
rotational angle of the overall skeleton w, affects all the skeleton
keypoint coordinates, so it has 9 leaf nodes. On the other hand, the
rotational angle of the wrist w7/w1 has the lowest impacts because
it does not affect other skeleton parameters, i.e., it has 0 leaf nodes.
We list all the parameters according to their impacts in descending
order as follows: Cs, wg, W2, W3, Wq, W5, W, W7,W1,W8,W9, Where
the keypoint indices from 1 to 9 are head, l-shoulder, r-shoulder,
l-elbow, r-elbow, l-wrist, r-wrist, 1-thigh, r-thigh, respectively.

6 SYSTEM IMPLEMENTATION

Dataset. We create a realistic indoor scene to perform the IRSA and
collect data, as shown in Fig. 8. We recruit different subjects and
conduct various activities between the IR source and the curtain.
To simplify the ground-truth data collection, we use Kinect v2 as
IR source, which is equipped with a similar IR emitter as typical
security cameras (Sec. 7.3). We then use a commercial software,
Brekel Body v2 [6], which is designed for Kinect, to derive the
ground-truth body skeletons from Kinect videos. The IR shadow
is captured by a smart home camera (Wyze [5]) on the other side
of the curtain. The curtain can be manually adjusted to arbitrary
shapes to simulate different curtain patterns by clamps and fixtures
on the wall.

We collect over 40 groups of data, each of which records a 1-
2 minutes IR shadow video and the corresponding 3D skeleton
ground-truth, along with a visible body movement video (captured
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Table 2: Empirical scopes and intervals of all parameters.

W Cs Wq h Xy Cy
Scope |-120° -5m~5m |-180° 1m~5m |-5m~5m|-0.1m

~120° ~180° ~0.1m
Interval | 1° 0.lm |1° 0.lm 0.Im |0.0lm

by the Kinect). We manually label the shadow keypoints for each
image in the IR videos by comparing it against the body movement
video. The IR video records the shadow of the subject perform-
ing multiple kinds of activities, including armpit stretching, nose
picking, body twisting, eating (for a long time), bottom uplifting
(simulating sex behavior), dancing, walking, running. Among these
activities, the first 5 are considered privacy-concerning by over
39% people according to the existing survey [9]. Additionally, the
dataset covers a variety of realistic situations including different IR
distances/angles and curtain deformation.

Model implementation. The DeShaNet is implemented using
Pytorch [27] and trained on a GPU server. The scene constructor is
implemented in Unity 3D [37]. The virtual curtain is implemented
using Obi cloth [25], which provides fine grained control and simu-
lation of the curtain surface. The 3D dummy is derived from the
PuppetMaster [36].

Baseline methods. We choose the 3D Mask R-CNN [11] as
our baseline for keypoint detection. We fine-tune the original 3D
Mask R-CNN implementation [10] on our dataset by fine-tuning
the keypoint detection head branch and the classification head. The
tube proposal network and CNN backbone remain unchanged.

7 EVALUATION

7.1 Evaluation of the DeShaNet

We first evaluate the proposed DeShaNet by varying one scene
parameter while fixing others to the default. By default, the curtain
deformation is u-shape, IR distance is 2.6m, IR angle 0° and subject
ID is 1. The datasets are split into training set and testing set. All the
models are trained on the same training set and evaluated on the
testing set with the same training epoch. The evaluation metric in
this section is 2D detection error in pixel. Considering the average
field of view is about 3.6*2 meters and the image size is 384*216,
a pixel corresponds to 9.3 mm. The exact conversion factors may
change according to the actual environment.



Figure 8: Experiment scene for the IRSA (low illumination).

