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ABSTRACT
The 60 GHz wireless technology holds great potential for
multi-Gbps communications and high-precision radio sens-
ing. But the lack of an accessible experimental platform has
been impeding its progress. In this paper, we overcome the
barrier with OpenMili, a reconfigurable 60 GHz radio archi-
tecture. OpenMili builds from off-the-shelf FPGA processor,
data converters and 60 GHz RF front-end. It employs cus-
tomized clocking, channelization and interfacing modules, to
achieve Gsps sampling bandwidth, Gbps wireless bit-rate,
and Gsps sample streaming from/to a PC host. It also in-
corporates the first programmable, electronically steerable
60 GHz phased-array antenna. OpenMili adopts program-
ming models that ease development, through automatic par-
allelization inside signal processing blocks, and modular,
rate-insensitive interfaces across blocks. It provides com-
mon reference designs to bootstrap the development of new
network protocols and sensing applications. We verify the
effectiveness of OpenMili through benchmark communica-
tion/sensing experiments, and showcase its usage by proto-
typing a pairwise phased-array localization scheme, and a
learning-assisted real-time beam adaptation protocol.

CCS Concepts
•Networks → Network experimentation; Programming in-
terfaces; •Hardware→Digital signal processing; •Computer
systems organization → Reconfigurable computing;

Keywords
60 GHz, Millimeter-wave, Software radio, Testbed, Experi-
mental platform

1. INTRODUCTION
The unlicensed millimeter-wave (mmWave) spectrum around

the 60 GHz frequency promises a blueprint of wireless net-
working at wire-speed. The vast amount of spectrum re-
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source, spanning 57 GHz to 64 GHz in many countries, en-
ables multi-Gpbs data rate. The small wavelength (∼ 5mm)
enables miniature antenna-arrays that can form highly direc-
tional “pencil beams” to boost link quality and spatial reuse.
mmWave is thus considered as an enabling technology for
5G wireless broadband [1]. Recent commercialization of 60
GHz devices (e.g., by Qualcomm [2] and Intel [3]) also trig-
gers low-cost mmWave sensing applications, which used to
be available only in dedicated environment for medical/se-
curity inspection. Together, short wavelength and high di-
rectionality translates into high sensitivity, enabling subtle
object localization/tracking [4], vital-sign detection and mo-
bile mmWave imaging [5].

Realizing the vision of mmWave networking and sensing
necessitates a reconfigurable experimental platform that al-
lows prototyping before the protocols/applications are de-
ployed. Ideally, one would need a mmWave software-radio
platform that allows reconfiguration from the PHY layer up
to applications, can transmit customized waveforms and ac-
quire RSS/phase information for sensing applications [4, 6–
8]. On the 2.4 GHz and 5 GHz microwave spectrum, coun-
terpart devices such as USRP [9], WARP [10] and Sora [11]
have reshaped the landscape of wireless experimentation
in the past decade, speeding up the ratification of next-
generation wireless standards (e.g., 802.11ax [12]) and sens-
ing appliances [13]. However, to our knowledge, there exists
no reconfigurable platform that can capture the unique fea-
tures of 60 GHz wireless systems, particularly the Gsps sam-
pling bandwidth and electronically steerable phased-array
antennas.

In this paper, we propose OpenMili, an open-access 60
GHz software-radio, which fills the gap and opens up new
directions for mmWave sensing and protocol development.
OpenMili has a software-defined mmWave network stack
spanning PHY layer signal processing to applications. It
can also act as a programmable 60 GHz radio sensor with a
custom-built phased-array. From the hardware architecture
perspective, OpenMili integrates off-the-shelf baseband pro-
cessing unit (BPU), ADC/DAC and 60 GHz RF front-end
(frequency up/down-converters), and develops a signal chain
to enable Gsps of sampling bandwidth. It allows flexible
channelization and reclocks the 60 GHz front-end to over-
come its inherent phase-noise problem. OpenMili’s base-
band processing unit (BPU) centers around a Kintex Ultra-
Scale FPGA, and uses a customized PCIe module to realize
1 Gsps real-time sample streaming from/to a PC host. The
PC host can reconfigure/monitor the RF front-end and sig-
nal processing modules in real-time. OpenMili’s most out-



standing feature is a reconfigurable phased-array antenna
that can switch between 16 beam patterns at µs granularity,
under the control of the BPU. We design the phased-array
specifically to fit the WR-15 waveguide (a standard antenna
interface on 60 GHz radios), ensuring it can retrofit both
OpenMili’s RF front-end and other commercial mmWave
radios that are typically equipped with WR-15 horn anten-
nas [14].

From the software architecture perspective, OpenMili takes
advantage of the massive parallelization on the FPGA to en-
able Gsps sample processing. It eases prototyping by using
C++ to define signal processing blocks, and using AXI [15]
as inter-block gluing mechanism, which facilitates modular-
ity and eliminates the need for inter-block rate matching—
a well-known headache in FPGA programming. We choose
this programming model also because the complexity of intra-
block parallelization can be hidden from application develop-
ers, although coarse-grained inter-block parallelization still
need to be explicitly expressed.

OpenMili provides three reference designs which we be-
lieve to capture the unique aspects of mmWave and can
be instrumental for a wide range of 60 GHz network pro-
tocols and wireless sensing applications [4, 6–8]. (i) Gbps
baseband communication module: allowing a wide range of
network protocol development on the FPGA or PC host;
(ii) Real-time RSS/phase sensing: using an 802.11ad-like
preamble to sense the channel state information (CSI), with
around 300K CSI readings per second across 1 GHz band-
width, enabling many real-time sensing applications [8]. (iii)
Real-time phased-array controller: allowing 16 beamforming
patterns based on a discrete codebook. Codebook entry se-
lection is made in real-time on a Microblaze processor, pro-
grammable in C. This module can also access the real-time
CSI statistics, allowing beam adaptation based on channel
conditions.

To showcase the use of OpenMili in prototyping 60 GHz
systems, we propose and implement two new 60 GHz lo-
cation sensing and beamforming adaptation mechanisms,
which are of independent interest. (i) Pairwise relative local-
ization of phased-arrays. Many recent systems have used 2.4
GHz phased-arrays [16,17] for angle-of-arrival (AoA) estima-
tion, but they need multiple phased-arrays to triangulate a
target radio, and they assume the phase-shift values are con-
tinuously adjustable, which is not applicable to practical 60
GHz phased-arrays that use hard-wired phase-shifters. We
propose a simple algorithm that leverages the discrete phase-
shifting to estimate the AoA as well as distance between
a pair of phased-arrays, enabling pairwise localization in-
stead of triangulation. (ii) Learning-assisted real-time beam
adaptation. The short-wavelength at 60 GHz enables com-
pact phased-array design, with many antenna elements but
correspondingly a large number of beamforming codebook
entries to choose from, which entails huge adaptation over-
head at run time. We propose a new principle to make this
tradeoff: we allow a pair of phased-array nodes to learn the
correlation between beam patterns offline, and then prune
the adaptation space at run-time, which substantially saves
the beam searching overhead.

Contributions. To prepare for an open-source release,
we have intentionally used off-the-shelf hardware modules
to build OpenMili (except for the programmable phased-
array). Our main contribution lies in tasking these mod-
ules into a reconfigurable architecture, designing the soft-
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Figure 1: OpenMili’s hardware architecture.
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Figure 2: Portrait of OpenMili: (a) Overall archi-
tecture; (b) Baseband processing uint (BPU); (c)
Receiver with phased array antenna; (d) Transmit-
ter without mounting antenna.

ware framework and common interfaces to enable the devel-
opment of new mmWave communication and sensing appli-
cations. This contribution breaks down into the following
aspects:

(i) Hardware architecture (Sec. 2 and 4): We develop the
first 60 GHz reconfigurable radio architecture that achieves
Gsps sampling bandwidth, Gbps wireless bit-rate, and Gsps
real-time sample streaming from/to a PC host. The hard-
ware architecture builds on customized clocking, channeliza-
tion and interfacing modules. Most remarkably, it incorpo-
rates the first programmable 60 GHz phased-array design.