Different curtain deformation. In this experiment, both the
training data and the testing data include 4 kinds of curtain de-
formation: vertical deformation, random deformation, U-shape de-
formation and no deformation. The results in Table 3 show that
DeShaNet has the lowest error on all kinds of deformations, which
is 32% lower than 3D Mask R-CNN on average. This indicates the
design of SFFM and CAM in DeShaNet eliminate the performance
bottleneck of the 3D Mask R-CNN on shadow keypoint detection.
Additionally, the error of DeShaNet w/ deformation is only 2.02
larger than w/o deformation, the increase rate of which is 62%
smaller than the 3D Mask R-CNN. This indicates the deformation
largely impacts the detection, and DeShaNet can solve the problem
very well. Although different curtain deformations have different
visual impacts, DeShaNet shows consistent performance, indicating
that it achieves good generalization ability.

On the other hand, to verify the performance boost by the SFFM
and CAM, we implement two extra baseline models : DeShaNet
-CNN and the vanilla-CNN. These two are essentially the CNN
parts of DeShaNet (CNN backbone + CEM). The difference is the
DeShaNet -CNN is trained together with the overall DeShaNet and
the vanilla-CNN is trained separately. The results show that De-
ShaNet -CNN outperforms the vanilla-CNN on all kinds of curtain
deformation, with 38% lower error on average. It confirms that the
SFFM and CAM components of DeShaNet can indeed boost the
overall performance of the CNN part through joint training. We
illustrate several examples under severe curtain deformation in Fig.
10 (a)-(d).

Different IR source distance/angle. We now vary the IR dis-
tance and angle, and summarize the results in Table 4. When the
IR distance is within a specific range (< 4.2m), the maximum error
of DeShaNet (7.09) is only 17% larger than the smallest error (5.83),
indicating that the IR distance does not impact the keypoint estima-
tion in a noticeable way. We refer to this distance threshold as the
margin distance. When the IR distance reaches the margin distance
(4.2m), the detection error increases greatly to 8.2, which is 40%
higher than the smallest error. This is mainly due to the attenuation
of the IR light strength over a long distance.

On the other hand, the IR angle has a much larger impacts than
the distance. The results in Table 5 show that the detection error of
DeShaNet increases along with angle. When the angle exceeds 60°,
the error reaches the maximum of 10.25, which is 44% larger than the
smallest error at 0°, indicating that the model becomes unreliable
at extreme large IR angles. Additionally, DeShaNet outperforms the
3D Mask R-CNN across all angles, with an average error reduction
of 28%. We note that there are error dips from 0 to 15 degrees. This
is because the errors within 0-30 degrees do not increase by the
angle. The dips are mainly caused by normal model errors. We

Figure 9: Experiment scene for the IRSA (day time).

Table 3: Shadow keypoint detection error comparison on dif-
ferent levels of curtain deformation (pixels).

model w/o | vertical | U-shape | random | average
3D Mask R-CNN|5.13| 8.64 10.22 12.75 9.18
vanilla-CNN  |7.25| 10.17 12.86 12.95 10.8
DeShaNet -CNN [5.04| 6.13 7.52 7.99 6.67
DeShaNet 4.52| 5.25 7.09 7.28 6.03

illustrate examples under extreme IR angles and long IR distances
in Fig. 10 (e)-(1).

Different subjects/limb length. We evaluate the generaliza-
tion ability of the DeShaNet across different subjects. We use a
single subject’s data to train the DeShaNet model, and test it over 4
other subjects. All the scene parameters are set to default values.
Table 6 summarizes the results. We observe that the average error
of DeShaNet on the testing subjects 2-5 is 7.20 pixels (translating
to around 5.6 cm), which is only 1.6% higher than training/testing
on subject 1. Such a strong generalization capability comes from
the SFF and M-LSTM modules, both of which are insensitive to the
individual subject’s features. Additionally, by inspecting the raw
video data, we find that the moving speed of subjects leads to the
slight different results. Subject 2 is obviously slower and has the
lowest estimation error. We illustrate examples of different subjects

in Fig. 10 (m)-(p).

7.2 Evaluation of the Scene Constructor

In this section, we evaluate the performance of the scene construc-
tor, including its 3 SPEs and the shadow simulator. When evaluating
each SPE, we disable the other 2 SPEs and set corresponding scene
parameters to the default values, i.e., the IR distance is 5m and angle
0°; The height of the virtual dummy is 1.7m and the curtain is flat
without deformation.

Evaluation of IRSPE. We first test whether the IRSPE can ac-
curately estimate the IR source position. The testing data includes
5 different IR distance and 5 different angles The shadow keypoints
of videos are first detected by the DeShaNet and then converted to
anchor width sequences by the contour detection algorithm[26].
The IRSPE essentially estimates the IR source position from the
anchor width sequences. The results in Table 7 show that when
the IR angle is relatively small (< 60°), the average IR position
error is 0.075, which is 7x smaller compared with large IR angles
(> 60°). The shadow stretching error of small angles is only around
0.27, showing that the IRSPE restores the human activity precisely.
In contrast, the shadow stretching errors at large angles are 1.6x
larger, so IRSPE cannot precisely restore the human skeleton in such
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Figure 10: Example detection results of DeShaNet under severe deformation by various scene parameters. (a)-(d) Shadow key-
point detection results under severe curtain deformation. (e)-(h) Shadow keypoint detection results under extreme IR angle.
(i)-(1) Shadow keypoint detection results under extreme IR angle. (m)-(p) Shadow keypoint detection results under extreme IR

angle.
Table 4: Shadow keypoint detection error comparison on dif-
ferent IR source distances (pixels).

model 1.4m|2.0m | 2.6m |3.4m| 4.2m | average
3D Mask R-CNN| 8.35 | 8.86 |10.22| 9.93 |11.25| 9.72
DeShaNet -CNN | 6.25 | 7.04 | 7.52 | 7.35 | 9.45 | 7.52
DeShaNet 5.8316.39|7.09|689| 820 | 6.88

cases. The underlying reason is the detection error of DeShaNet
and error of IRSPE both increases with angle.

On the other hand, the results in Table 8 show that the error of
the IRSPE increases slightly with distance when it is within the
margin value (< 4.2m). The IR position error and the stretching
error are only 0.06 and 0.14. When the IR distance exceeds the
margin value, the position error and stretching increase obviously

Table 5: Shadow keypoint detection error comparison on dif-
ferent IR source angles (pixels).

model 0° | 15° | 30° | 45° | 60° |average
3D Mask R-CNN | 10.22{10.17|10.25| 11.86 | 12.30 | 10.96
DeShaNet -CNN | 7.52 | 7.03 | 7.96 | 8.32 [11.56| 8.47
DeShaNet 7.09 | 6.76 | 7.58 | 7.68 |10.25| 7.87

to 0.65 and 0.33. This is mainly due to the low IR illumination
intensity beyond the margin distance.

Evaluation of LLE. We further verify whether the LLE can
accurately estimate the relative limb length of different subjects.
Recall the shadow keypoints are detected by DeShaNet first, and
then converted to shadow limb length, which is used by LLE to
estimate the 3D relative limb length. The results in Table 9 show
that the maximum relative limb length error is 0.034 (subject 3),



Table 6: Shadow keypoint detection error comparison on dif-
ferent subjects/limb length (pixels).

model sl s2 s3 s4 s5
1.85m |[1.73m | 1.75m |1.70m | 1.80m
3D Mask R-CNN [10.22 |10.56 [9.89 10.13 |9.35 10.03

average

Table 9: Evaluation of the LLE on different subjects.

metric sl s2 s3 s4 s5

1.85m | 1.73m |1.75m | 1.70m | 1.80m
relative limb {0.032 [0.029 |0.034 |0.033 |0.033 | 0.032
length error

average

DeShaNet -CNN |7.52 |7.41 |836 |7.72 |7.85 7.76
DeShaNet 7.09 |6.88 |7.56 |7.12 |7.26 7.18

absolute  limb|[0.019 |0.017 [0.024 |0.022 |0.023 0.021
length error (m)