(ii) Software framework (Sec. 3): We explore FPGA pro-
gramming models that ease development, through automatic
parallelization inside signal processing blocks, and modular,
rate-insensitive interfaces across blocks. We also provide
reference designs to bootstrap the development of protocols
and sensing applications, featuring the Gbps communica-
tions and beam steering capabilities of 60 GHz radios.

(iii) New network protocol and sensing modality (Sec. 6):
We design a new 60 GHz beam adaptation protocol and a
simple pairwise location application. We further showcase
the usefulness of the reconfigurable platform in prototyping
and experimenting with such mechanisms.

The software code and hardware schematics of OpenMili
will be available on our project website [18].

2. HARDWARE ARCHITECTURE
The diagram in Figure 1 and portrait in Figure 2 illustrate

OpenMili’s hardware architecture and Tx/Rx signal chains.
OpenMili comprises 5 major modules: PC host, baseband
processing unit (BPU), data converters (ADC/DAC), RF
front-end, and phased-array antenna. The PC host config-
ures the high-level parameters of other modules, and can



also generate digital waveforms or log the received digital
signal samples for offline processing. It interfaces with the
BPU via PCIe gen3. The BPU is an FPGA module that ex-
ecutes real-time physical layer signal processing and MAC
layer protocols. Along the Tx signal chain, basedband sig-
nals generated by the BPU or PC host are eventually con-
verted to analog waveforms by the DAC, upconverted to 60
GHz by the RF front-end, and emitted through a custom-
built phased-array antenna; and vice versa for the Rx signal
chain.

Besides reconfigurability, the hardware architecture aims
for a few ambitious performance goals: Gsps sampling rate,
real-time Gsps signal processing at BPU and sample trans-
portation to PC host, and low phase noise. Below we de-
scribe the hardware modules, along with the interface design
and optimization to meet the goals.

2.1 Hardware Modules
RF front-end. OpenMili uses the PEM-003 60 GHz

transceivers [19] as RF front-end. PEM-003 is essentially an
802.11ad compatible frequency up-converter/down-converter.
Its carrier frequency can switch between 4 channels from
57.24 GHz to 64.80 GHz, each channel spanning 1.8 GHz
analog bandwidth. Alternatively, it can degrade to a custom-
mode, and switch between 15 channels, each spanning 540
MHz. It also has a programmable RF gain controller, allow-
ing continuous adjustment of output power up to 12 dBm.
PEM-003 can be connected to any 60 GHz antennas with a
WR-15 waveguide interface.

Baseband processing unit (BPU). OpenMili’s BPU
employs Xilinx’s KCU105 development board, centered around
a Kintex UltraScale FPGA XCKU040. We choose XCKU040
FPGA as it supports the PCIe gen3 interface which can pro-
vide enough bandwidth to support multi-Gsps data stream-
ing to a PC host. Also, it has 1920 on-chip DSP slices that
serve as arithmetic logic units (ALU). Each DSP slice has
two 32-bit adder, one 24-bit multiplier and other logics (e.g.,
multiplexer, shifter). The DSP slices together can provide
a computation throughput of up to 960G multiply and add
operations per second, making Gsps signal processing pos-
sible.

The BPU acts as the central processing module within
the OpenMili architecture. It not only executes real-time
signal processing, but also houses the FMC (FPGA mag-
azine board) sampling board that interfaces with the data
converters, and the PCIe interface to the PC host, as well
as 1.8V GPIO (AXI-lite to control, 40 MHz max I/O speed)
to control the phased array antenna.

ADC and DAC. OpenMili’s data converter module em-
ploys the FMCDAQ2 development board [20] from Analog
Devices, which integrates a dual-channel AD9680 ADC [21],
AD9144 DAC [22], and other peripheral components on an
FMC daughter board attached to the BPU.

Each ADC channel (I or Q) samples at 1 Gsps with a 12-
bit resolution, supporting up to 1 GHz bandwidth within the
baseband. It has an internal data path with 2×, 4× and 8×
decimation filters, and a numerically controlled oscillator.
This makes it possible to instantaneously switch between
different bandwidth configurations under the control of the
BPU.

The DAC has 14-bit high resolution, and default to 1 Gsps
sampling rate to match the ADC rate. Its outputs wave-
forms are staircase-like, whose frequency response is a sinc

function and causes a 6 dB loss at the maximum sampling
frequency [23]. This will degrade the magnitude of high-
frequency baseband signals. To reduce such frequency selec-
tive artifacts, we enable the 2× upsampler inside the DAC,
which increases the output sampling rate from 1 Gsps to 2
Gsps. Such oversampling effectively limits the bandwidth of
output baseband signals to 1 GHz, within which the DAC’s
gain remains relatively flat.

2.2 Designing Interfaces Between Hardware
Modules

Interfacing data converters with RF front-end. The
PEM-003 RF front-end can only output or receive I/Q sam-
ples via a differential interface, i.e., it has no reference to
ground and voltage samples are taken as the difference be-
tween two wires. Yet, the data converters use a single-ended
interface, with voltage measured between a single wire and
ground. To bridge the PEM-003 and data converters, we in-
sert a BALUN circuit [24] which performs the single-ended
to differential conversion for each I and Q channel. Each
BALUN has 500 MHz bandwidth, so it also serves as an
analog low-pass filter for the I/Q channel, preventing the
notorious aliasing effect caused by digital sampling [23].

An additional interfacing issue lies in voltage mismatch:
the DAC has an output power level of 0 dBm [25], whereas
the maximum input level of the PEM-003 is -20 dBm. To
overcome this issue, we insert a 30 dB attenuator in between,
which ensures a -30 dBm input power into PEM-003, well
below the limit. Albeit conservative, this does not sacrifice
performance, because PEM-003 has an RF gain up to 38
dBm, which can rescale the input signals to 38−30 = 8 dBm
and still ensure the transmitter is not saturated (PEM-003’s
transmitter front-end saturates at around 12 dBm [26]). On
the other hand, PEM-003’s receiver front-end has a variable
gain amplifier, which can be adjusted to match the ADC’s
input power level without any external attenuator.

Interfacing BPU and data converters using JESD-
204B. The ADC/DAC use JESD204B, a high-speed serial
interfacing protocol, to transport data samples from/to the
BPU’s FPGA. JESD204B transports data in the units of
16-bit (to cover the maximum resolution of data convert-
ers), and the sampling rate of both I and Q channels are 1
Gsps. So the total data rates on the JESD204B interface
is 16bps/converter · 2converters · 1Gsps = 32Gbps. Together with
25% overhead induced by JESD204B’s error correction code,
the total data rate is 40 Gbps. Both the ADC and DAC use
up to 4 serial channels, each being a copper line with 10.76
Gbps maximum rate. So we reconfigure the JESD204B and
limit each channel’s rate to 10 Gsps to meet the 40 Gbps
requirement.

Interfaces to the PC host. To interface the BPU with
the PC host, we custom-built a PCIe gen3 driver, which
allows the BPU to route all digital samples in real time be-
tween the PC and the data converters (detailed in Sec. 3.2).
Between the PEM-003 RF front-end and the PC host, there
exists a built-in USB interface, with a proprietary graphical
interface for configuring the RF parameters. But this inter-
face precludes integration with other components in Open-
Mili. We thus reverse-engineer the USB interface using US-
BPcap [27], and decypher the configuration commands and
USB protocols between the host and PEM-003. Then, we
develop our own USB driver in C, which replays the protocol
to reconfigure the PEM-003 via real-time command lines.
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Figure 3: Waveform/spectrum of a 100 MHz sine
tone with the original carrier clock in PEM-003.
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Figure 4: Waveform/spectrum after reclocking.