Table 7: IR source position estimation error of the IRSPE on
different angles.

metric 0° | 15° | 30° | 45° | 60° | average
IR position error|0.06|0.04|0.080.12|0.56| 0.17

(m)
Shadow stretching |0.15{0.21(0.29|0.45[0.71| 0.36
error (m)

Table 8: IR source position estimation error of the IRSPE on
different distance.

metric 1.4m|2.0m|2.6m|3.4m|4.2m | average
IR position error| 0.01 | 0.04 | 0.06 | 0.13 | 0.65 | 0.17
(m)
Shadow stretching | 0.08 | 0.13 | 0.15 | 0.21 | 0.33 | 0.18
error (m)

which is only 6.2% larger than the lowest error (subject 1). It is
worth noting that subject 3 is not the tallest among all ubjects,
which indicates that the relative limb length error is not strongly
related with the subject’s height. We also find that the absolute limb
length error of subject 3 is 0.024m, which is only 0.005m higher
than the subject 1, indicating that LLE is robust to the limb length
variation.

On the other hand, we find that the limb length error is mainly
affected by moving speed. By inspecting the original video footage,
we find that the movement speeds of subject 3 and 5 are relatively
high, resulting in high keypoint detection errors of the DeShaNet
(refer to Table 6), which in turn introduces noise on the input limb
length.

Verifying the CDE. We further evaluate whether the CDE can
accurately restore the curtain deformation. Since it is hard to quan-
tify curtain deformation, we instead use the local moving speed v;
as an indirect metric to evaluate the effectiveness of the CDE. Our
testing data includes 4 different curtain deformation patterns. The
shadow keypoints of videos are first detected by the DeShaNet and
then converted to local moving speed v;. The CDE then estimates
the vertex coordinates of the curtain from v;. We use the flat-curtain
(i.e., curtain deformation estimation is disabled) as a baseline. The
results in Table 10 show that complex curtain patterns tend to pro-
duce higher moving speed error. The highest error (0.344) occurs
under random deformation pattern, which is 3x larger than the
flat curtain baseline (w/0). Compared with the baseline, the CDE
shows 3.5% lower moving speed error and 2.8x lower keypoint
error, indicating that CDE can faithfully restore the realistic curtain
surface.

Table 10: Evaluation of the CDE on different curtain defor-
mation patterns.

metric w/o |vertical | U-shape | random | average
moving speed error | 0.337| 0.638 0.872 1.344 | 0.797

(m/s) w/o CDE
2D keypoint error|0.027| 0.032 0.037 0.041 0.034
(m) w/o CDE
moving speed error |0.083| 0.215 0.258 0.344 | 0.225
(m/s) /CDE
2D keypoint error|0.008| 0.011 0.013 0.018 0.012
(m) /CDE

Evaluation of the system assembly. We now evaluate the
scene constructor with all SPEs enabled in more comprehensive
situations. The final target of the scene constructor is to restore
the 3D skeleton from the keypoint predictions of the DeShaNet.
Multiple factors that could affect the restoration accuracy, including
the occlusion of activity and the shadow deformation caused by
scene parameters. Therefore, according to the intensity of occlu-
sion and deformation, the testing data are divided into 5 groups:
severe occlusion (oc-h), weak occlusion (oc-1), low deformation
(de-1), medium deformation (de-m) and high deformation (de-h).
The detailed categorization information is listed in Table 11. We
use two metrics to evaluate the performance: Syp and S3p, which
represents the shadow keypoint errors and the 3D skeleton errors,
respectively. We then test the scene constructor on the groups of
data and the results are shown in Table 12.