2.3 Reclocking and Noise Reduction
Reducing carrier clock noise. Phase noise, i.e., short-

term fluctuation in the phase of carrier waveform, represents
a key metric in rating an RF front-end. For a millimeter-
wave radio, phase-noise is especially critical, because the
carrier clock (tens of GHz) is generated by multiplying a low-
frequency (MHz) reference clock, and even a low phase-noise
at the reference will be magnified by orders of magnitude
[28]. Specific to the PEM-003 front-end, its reference clock
works at 308.571 MHz, and the phase-noise will be amplified
by 60GHz/308.571MHz = 194 = 23dB.

For an empirical understanding the phase noise of PEM-
003, we send a 100 MHz baseband sine tone with a constant
magnitude, using a highly-directional 3.4◦ horn antenna to
preclude multipath channel distortion. Figure 3(a) shows
the received waveform, whose magnitude manifests many
notches over time. This is mainly attributed to sudden phase
fluctuation, which prevents the sine wave from reaching its
magnitude. Figure 3(b) plots the frequency-domain spec-
trum of the received signal, which is supposed to be a single
peak, but actually smeared significantly, indicating the noise
is multiplicative rather than additive. This also hints to the
characteristics of phase noise [28], which cannot be elimi-
nated using conventional linear filters.

Since we cannot modify the on-chip clock of PEM-003,
we use an external clock [29], driven by a high performance
PLL, to substitute the original reference clock. The new
clock is connected to PEM-003 via its MCX reference clock
port. Figure 4 shows the 100 MHz sine tone after the re-
clocking. We observe a stable envelop, corresponding to a
low-noise single-carrier frequency spectrum, which verifies
the effectiveness of reclocking.

Reducing DC leakage noise. DC noise comes from
the leakage of RF circuit’s carrier signals, which translates
into the zero-frequency in baseband, and may compromise
the SNR of low-frequency baseband signals. In OpenMili,
DC leakage is attributed to the RF hardware PEM-003, but
can be mitigated via software-based signal processing in two
ways.

(i) Band shifting, i.e., migrating the entire baseband sig-
nals away from zero-frequency, which we realize by modulat-
ing the signals with a numerical controlled oscillator (NCO)
built in the data converters. Figure 5 provides experimental
evidence for this mechanism. In this experiment, we send
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Real-time Non-real-time
Control Microblaze PC

SP (heavy) FPGA PC
SP (light) Microblaze PC

Table 1: Choosing the processing unit for different
tasks and requirements. SP: signal processing.

a narrowband QPSK signal with 500 kHz bandwidth and
sweep the center frequency from 1MHz to 500 MHz. We
measure the error vector magnitude (EVM) of received sig-
nals as the normalized Euclidean distance between the trans-
mitted and received signal vectors in the complex plane. The
results show that the EVM near DC can be as high as 22%,
due to strong DC leakage. But the EVM rolls off over fre-
quency and becomes negligible above 100 MHz. Thus, in
case when bandwidth can be sacrificed, we always migrate
the baseband signals beyond 100 MHz to ensure high SNR.

(ii) Oversampling, equivalent to maintaining the Gsps sam-
pling rate in OpenMili but reducing baseband signal’s band-
width. We realize this by implementing a downsampler (in-
side the data converter board), combined with a low-pass
filter, both reconfigurable through OpenMili’s BPU. To un-
derstand the benefits empirically, we send out a 200 MHz
single-tone signal at 200MHz, and then measure the received
SNR. The result in Figure 6 shows that every 2× of over-
sampling provides around 3 dB SNR gain, albeit cutting the
signal bandwidth by half. It is up to the application devel-
oper to decide on the proper tradeoff.

3. SOFTWARE FRAMEWORK AND PRO-
GRAMMING MODELS

In OpenMili, the general purpose processor (GPP) on the
PC host, the FPGA-based BPU, and the microblaze proces-
sor together form a heterogeneous computing architecture.
Depending on application needs, one or multiple process-
ing units need to be chosen appropriately to balance the
tradeoffs between computational throughput and flexibility,
as summarized in Table 1. OpenMili’s software framework
and programming models are designed accordingly to ease
such choices. We build high-rate real-time signal process-
ing blocks in FPGA using C++, and leverage high-level
synthesis (HLS) to automate the code-level parallelization
and achieve Gsps processing speed. We have also developed
firmware to enable Gsps sample transportation between the
BPU and the PC host, and allow fast prototyping of sig-
nal processing algorithms running on the GPP. Besides, we
employ the BPU’s microblaze processor when it becomes
necessary to execute real-time control and signaling oper-
ations (e.g., medium access protocols) between signal pro-
cessing blocks. Table 2 summarizes the percentage of FPGA
resource utilization in OpenMili’s software framework.



Base w/ microblaze Reference design
LUT 5.09 9 23
Reg. 6.07 14 32

BRAM 20 43 54
DSP 0 3.32 34.14

Table 2: FPGA utilization percentage with Open-
Mili’s heterogeneous computing architecture and
software framework.

3.1 Programming Models for FPGA Based Real-
Time Processing

In general, a software-radio should support three cate-
gories of operations: TWEAK (defining and modifying a
signal processing block); TAP (monitoring the output/sta-
tus of a block); and INSERT/DELETE (i.e., adding/remov-
ing blocks) [30]. OpenMili’s programming model supports
these operations with two design goals: (i) tweaking a digi-
tal signal processing (DSP) block to achieve Gsps processing
speed with deterministic timing, leveraging automated mas-
sive parallelization instead of low-level hardware language.
(ii) enabling flexible and modular TAP and INSERT, such
that developers need not worry about rate compatibility be-
tween consecutive DSP blocks, which is a common headache
for low-level FPGA development.

3.1.1 Automating Parallelization and Pipelining for
Gsps Processing

Why using HLS in SDR? HLS is an automated design
process that interprets a high-level language (e.g., C/C++)
into hardware description language (HDL) that can be ex-
ecuted by the FPGA. HLS has gained popularity and ma-
turity in the past a few years, and major FPGA providers
(e.g., Xilinx and Altera) have all released their own HLS
toolchain [31, 32]. Building SDR application in HLS has
several advantage over the traditional HLS.

The HLS programming model affords similar flexibility
as the GPP-based GNURadio [33], which uses high level
language to define and glue the DSP blocks. A plethora
of common DSP blocks are already available from FPGA
providers and third-party developers. HLS hides majority of
the hardware details from DSP algorithm developers. More
importantly, HLS allows us to flexibly adjust the level of
algorithm parallelization, which is critical for real-time Gsps
signal processing.

Pipelining and parallelization in HLS. The clock
speed of modern FPGAs is limited to 200∼300 MHz. To
enable Gsps signal processing, we must take advantage of
the massive parallelization. In traditional HDL, transform-
ing the signal processing algorithms to fit FPGA’s parallel
architecture entails significant programming efforts. A mi-
nor adjustment to parallelization level may result in a chain
effect, requiring an overhaul of the entire HDL code base.
In contrast, given a target parallelization level, an HLS tool-
chain can tell how many cycles are needed for a DSP block to
generate all the outputs, with how many resource elements.
This helps developers to make the best tradeoff between re-
source consumption and performance.

We showcase the automated parallelization using an FIR
filter block, which comprises a sequence of multiply-and-
add operations, most commonly seen in DSP blocks. Fig-
ure 7 shows the C++ code for an N -tap FIR filter. The
for loop executes one multiply-and-add in each iteration,
and it needs N cycles to generate the outputs for each new

for ( i=N−1; i >=0; i−−) {
s h i f t r e g [ i ]= s h i f t r e g [ i −1] ;
acc+= s h i f t r e g [ i ]∗ c [ i ] ;

}

Figure 7: Original FIR filter in C++.

for ( i=N−1; i >=0; i−=2) {
s h i f t r e g [ i ]= s h i f t r e g [ i −2] ;
s h i f t r e g [ i−1]= s h i f t r e g [ i −3] ;
acc+=s h i f t r e g [ i ]∗ c [ i ] ;
acc+=s h i f t r e g [ i −1]∗ c [ i −1] ;
}

Figure 8: Partially unrolled FIR filter (factor=2).

signal sample. In contrast, Figure 8 shows a manually “un-
rolled” version of the code, with unrolling factor of 2, i.e., it
can calculate 2 FIR stages within one cycle. A higher un-
rolling factor achieves higher parallelization, but at the cost
of higher hardware resource consumption. HLS enables us
to automate the unrolling procedure – developer only needs
to set the unrolling factor in a configuration file, and then
HLS can automatically accomplish the loop unrolling based
on the single version of C++ code, while providing a laten-
cy/throughput report. Developer only needs to iterate over
the configuration instead of rewriting the code.

Table 3 lists the latency and resource usage report for a 16-
tap FIR filter implementation on OpenMili’s BPU, with dif-
ferent loop unrolling factors. Suppose the FPGA is clocked
at 250 MHz, then HLS suggests an unrolling factor of 64 to
achieve 4 samples/cycle, i.e., 1 Gsps processing rate.

3.1.2 Using AXI to Facilitate Modular Design
OpenMili adopts the Advanced eXtensible Interface (AXI)

[15] — an on-chip interconnect standard for the connection
and management of functional blocks in system-on-a-chip
designs — as a generic mechanism to glue the DSP blocks.
This design choice affords two critical properties to simplify
the FPGA programming: (i) Modularity: allowing TAP,
INSERT/DELETE of one DSP block without affecting oth-
ers. (ii) Rate insensitivity: allowing faster DSP blocks to be
connected directly, while using AXI to automate the rate-
matching mechanism. In contrast, in conventional HDL
based programming, the developer needs to have a global
view of the entire DSP chain, manually assuring the opera-
tions of adjacent DSP blocks are synchronized at cycle level.

OpenMili employs two kinds of AXI buses: AXI-Stream
and AXI-Lite. AXI-Stream is used to transport high speed
samples sequentially between DSP blocks, JESD204 tran-
sceivers, PCIe DMA controllers, etc. AXI-Stream provides
a maximum bus width of 2048 bits, and when running on the
250 MHz Xilinx Kintex UltraScale FPGA, it has 64 GB/s
rate, sufficient for interconnecting Gsps DSP blocks. AXI-
Stream provides two critical advantages in programming
OpenMili: (i) Standard inter-block interfaces. In OpenMili,
the HLS can directly augment a customized DSP block with
the AXI-Stream interface. In addition, since all the DSP
blocks follow the interfacing standard, one block can be sub-
stituted by others (DELETE/INSERT) by rewiring a line in
the GUI toolkit. AXI-Stream also eases the incorporation
of existing DSP IP libraries into a custom design. (ii) Rate
insensitive design. All the AXI-Stream interfaces share the
same bus clock (250 MHz in OpenMili). The HLS design
tool will handle the hand-shake between DSP blocks and in-
sert FIFO for buffering incoming/outgoing signal samples.



UnRolling Factor Samples per cycle DSP48 Usage
1(Unrolled) 1/16 1

2 1/8 2
4 1/4 4
8 1/2 8
16 1 16
32 2 32
64 4 64

Table 3: Latency and resource usage for 16 tap FIR
filter.
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Figure 9: OpenMili’s AXI-based baseband process-
ing system.

Therefore, the programmer needs not worry about the inter-
block synchronization or rate matching which is a common
challenge in multi-rate DSP systems.

On the other hand, AXI-Lite is a light-weight, low-speed
AXI protocol for memory address based register access. In
OpenMili, we use AXI-Lite to control/reconfigure the low-
level components, e.g., sampling speed, center frequency,
downsampling and upsampling ratio of ADC/DAC, and phase
shift values of the phased-array antenna etc. All such con-
figurations are stored in registers connected to the AXI-lite
bus, and both the PC host and Microblaze processor can
access the register through memory operations.

Figure 9 summarizes the usage of AXI inside OpenMili’s
software architecture. The inter-module connection for the
PCIe interface (PC to BPU) and the JESD204B interface
(BPU to ADC/DAC) are all implemented using AXI-Stream
bus which can natively support INSERT/DELETE. This al-
lows arbitrary DSP blocks to be connected to the host PC or
data converters, in a compatible way as the inter-DSP-block
connection. To support TAP, we add an AXI-Stream mul-
tiplexer between the PCIe DMA controller and DSP blocks.
User can access the intermediate result of any DSP block by
connecting the signal to the MUX, which reroute the signal
to the PC host for observation. We also built a round-robin
scheduler for the multiplexer, which works together with the
PCIe driver (Sec. 3.2). It can transport the data from differ-
ent blocks in a time-division manner, demultiplex the data
after going through PCIe, and deliver them to user space
C/MATLAB applications. Moreover, we use AXI-Lite to
augment control functionalities on signal processing blocks,
e.g., MAC-level rate adaptation in communication applica-
tions and waveform selection in sensing applications.

Here we use a frequency-modulated continuous-wave (FMCW)
Radar as an example to showcase the usage of AXI-based
modular programming in OpenMili. Figure 10 illustrates a
diagram of the FMCW Radar. The output frequency of a
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Figure 10: Prototyping an FMCW Radar using
OpenMili’s programming model.
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Numerically Controlled Oscillator (NCO) is controlled by a
continuous-wave generator which could be configured to gen-
erate triangular wave, saw wave, and sine wave with different
sweeping rate. With AXI-Stream, we can flexibly route the
NCO output to both DAC (to emit continuous waves) and
mixer (to obtain differential frequency). The received and
mixed signals go through an FFT module for differential fre-
quency analysis, and the results are passed to the PC host,
to realize radar applications such as ranging, tracking, etc.
All connections (arrows) here are realized using the modular
AXI-Stream interface.

3.2 Fast Prototyping Using GPP
To enable Gsps sample transfer between the PC host and

BPU, we develop the PCIe driver based on the PCIe 2.0 data
streaming reference design from Xilinx [34]. The driver com-
prises a control plane and data plane. The control plane
provides low speed channel to control the low-level com-
ponents like DMA controller on FPGA, ADC and DAC,
etc. The challenge in building the PCIe data plane lies in
the mismatch between stream data and packet data — The
data converter and DSP logic produce/consume stream data
which have no start and ending, but the PCIe can only han-
dle packetized data via bursty DMA transfer.

We overhauled the PCIe 2.0 reference design to enable
PCIe 3.0 transportation, by upgrading the corresponding
bus width from 128 bit to 256 bit, boosting the nominal
bandwidth from 4GBps to 8GBps. We empirically found
that larger DMA packet size leads to higher throughput
(Figure 11), because it amortizes the per-packet coordina-
tion overhead between the host PC’s DMA engine and the
FPGA’s DMA controller. To achieve the PCIe throughput
requirement of 40 Gbps (Sec. 2.2), a minimum DMA packet
size of 256kB is needed.

However, the FPGA is designed for computation rather
than storage, so its FIFO has a very shallow buffer depth
of 128 kB. We thus design a ring buffer whose control logic
is implemented in the BPU. Figure 12 quantifies the sample
error ratio (sum of sample loss and duplication ratio) when
transferring random digital samples based on the ring buffer.
We empirically choose the buffer configuration (256kB*8ways
or 512kB*4ways) with minimal total buffer size.



As the CPU will replace the cache in the size of a cache
line (typically 64kB), the typical discontinuous memory al-
location will reduce the speed of memory access at the host
side. Thus, we use cmem, a contiguous physical memory
allocator [35] as a kernel space buffer between user applica-
tions and DMA engine, in order to maximize memory-DMA
efficiency. As the cmem only has 128 MB of space, the ker-
nel driver will automatically copy the data between cmem
buffer and user memory. Consequently, the maximum sam-
ple length is determined by the system memory size. In our
host PC, we allocate 24 GB memory for sample trace collec-
tion. At 1 Gsps sampling rate, this amounts to a trace length
of 6 seconds in 16-bit I/Q channel mode and 24 seconds in
8-bit real-channel mode.