When only enabling IRSPE, LLE or CDE, the average S;p are
25%, 8% and 17% lower than the baseline, and the average S3p are
18% ,6% and 12% lower than the baseline, respectively. It indicates
that all the design components play a crucial role in improving
the estimation accuracy. It is worth noting that the IRSPE shows
the largest improvement because the IR angles have the greatest
impacts on the shadow keypoint detection. We obtain best results
when enabling all SPEs together, with 36% lower Sop and 26%
lower S3p than the baseline. It indicates that the 3 SPEs are all
necessary and complementary to each other. We illustrate examples
of shadow simulation effects and 3D skeleton estimation by different
combinations of SPEs in Fig. 11-15.

7.3 Evaluation of other aspects

Comparison of different IR devices. Except from smart home
security cameras, there are various other in-home devices that emit
IR light, e.g., Kinect, smartphones and mobile lidars. These devices
also have the potential of causing the IRSA. Table 13 summarizes
the major characteristics of representative devices. Here the IR
patterns refer to the patterns of the IR illumination, e.g., solid areas



Figure 12: W/ IRSPE,
w/o LLE, CDE.

Figure 11: W/o IRSPE,
LLE, CDE.

Table 11: Testing data groups definition.

data |description

oc-l |bottom uplifting , body twisting

oc-h | nose picking, armpit stretching, eating (for a long time)
de-1 | curtain deformation (w/o0), IR distance (1-2.5mm), IR
angles (0°)

de-m | curtain deformation (U-shape), IR distance (2.5-3.5m),
IR angles (over 15-45°)

de-h | curtain deformation (random, vertical), IR distance (over
3.5m), IR angles (over 45°)

and spot patterns as shown in Fig. 16-17. Through the IR patterns,
the attacker can infer what kind of devices victims are using, which
may help estimate their activities more accurately. Both IR light
patterns can project valid shadows and penetrate curtains.

Attack during daytime. Although the IRSA most happens at
night due to the environmental illumination, we find that it can
also be performed during daytime. For example, the IR light of
smartphone cameras can be triggered at daytime when the indoor
illumination is low, e.g., window curtains are closed, which pro-
vides opportunity for IRSA. We deploy such an attack scenario
during daytime, as shown in Fig.9. The attacker’s camera is placed
beside the window under strong daylight which overwhelms the
IR shadow, as shown in Fig.18. However, we find that the attacker
could easily use an IR lens filter [2] to circumvent this challenge.
The IR lens filter is low cost (<$8) and commonly used for photog-
raphy and placed in front of the camera lens, which filters out the
visible lights and only leaves the IR light with specific wavelength
pass through. As shown in Fig. 19, by placing an 850nm IR lens
filter, the shadow can be observed again in spite of the sunlight.

Curtain material and thickness. We evaluate how the curtain
material and thickness would affect the IRSA. We test two materi-
als, one made of 100% cotton and is opaque under normal indoor
illumination, as shown in Fig. 8. The second is made of voile [4],
which is half transparent under normal indoor illumination. During
the test, we put some objects between the IR source and the curtain
and observe the IR shadow on the other side of the curtain. Finally,
we increase the distance between the IR source and the curtain
until the shadow cannot be observed. Table 14 shows that the IR
light can penetrate multiple layers of curtain of both materials at
a reasonably long distance. Multiple layers of curtain are harder
penetrate. Additionally, the voile curtain is easier to be penetrated
than cotton, thus facing a higher privacy risk under IRSA.

Figure 13: W/ IRSPE,
LLE, w/o CDE.

Figure 15: 3D skeleton
ground-truth and real-
istic body activities un-
der IR camera view.

Figure 14: W/ IRSPE,
LLE CDE.