To support fast prototyping on the host PC, we imple-
ment a C API and a MATLAB API atop. The APIs in-
clude both data-stream interface (for reading and monitor-
ing the DSP block), which reads/writes to the addresses
of sample buffers, and AXI-Lite based register access inter-
face (for hardware configuration like ADC/DAC and phased-
array controller), which accesses the registers on the BPU.
As MATLAB has its own data structure, a sample’s real
and image parts are not stored in continuous addresses. To
reduce the impact of data copying, our MATLAB API ac-
cepts matrix whose column is the time and row is the con-
tent for different buffer. In this manner, the data order
from/to MATLAB is consistent with the data order used by
the DAC/ADC.

4. PROGRAMMABLE PHASED ARRAY AN-
TENNA

OpenMili’s antenna array design aims for three features:
(i) Programmability: supporting real-time switching between
codebook entries corresponding to different beam patterns.
(ii) Scalability: the number of antenna elements can easily
scale up to support larger phased-array size, and hence more
beam patterns with higher directionality. (iii) Compatibil-
ity with the WR-15 waveguide interface on the PEM-003
mmWave front-end.

Existing mmWave phased arrays are typically integrated
on-chip antennas that interface with monolithic integrated
circuits (MMICs) [36,37]. In contrast, as a standalone mod-
ule, OpenMili’s phased array faces unique challenges that
entail customized design choices. First, the antenna ele-
ments need to be mounted on a planar substrate which
needs proper transition to the WR-15 waveguide. At 60
GHz frequencies, significant insertion loss can occur when
using a straightforward touch-and-mount transition. Sec-
ond, to avoid grating lobes in the antenna array, the spacing
between the adjacent antenna elements should be as small
as wavelength-scale (∼5 mm), otherwise significant amount
of energy is radiated in undesired directions. Also, mmWave
signals must be routed optimally under this tight dimension
constraint. Third, to have a functional planar design at 60
GHz, the substrates with higher dielectric constants are very
thin (a few microns). Therefore, mechanical stability sup-
port is needed when interfaced with the waveguide, as small
misalignment can lead to severe signal loss.

Below we present OpenMili’s phased array design meeting
above challenges, and its beam pattern controller design to
offer the programmability feature.

4.1 Phased-Array Antenna Design
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Figure 13: Architecture of OpenMili’s phased-array
antenna: (a) one antenna channel; (b) Four antenna
channels.

4.1.1 Architecture
We design a linear array, with microstrip antenna ele-

ments driven by a phase-shifting network, as illustrated in
Figure 13. The mmWave front end generates waveguide
ended signal which goes through a waveguide to microstrip
transition to make the signal compatible with the antenna’s
planar structure. Then, the signal propagates through a se-
ries of tree-structured power divider networks, with a 3 dB
power division at each junction. The tree structure allows
the phased array to be scalable to the 2th power number of
antenna elements.

To realize phase shifting, we use a discrete network with
varying transmission line lengths in each signal branch, caus-
ing two different delays corresponding to two phase shift val-
ues of 0◦ and 180◦, respectively. A single pole double throw
(SPDT) switch [38] is used to select the appropriate phase
shift in each signal path. This signal further goes through
a second stage of switches before feeding the antenna ar-
ray element. Overall, the phase shifting network allows us
to realize any codebook where individual antenna element’s
weight can be either e0 or ejπ.

We emphasize that this architecture can be easily ex-
panded to support a richer codebook and larger number of
antenna elements. For example, one can use 60 GHz SP3T
switches (e.g., [39]) to add an additional phase shift branch.
Alternative switches (e.g. [40]) exist that can also be used as
a variable voltage attenuator. This will futher provide am-
plitude control for each antenna element path. We can cas-
cade these switches with the existing ones in OpenMili such
that more phase shifts and amplitude attenuation options
can together create larger codebooks and hence more beams.
On the other hand, to enlarge the phased array size, we can
simply expand the binary-tree structured phase-shifting net-
work, adding more branches and antenna elements.

4.1.2 Design and Fabrication
Waveguide to microstrip transition: At mmWave

frequencies, a mature approach to waveguide-microstrip tran-
sition is to place a single substrate in between. However, this
requires via holes connecting the grounds of bottom and top
surfaces of the substrate. Such a requirement is easily sat-
isfied for integrated antennas but prone to manufacturing
error for OpenMili’s standalone phased array. Therefore, we
adopt a via-less design for its simple construction, low cost
and ease of fabrication. As shown in Figure 14, we use a
rectangular patch element on the bottom surface of the sub-
strate which couples energy to a microstrip line on the top
surface of the substrate. In order to have a short circuit at
the edge of the waveguide, an open circuit is created at a
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array antenna; (b) an-
tenna controller board.

λg/4 distance in the parallel plate waveguide [41].
Power divider network: Power divider network is a

classical routing structure inside mmWave antenna arrays.
A variety of power divider networks have been presented
in the literature, e.g., Lange [42], simple T-junction [43]
or a Wilkinson [44]. We adopt the Wilkinson power di-
vider without the isolation resistor, considering its low loss,
as its distribution uses simple mitered curve with only one
width across the power divider network, in contrast to other
schemes that divide power by splitting a wide signal trace
into narrower ones which causes loss [45].

Phase shifting network and antenna elements: Mi-
crostrip patch is used for each antenna element due to its low
cost, low profile and ease of fabrication for mmWave front
end module. A 4-element linear array of microstrip patch
antennas is designed. An inset fed technique is used for
impedance matching. Spacing between adjacent antenna el-
ements is 0.6λ, which is selected based on the chosen phase
shifting and switching network. Two electrical delay lines
are designed for each arm of the antenna feed network, such
that they present a phase shift of 180◦. Single pole double
throw (SPDT) switches [38] are used to select between these
two phase shifts for each antenna element. The selection of a
particular phase shift for each antenna element is carried out
using control logic implemented in the BPU (more details
in Sec. 4.2).

Substrate, fixture, and fabrication: Choosing the
right dielectric medium at mmWave frequencies is vital to
optimal performance. The electromagnetic waves can be
guided not only with conductor configurations but also along
dielectric layers, giving rise to surface waves resulting in per-
formance degradation. In addition, low impedance line re-
sults in wider strips, which also tends to lower the cut-off
frequencies of undesirable higher-order modes within or near
the operating frequency range. Therefore, to avoid higher
order modes and the propagation of surface waves, we use
thin substrates. Empirical methods [46] have been proposed
that relate the substrate’s thickness and dielectric proper-
ties to its operating frequency. We used Rogers 6010.2LM
substrate [47] with a thickness of 5 mils (0.127 mm), which
has a maximum operating frequency of about 74 GHz. To
offer mechanical stability, we also designed a fixture made
of aluminum, and attached in between the phased-array and
the WR-15 waveguide.

Before fabrication, the phased array design is simulated
using a 3D EM solver software, CST Microwave Studio,
which takes as input the geometry and dielectric properties
of the phased-array’s constituting materials. Figure 15(a)
illustrates the fabricated phased-array. We will compare the
array’s simulated gain pattern with measurement in Sec. 5.3.

4.2 Programmable Phased Array Controller

In OpenMili, antenna beam-switching command can be
initiated by the PC host or Microblaze processor (programmable
in C), which in turn controls the FPGA’s GPIO and drives
the voltage change of each switch in the phase-shifting net-
work. The phased array controller needs a 4-bit input into
the phase-shifting network to generate the 16 beam pat-
terns. Our implementation extends the Xilinx AXI-to-GPIO
IP core to enable the Microblaze/PC to control the antenna
switches. The Microblaze/PC uses the AXI-Lite interface
(Sec. 3.1.2) to write a 32-bit word (supporting up to 32
switches) to a register with a predefined 32-bit bus address.
The register switches the voltage of the GPIO ports, whose
output will be updated at the next rising edge of the AXI
bus clock.

Note that each switch is a PIN diode that has 22 mA
forward current and needs to flip between positive and neg-
ative voltages, so we cannot directly interface it with the
FPGA’s GPIO which is 1.8V unipolar and bears 8 mA drive
current. We thus build a customized phased-array controller
board (Figure 15(b)), which can be plugged into the FPGA’s
PMOD interface – a standard interface for connecting with
peripheral modules. Figure 13 illustrates a diagram of the
phased-array controller, with three main functions: (i) Con-
vert the positive power supply into negative power supply;
(ii) Convert the GPIO’s 0V-1.8V unipolar signal into -5V
to +5V bipolar signal and provide the 22 mA forward cur-
rent; (iii) Provide enough output current. More specifically,
we use the MAX889 negative power IC [48] to generate the
negative power supply, and AD8001 [49] as a bipolar com-
parator to convert the 1.8V IO, in order to meet the voltage
and current requirement of the antenna switch.

5. REFERENCE BLOCKS AND EXPERIMEN-
TAL VALIDATION

In this section, we present the design and experimenta-
tion of a few reference blocks, which verify the performance
of OpenMili’s hardware architecture, as well as the effective-
ness of its programming models in prototyping communica-
tion and sensing applications.

5.1 Gbps Baseband Communication System
Prototyping the 802.11ad baseband communica-

tion system. We have built a real-time Gsps baseband
communication system on OpenMili, which implements the
majority of the 802.11ad PHY-layer [50]. Figure 16 shows
the system architecture. Along the transmitter path, we can
generate data bits from either the PC host or BPU. The data
are patched with CRC checksum and then sent to a convolu-
tion encoder (supporting rate 1/2, 2/3, 3/4 and 7/8). Coded
binary bits are modulated into analog waveforms through
a mapper and IFFT module, which supports both single-
carrier-FDMA and OFDM as specified in 802.11ad. Be-
fore routing the waveform to the DAC, we prepend known
preambles which form a complete packet. Along the receiver
path, we have implemented preamble-based packet detec-
tion, synchronization, and channel estimation modules. The
detected packet is demodulated following a reverse path as
the transmitter’s.

All the DSP blocks run on the BPU, and are prototyped
following the programming model in Sec. 3. We implement
(TWEAK) each DSP block using HLS, and connect them us-
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Figure 17: Packet error ratio (a) under different
modulation schemes and (b) coding schemes.

ing AXI-Stream for automatic rate matching. Moreover, we
prototype simple monitoring (TAP) functions, which com-
pute performance statistics, e.g., packet error rate (PER),
and store them in an AXI-Lite register. The register can
be accessed by both the host PC and Microblaze following
the standard AXI-Lite read operations. Further, the de-
coded data bits can be forwarded to the host PC in real-time
through the PCIe driver that we developed.

We have also implemented basic rate adaptation and beam
adaptation mechanisms within this reference communication
system. Basically, the receiver can compute a received signal
strength (RSS) value based on the packet preamble. The
RSS is stored in a register inside the BPU with pre-defined
memory address. The Microblaze can read the register and
then determine the modulation/coding scheme (MCS) using
any customized rate adaptation protocols. Further, it can
switch across different beam directions by commanding the
phased-array controller (Sec. 4.2). It then measures the RSS
of each and choose the best direction. A more sophisticated
MAC-level signaling mechanism as in 802.11ad [50] can be
implemented but is beyond the scope our reference design.

Experimental validation. We verify the reference de-
sign by measuring the performance of different MCS under
different SNR levels (created by configuring OpenMili’s RF
gain values). By default, we send packets of size 1KB, and
fix the antenna beam to a single direction. Figure 17(a) plots
the measured SNR-PER curve, averaged over 104 packets in
each run. We observe that a relatively high SNR threshold
of 15 dB is needed to achieve a reasonable PER performance
(< 0.1), since channel coding is not executed here. In gen-
eral, OFDM achieves higher performance than the single
carrier modulation, because it can absorb the multipath re-
flections using the cyclic prefix (CP) mechanism [11]. In ad-
dition, given a fixed bandwidth, a larger number of subcar-
riers result in much worse performance. For example, at 25
dB SNR, OFDM with 256 subcarriers (OFDM-BPSK-256)
results in PER=0.01, whereas OFDM with 2048 subcarri-
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ers has PER≈1. This is mainly due to the inherent phase-
noise in 60 GHz radios, which cannot be completely elimi-
nated since even small phase noise at the reference clock will
be amplified by orders of magnitude at 60 GHz (Sec. 2.3).
Phase noise“smears”the frequency spectrum of a subcarrier,
resulting in inter-carrier interference, which worsens the bit
errors.

Figure 17(b) shows the impact of coding and interleaving,
focusing on QPSK without loss of generality. A higher chan-
nel coding rate improves PER performance, consistent with
theoretical predictions [23]. Moreover, with a bit-interleaver
(randomizing bit positions in the packet), bursty channel
errors are reduced, and hence lower PER. In Figure 18, we
further compare the PER performance with an ideal simu-
lated Rician channel with different K parameters, where K
denotes the ratio between the LOS component and NLOS
component in a Rician model. The measured PER is be-
tween Rician curves with K = 4 and K = 6, and nearly over-
laps with K = 5. On one hand, this implies that OpenMili’s
hardware/software modules are not introducing any artifacts
that compromise the channel measurement and communica-
tion performance. On the other hand, it indicates that even
if we use a single-beam directional antenna, non-negligible
multipath effect still exist, likely caused by ambient reflec-
tions as well as unavoidable side lobes in the antenna gain
pattern.

Table 4 lists the MCS levels supported in the reference
design, by default using OFDM with 256 subcarriers. The
corresponding SNR thresholds are obtained when measured
PER reaches around 1%. As in legacy OFDM communi-
cation systems, we place null subcarriers near DC and the
band edge, which confines the effective bandwidth to 800
MHz. Although the MCS is not comparable with 802.11ad,
its spans from 12.5 Mbps to 1.3 Gbps, and already allows
exploration of Gbps rate adaptation protocols.

5.2 Real-Time GHz RSS/Phase Sensing
OpenMili supports two modes of wireless sensing applica-

tions. In the radar mode, OpenMili serves as a programmable
radar, where the transmitter emits 60 GHz signals while the
receiver captures and processes the reflected signals. To iso-
late direct leakage between the Tx and Rx, we can either
mount highly-directional horn antennas on the RF front-
end, or place 60 GHz absorbers in between. An example
radar prototype has been discussed in Sec. 3.1.2.

In the communication system as a sensor (CSAS) mode,
the transmitter emits 802.11ad-like packet preambles, and
the receiver estimates the channel information by process-
ing the received preambles. This is equivalent to stripping
off the modulation/coding blocks in the communication ref-
erence design. More specifically, following 802.11ad, we im-



MCS Coding Rate Mod. Bitrate SNR th.
0 1/2+32x spread BPSK 12.5Mbps 3
1 1/2 BPSK 400Mbps 13
2 3/4 BPSK 600Mbps 15
3 13/16 BPSK 650Mbps 19
4 1/2 QPSK 800Mbps 21
5 3/4 QPSK 1200Mbps 24
6 13/16 QPSK 1300Mbps 25

Table 4: Capabilities of baseband reference design.

Codebook
Entry

Mainlobe
Direc-
tion

Mainlobe
Gain
(dBi)

Sidelobe
Direc-
tion

Sidelobe
Level (dB)

1,1,1,1 0◦ 14.3 +/-39.1◦ 2.46
1,1,1,-1 +/-15◦ 11.2 +/- 48◦ 5.47
1,1,-1,1 +/-36◦ 11.3 4◦ 8.31
1,1,-1,-1 +/- 19◦ 12.2 +/- 73◦ -14.55
1,-1,1,-1 +/-36◦ 11.3 4◦ 8.31
1,-1,1,-1 +/- 47◦ 12.5 +/-

11.5◦
4.5

1,-1,-1,1 +/-31◦ 12.4 +/- 66◦ -4.67
1,-1,-1,-1 +/-15◦ 11.2 +/- 48◦ 5.47

Table 5: Direction and Gain of main lobe and largest
sidelobe for each codebook entry

plement a preamble structure that uses 2176 samples for de-
tection/synchronization and 1152 samples for per-subcarrier
channel state information (CSI) estimation. With 1 Gsps
sampling rate, the preamble duration becomes 3.4µs. Upon
receiving the preamble, the receiver can compute the CSI
and store it in a register in one clock cycle (4ns), and the Mi-
croblaze can read the CSI in 12 clock cycles (48ns). There-
fore, the overall CSI sensing latency predominantly depends
on the preamble transmission time, i.e., OpenMili can ob-
tain the CSI of the entire 1 GHz channel every 3.4µs.