7.4 Case study: recognizing private activities
using the recovered 3D keypoints

In this section, we demonstrate how the 3D keypoints derived from
DeShaNet can be used as input to existing skeleton based activity
recognition algorithms and consequently impinge on user privacy.
We adopt a representative algorithm, extremely randomized trees
(ERT) [13], which follows 3 stages. (i) Data preprocessing. The co-
ordinates of all the 3D keypoints are first normalized to a unified
coordinate system with a predefined origin: Corigin = (C;_shouider+
Cr shoulder +Chead)/3- Then a Savitzky—Golay filter with a 5-point
cubic polynomial is applied to all the 3D skeletons to remove noise:
C;- = (-3%Cij_p+12%Cj_1+17%C;j + 12 Cjy1 — 3% Ciy2) /35, where
C; denotes the coordinates at frame i and C;. is the filtered result.
(ii) Spatio-temporal feature encoding. For spatial encoding, the 3D
keypoint coordinates from the same frame are encoded into two
matrices using Minkowski distances and cosine distance, respec-
tively. For temporal feature encoding, each coordinate is encoded by
two scalars J; max and Ji min, which are calculated by the difference
between current coordinates and the maximum/minimum coordi-
nates respectively. Then, each frame is further encoded by a vector
with length 2 * N, where N denotes the keypoint number (9 in our
setup) of each frame . (iii) Random forest learning by the extremely
randomized trees algorithm. The randomized trees perform frame
level classification based on the spatial feature and the temporal
feature. The final classification is derived by averaging the results
from all trees. The total number of trees is 40 and the maximum
depth is 20.

Since the source code of the ERT [13] is not publicly available, we
implement it following [13] based on the scikit-learn python library.
We have validated our reproduction of ERT on the Microsoft MSR
action 3D dataset [22] adopted in [13] and got consistent accuracy
(82.1% vs 80.9%), which verifies the correctness of our implemen-
tation. In order to evaluate the accuracy of activity recognition,
we divide the dataset we collected (Section 6) into 3 categories,
for training, validation and testing, respectively. The training set
and validation set contain the same categories of activities but are
orthogonal to each other: eating, running, walking, dancing and
stretching exercise. For subset, we further divide it into multiple
subsets, one subject each. The testing set contains 3 different activ-
ities (i.e., nose picking, body twisting and bottom uplifting) from
the training and validation set, and is used to test the model gen-
eralization. For each entry in the dataset, we have converted it to
3D skeletons using the DeShaNet and scene constructor. Table 15
summarizes the results. We see that the average activity recogni-
tion accuracy is 87.9% and 83.4%, on the validation and testing set



Table 12: Evaluation of the scene constructor on different occlusion and deformation.

model oc-1 oc-h de-1 de-m de-h average

Sep Ssp | Sep S3p | Sep S3p | Seap Ssp | Sep Ssp | Sep S3p
w/o IRSPE, LLE, CDE |0.198 0.145/0.213 0.158|0.201 0.137 [0.219 0.146 |0.258 0.161|0.217 0.149
w/ CDE, w/o IRSPE, LLE [ 0.153 0.114|0.186 0.145|0.163 0.113{0.186 0.132|0.215 0.148|0.180 0.130
w/ LLE, w/o IRSPE, CDE | 0.165 0.127|0.208 0.151|0.181 0.122|0.208 0.139{0.234 0.156 [0.199 0.139
w/ IRSPE, w/o LLE, CDE | 0.127 0.096|0.173 0.138|0.148 0.106|0.175 0.129|0.186 0.139[0.161 0.121
w/ IRSPE, LLE, CDE  |0.107 0.076|0.158 0.131|0.113 0.083|0.149 0.122{0.167 0.133|0.138 0.109

Figure 16: IR light pat-
terns of mobile Lidar (In-
tel L515).

Table 13: Comparisons of different IR devices.