We evaluate the channel sensing accuracy by measuring
the EVM across all subcarriers. Figure 19 plots the EVM
across a wide range of SNR levels. At low SNR, the chan-
nel sensing errors are mainly caused by channel noise. Be-
yond 15 dB SNR, the phase error converges to around 4%
and magnitude error to 1.5%. Such residual errors originate
from the hardware noise in OpenMili, which induces a small
amount of magnitude/phase variations.

5.3 Real-Time Phased-Array Controller
Table 5 lists OpenMili’s phased-array beam patterns ob-

tained based on the simulation method in 4.1. Due to code-
book symmetry, we have 8 beam patterns in total and 5
unique ones. For codebook entry (1,1,1,1), there is only one
mainlobe giving rise to a gain of 14.3 dBi. Whereas for other
entries there are two mainlobes which split the gain.

To measure the actual beam pattern, we mount the phased
array on a Tx and a 3.4◦ horn antenna on the Rx. We then
use a step motor to rotate the phased array with 1 degree
granularity, while using 60GHz RF absorbers to block reflec-
tion paths around the Tx/Rx. Figure 20 show the measured
angular gains of codebook entries (1,1,1,1) and (1,1,-1,-1),
which demonstrate consistent patterns with the simulation
results. We have observed similar consistencies for other
codebooks but omit the results due to space constraint.

To evaluate the phased-array’s switching efficiency, we use
a oscilloscope to monitor the input/output of our controller
board and measure the rise and fall time. We observe that
both have a similar rise/fall time of below 2.5 ns. Hence, the
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Figure 20: Simulated and measured radiation pat-
tern of: (a) codebook (1,1,1,1); (b) codebook (1,1,-
1,-1).

stabilization time of our phased array antenna is below 2.5
ns, which is negligible compared with the channel estimation
which is the latency bottleneck (Section 5.2).

6. CASE STUDIES

6.1 Pairwise Localization of 60 GHz Phased-
Arrays

We propose a simple scheme that leverages the ultra-wide
band (high time resolution) and discrete beam switching ca-
pability of 60 GHz phased-arrays to realize pairwise local-
ization instead of multi-node triangulation [16,17,51]. This
scheme targets the scenario where the Tx and Rx have a line-
of-sight (LOS), which represents the most common cases for
60 GHz links. There exists mature ways to determine if the
LOS condition is satisfied [16].

The localization scheme has two primitives: ranging and
AoA estimation. We use a pulse delay method to estimate
the LOS range between Tx and Rx, whose fundamental prin-
ciple is similar to the FMCW radar. The Tx sends a known
pseudo-random sequence and Rx runs a cross correlation
and translates the peak position into time of flight estima-
tion. Using OpenMili’s Gsps sampling capability, we can
achieve 1 ns timing resolution which gives a 30 cm ranging
resolution.

To estimate the AoA, we face two challenges unseen in
prior work [16, 17]: the limited number of discrete beam
patterns and the irregular beam pattern with imperfect di-
rectionality. However, we can harness the measured gain
pattern of the few beam patterns as follows. For simplic-
ity, suppose the Tx uses a fixed beam pointing to the Rx,
which is necessary for establishing a communication path.
The radiation pattern of a beam can be obtained at factory
calibration time. Specific to OpenMili’s phased-array, we
have measured the radiation patterns with 1◦ granularity
(Sec 5.3). So we have 180 gain vectors, each consisting of
the gains of all 5 effective beam patterns at a specific an-
gle. We can derive the signal power at the antenna from
pathloss model [52] using the ranging result. We then add it
to the gain vectors to get the RSS estimation vector at each
direction. When conducting the localization, we measure
the RSS vector by switching across all beam directions. Fi-
nally, we run a vector matching between the measured RSS
vectors and the calibrated RSS vector in the foregoing step.
The direction of the best match is used as the AoA estima-
tion. Given the range and AoA, the Tx and Rx’s relative
position is readily available.

We have quickly prototyped the pairwise localization scheme
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Figure 21: Localization error with (a) phased-
array antenna and horn antennas with different
beamwidth; (b) different bandwidth.
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Figure 22: (a) Reduction of beam search overhead
and (b) RSS under blockage events (Oracle switches
across all beam directions in real-time and finds the
best).

using OpenMili’s GPP programming model. We test its ef-
fectiveness by placing the Tx and Rx at random locations in
a 11m× 8m indoor environment. Besides the phased-array,
we also use two different sets of horn antennas (beamwidth
A1 = 20◦ and A2 = 3.4◦) as benchmark, which are steered
using a mechanical rotator (with granularity of π/A1 and
π/A2). These horn antennas can be considered as ideal
phased-arrays with slow steering but without any side lobes.
For a given Tx, we measure the location error between esti-
mated and ground-truth Rx spot.

Our experimental results in Figure 21 (a) show the average
error is 0.51m, 0.72m, 1.63m, for the 3.4◦, 20◦ horn antenna,
and phased-array antenna, respectively. The phased-array
has larger error due to its limited number of beam directions,
and also the multipath effects created by imperfect beam
patterns (esp. sidelobes). Figure 21 (b) further shows the
impact of sampling bandwith. A wider bandwidth translates
into higher time resolution, and hence the Gsps bandwidth
achieves 0.52m mean error, in contrast to 0.99m at 500 MHz.

6.2 Learning Assisted Beam Adaptation (LABA)
A dominating indoor use case of 60 GHz networks (e.g.,

802.11ad) lies in cordless computing, i.e., replacing Gbps
Ethernet and monitor cables with a 60 GHz wireless links
[53]. However, due to heavy human activities, such links
are prone to blockage. Although electronic beam-steering is
designed into 802.11ad to detour blockage, searching for the
best beam direction involves non-trivial signaling overhead,
especially considering the up to hundred-scale beam patterns
that can be generated by a 60 GHz phased-array [54].

We propose LABA, a simple learning assisted protocol
to reduce the beam search space and hence the overhead.
LABA is applicable to quasi-stationary links, which may be
blocked frequently, but moved only occasionally. Although
a node may generate many beam patterns, the gain patterns
of different beams may be partially overlapping and corre-
lated across spatial angles [55]. Therefore, LABA learns the
correlation offline, and prunes the correlated beams during
run-time beam searching. Specifically, during the learning
phase, a person stands at a random position p between the
Tx and Rx to block the link, while we use OpenMili to col-

lect each beam pattern j’s RSS, denoted as Sjp. Suppose
we create P random blockage positions in total, then for
each beam pattern j, we have a vector of measured RSS
[Sj1, S

j
2, · · · , S

j
P ] across all blockage positions. We then com-

pute the pairwise cross correlation between the RSS vectors.
At run time, whenever severe rate drop occurs, LABA ini-
tiates beam steering just like a normal 802.11ad protocol,
but only searches across the beam patterns that have < 0.5
correlation with the current one.

We have implemented LABA’s learning module on Open-
Mili’s GPP module, and run-time adaptation mechanism on
its real-time phased-array controlling module (on the Mi-
croblaze). To show its effectiveness, we test it across 9 dif-
ferent locations in 3 environments with different reflection
characteristics: an office, corridor and student lab. We use
OpenMili’s phased-array hardware, as well as a phased-array
emulation method [55], which first uses a 3.4◦ horn antenna
to collect the channel AoA pattern and then convolve it
with the angular gain pattern of an ideal 4 element linear
array. As shown in Figure 22(a), LABA can consistently
prune the search space and reduce the beam searching over-
head by around 70%, compared with an exhaustive search.
The reductions is slightly lower than the emulated phased-
array, which assumes isotropic radiation patterns for each
antenna element and thus causing more overlapping/corre-
lation across beam patterns. Due to limited number of an-
tenna elements, we are unable to generate quasi-omni beam
patterns to run the 802.11ad-compatible hierarchical beam-
searching, but LABA’s pruning method can be readily used
to prune any existing beam searching method.