Figure 17: IR light pat-
terns of iPhone 11 Pro.

device IR pattern maximum | trigger type
distance

Kinect solid ~7m when used

iPhone 11 Pro  |sparse spots |~ 4.5m when used

Intel L515 dense spots |~ 5m when used

smart home | solid ~ 6m dark illumina-

camera (Wyze) tion

Table 14: Maximum penetration distance of different cur-
tain materials and thickness. Cot-1 refers 1 layer curtain of
cotton material. Voi-1 refers 1 layer curtain of voile mate-
rial.

cot-1 |cot-2 |voi-1 |voi-4 |voi-8

7m

3m >10m |5m 2m

respectively, which is consistent with [13]. Note that the keypoints
in [13] where obtained through the Kinect 3D camera. The result
implies that the 3D keypoints generated by our DeShaNet and scene
constructor are sufficiently accurate for recognizing fine-grained
activities that involve body/limb movements.

7.5 Generalization to strongly private activities

In this section, we show that the DeShaNet keypoint generator
works for both generic activities and private concerning activities.
We divide our dataset into weak privacy activities and real privacy
activities. The former include eating, running, walking, dancing,
stretching exercise and body twisting. The latter include nose pick-
ing and bottom uplifting (simulating sex behavior). Based on the
user study in [9], over 24% of people think that the exposure of
these two kinds of activities are extremely private. Then we test the
2D keypoint detection errors under different scene factors: curtain

=
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Figure 18: Camera view at
day time without using IR
filter.

Figure 19: Camera view at
day time using IR filter
(850nm).

Table 15: 3D skeleton based activity classification accuracy
using extremely randomized trees algorithm [13].

Training | Validation | Testing
Subjectl| 91.2% 87.9% 83.4%
Subject2| 93.6% 88.7% 84.1%
Subject3| 90.4% 87.2% 82.6%
Average | 91.7% 87.9% 83.4%

deformation, IR distance, IR angle and subjects. Other experimental
configurations are consistent with Sec. 7.1.

Table 16 summarizes the results, where the weak and real ac-
tivities are denoted by “we” and “re”, respectively. We see that the
2D keypoint detection errors of weak and real privacy activities
are similar under different experimental setups. The average error
of weak privacy activities is 6.97, which is only 2.4% lower than
real privacy activities. It indicates that our model can generalize to
real privacy-concerning activities. The underlying reason is sim-
ple. Both the weak and real privacy activities share similar body
movement, which mainly focus on the upper body and limbs, such
as hands, shoulders, arms and legs. Therefore, the two categories
of activities do not have essential differences with respect to the
DeShaNet keypoint generation, which ultimately results in similar
recognition accuracy.

8 RELATED WORK

Privacy threats for smart homes. Privacy at home has always
been a concern for many people, although most people are unaware
of the potential sources of threats. Choe et al. [9] conducted a survey
which revealed over 1400 private behaviors/activities that people do
not want to be exposed at home. Zheng et al. [47] investigated peo-
ple’s awareness of smart home devices’ capabilities, and found that
most people failed to pay attention to the potential security/privacy
threats. As the smart home ecosystem evolves, new privacy threats
begin to emerge, often relying on novel techniques. For instance,



Table 16: Comparison of weak and real privacy-concerning activities (pixels).

model

deformation | IR disatance

IR angle subject average

we re we

we re we re we re

3D Mask R-CNN [9.18  9.03 |9.72

10.96 10.67|10.22 10.88|10.02 10.1

DeShaNet-CNN (6.67 6.52 |7.52

8.47 852|752 735|755 745

DeShaNet 6.03 6.46

6.88 6.92

7.87 821|709 733|697 714

LiShield [48] addresses the privacy leakage due to unauthorized
cameras, by using a smart LED to corrupt the camera image sensor.
Sami et al. [31] use the lidar on sweeping robots to detect tiny vi-
bration of objects caused by speech and in turn decode the speech.
However, such attacks require hacking into smart home devices.
Xu et al. [41] showed that TV illumination projected on window
curtains can expose the TV content that people are watching. In
contrast, the IRSA attacker does not need to access any devices
in the subject’s home, but can still reveal the subject’s physical
activities at home, thus posing a greater threat.

Shadow detection based applications. In computer vision ap-
plications, shadows are usually regarded as image noise, so previous
related work mainly studied how to remove shadows from images.
Zheng et al. [46] proposed a distraction-aware shadow detection
scheme to remove ambiguous shadows where the visual appear-
ances of shadow and non-shadow regions are similar. Wang et al.
[39] further use generative adversarial networks (GAN) to accu-
rately remove shadows. Recently, visible light shadow has also been
leveraged in visual sensing applications. For instance, Li et al. [19]
realized sparse body skeleton detection (5 joints in total) through
shadows projected on the floor. In addition, they also used ordi-
nary table lamp shadows to identify hand poses [20]. Meanwhile,
Nguyen et al. [24] used ceiling light shadows for coarse-grained
human occupancy detection. In contrast, the proposed IRSA needs
to accurately reconstruct 3D body keypoints from shadows, and
faces a unique challenge of shadow deformation.

Video keypoint detection. Keypoint detection has always
been an active research branch in computer vision. Early solutions
[7] focused on real-time multi-person keypoint detection. The 3D
Mask R-CNN model [11] represents the state-of-the-art in terms
of detection accuracy. Various aspects of the keypoint detection
tasks have been further explored, such as solving severe occlusion
[8] and deformation [34]. These solutions mainly leverage prior
knowledge of the human body structure. More recently, an unsu-
pervised keypoint detection scheme [17] was proposed to eliminate
the need for labeled data. In addition, Mehta et al. [21] propose to
predict 3D skeletons from RGB videos directly. However, existing
keypoint detection schemes are all based on RGB videos, which
cannot be directly applied to shadow keypoint detection in IRSA.
This is because the prior knowledge of human body structures is
not as informative for shadows, especially when the projection
surface (e.g., window curtains) severely deforms the shadows.

9 DISCUSSION

Defensing mechanisms against the IRSA. A straightforward
method to prevent the IRSA is to ensure the curtain and window
fall outside the security camera’s field of view, so that no IR shadow
can be projected towards the curtain surface. However, not all the
ordinary users would be aware of IRSA, so it is highly desirable
to prevent it from the source, i.e., security cameras and other IR

devices. One potential solution is to require that the IR light source
emit special light patterns, instead of the simple solid or dot patterns.
The IR source can periodically project random light patterns which
are known only to the legitimate camera (often co-located with the
light source). Each pattern only covers parts of the field-of-view,
and different patterns are complementary to each other in space.
Then the legitimate camera assembles all the image frames within
one period to reconstruct a complete frame. From the attacker’s
view, it is infeasible to acquire complete shadows because only a
small parts of the shadow are created each time.

System Limitations. Although we have extensively evaluated
the IRSA over a variety of situations, there still exist some limita-
tions. First, the current attack system is only applicable on a single
subject, as the DeShaNet only supports single person shadow de-
tection. This limitation can potentially be solved by fusing the tube
proposal module of the 3D Mask R-CNN with DeShaNet. Second,
the keypoint coverage is low. Currently, there are only 9 keypoints
in total, which may not be enough for higher precision activity
detection, such as finger motion. A straightforward solution is
increasing the keypoint quantity in the DeShaNet. However, we
think the essential problem is the difficulty of detecting the finger
from the severely deformed shadow, which we leave for future
exploration.

10 CONCLUSION

We have demonstrated the IRSA, a new privacy leakage threat
caused by common smart home camera devices with a night vision
mode. We have studied various environmental factors that may
hinder the attack, including the curtain deformation, IR distance/
angles and limb length. We further propose the DeShaNet and scene
constructor to recover the subtle 3D skeletons from deformed IR
shadows, which reveal the victim’s behaviors in a more delicate way.
We hope that this study can draw people’s attention on the invisible
IR side channel that security camera (or other IR light sources such
as Kinect) leaks, which can cause severe privacy issues. In addition,
we believe the manufacturers of indoor security cameras need to
act immediately to install the defense mechanisms to thwart IRSA.
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