In Figure 22(b), we show the RSS traces across 3 human
blockage events. We see that LABA demonstrate a simi-
lar level of RSS as the exhaustive search, implying it either
chooses the best beam direction or choose one with simi-
lar RSS. This effectively verifies that LABA reduces beam
searching overhead without sacrificing link performance. It
also verifies that OpenMili can switch across all beam pat-
terns without any noticeable latency.

7. RELATED WORK
Software Radio Platforms. In the past a few years,

a variety of software-radio platforms have been proposed to
facilitate the development of new wireless protocols. These
platforms share a similar high-level architecture: they con-
nect a PC host with an external baseband processing unit
(typically an FPGA), which attaches ADC/DAC and sub-
sequently an RF front-end. Different platforms may par-
tition the processing tasks between the BPU and PC host
differently, to make a tradeoff between flexibility and perfor-
mance. On one end of the spectrum lies the purely software-
defined frameworks. The well-known USRP/GNURadio [9,
33] platform, for example, runs PHY-layer modulation/de-
modulation algorithms entirely on the PC host’s general pro-
cessor (GPP). Despite its flexibility, USRP/GNURadio suf-
fers from long processing latency and PC-to-radio interface
latency, which precludes real-time MAC operations. A more
powerful system, Sora [11] applies sophisticated algorithm-
specific parallelization (e.g., core dedication) to achieve sim-
ilar throughput as commercial 802.11b radios. On the other
hand, most recent software-radio platforms adopt a hybrid
framework. For example, WARP [10] allocates intensive sig-
nal processing functions to the FPGA, and light-weight con-
trol functions to the Microblaze or PC processor.



In terms of software framework, OpenMili is heavily in-
spired by WARP. The main difference is that WARP uses
Matlab Simulink to define signal processing blocks, whereas
OpenMili uses C++ based HLS. More importantly, WARP
hard-wires the blocks, and hence, the developer must have
precise estimation of the processing latency of each block.
This hinders modular refinement, because any modification
must take into perspective the timing of the entire signal pro-
cessing flow. In contrast, OpenMili separates the signaling
between blocks using AXI, which can essentially buffer ad-
jacent blocks’ input/output samples, thus decoupling their
rate-dependency. This principled design borrows from a rich
history in DSP systems implemented as a composition of
blocks. For example, Airblue [56] and Atomix [30] designed
customized FIFO buffers to enable modularized program-
ming of DSP blocks. We note that, when developing PHY-
layer signal processing systems, all these software-radio sys-
tems, including OpenMili, may use HLS to automate the
intra-block parallelization. But they still require the devel-
oper to have knowledge about the relation between blocks,
and to manually partition the blocks to maximize paral-
lelism. This is particularly important for OpenMili with
Gsps of processing load on FPGAs that are clocked at sub-
GHz.

As for hardware architecture, OpenMili distinguishes it-
self in its Gsps sampling/processing rate and programmable
phased-array, running at the 60 GHz carrier frequency. The
challenges in enabling these features have been covered in
previous sections. Some recent studies customized 60 GHz
testbeds [55, 57, 58], using WARP or signal generator (net-
work analyzer) as BPU. These testbeds do not capture the
two unique features of 60 GHz radios, although they have
similar or higher cost than OpenMili1. Arnold [59] and
Zetterberg et al. [60] developed customized RF front-end
which, together with USRP, form a programmable 60 GHz
platform. But the platform has a low sampling rate lim-
ited by USRP’s narrow band, and it uses fixed horn or
on-chip antennas. National Instruments recently released
a mmWave experimental platform based on their PXI base-
band processing unit [61]. The platform runs on the 71GHz–
76GHz spectrum and costs $134K — almost 5× compared
with OpenMili. Other commercial platforms (e.g., Keysight’s
[62]) have similar limitations. All in all, OpenMili repre-
sents the first reconfigurable platform to support 60 GHz
wireless protocols where real-time phased-array beamform-
ing acts as a predominant feature to overcome blockage/mo-
bility [55,63]. It is also the first to enable novel 60 GHz sens-
ing applications that capitalize on the electronically steer-
able phased-array and GHz sampling bandwidth.

We note that the RFIC industry have mature ways to
manufacture on-chip 60 GHz phased-arrays [64–66]. Yet,
it entails non-trivial challenges to design a programmable
phased-array using discrete phase-switches and interfacing
it with the WR-15 waveguide form-factor. We believe Open-
Mili’s phased-array design can be a standalone contribution,
especially considering the fact that it can be detached from
OpenMili and applied to commercial/customized 60 GHz
radios with the WR-15 antenna interface [14,55,57,58].

1The material/fabrication cost of OpenMili’s phased array is
∼$1.5K, similar to the horn antenna in [55,57,58]. OpenMili
uses the same RF front-end as [55,57,58]. Its BPU/convert-
ers have similar cost as WARP (∼$5K), much cheaper than
a network analyzer.

Phased-array based location sensing. Phased-array
has shown potential in radio localization, especially due as
it can identify AoA via multi-antenna signal processing al-
gorithms [67, 68]. Recent systems [17, 51] renovated such
algorithms to isolate LOS paths, and can localize a client
via multi-AP triangulation. However, these systems com-
monly use radios with a digital phased-array which can con-
tinuously adjust phased-shift values. In contrast, practical
millimeter-wave radios [50,69,70] only allow a set of discrete
phase shifters, which entails new AoA processing. We have
explored a basic localization mechanism on such a practical
phased-array, which not only senses AoA, but also distance
between a pair of 60 GHz phased-arrays. This can be a
primitive component for a wide-range of 60 GHz sensing ap-
plications, e.g., location-aware beam-steering [71].

Beam adaptation protocols in directional-antenna
networks. Low-frequency directional-antenna based MAC
or routing protocols have been extensively explored in ad-
hoc networks [72]. At the 60 GHz frequency band, many
new challenges emerge, especially due to larger scale phased
array with up-to hundred-scale antenna elements, and hence
higher directionality. Also, shorter wavelength causes more
vulnerability to obstacle blockage. Many PHY/MAC proto-
cols [73–76] have been proposed to improve the efficiency of
beamsteering and overcome blockage, yet they only build
on simulation. They also use arbitrarily designed code-
books, whereas practical phased arrays need to respect fab-
rication constraints. In addition, large phased-array means
large number of beam patterns to adapt which, combined
with available bit-rate levels, substantially inflates the de-
cision space when link quality degrades. Our case study of
LABA exploits the practical tradeoffs herein, and propose a
learning-based framework to facilitate the decision making.
This is of independent interest and can be a building block
for a wide range of MAC/application level protocols. Our
recent project, BeamSpy [77] addressed a similar problem
of overcoming blockage for 60 GHz links. BeamSpy adopts
a sophisticated channel model that characterizes the beam
correlation by explicitly modeling the magnitude, phase and
angle of propagation paths. In contrast, LABA learns the
correlation between different beam patterns from historical
measurement. It treats the correlation function as a black
box and learns it by training. In this sense, LABA can sim-
plify the beam-quality prediction.

8. CONCLUSION
We have designed and implemented OpenMili, the first

reconfigurable architecture that captures the unique aspects
of 60 GHz radios, especially the Gsps sampling/process-
ing rate, and electronically steerable phased-array antenna.
OpenMili will be a ready-to-use, open-source platform to
speed up the development of next-generation Gbps wireless
protocols and sensing applications. Moreover, we believe
our experience in the hardware/software framework will be
transferable to future high-performance mmWave software-
radios.
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