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Abstract—Low-Earth-Orbit (LEO) satellite networks (satnets)
hold significant potential for providing global internet access with
high throughput and low latency. However, the high mobility of
the satellites and the associated handovers cause high dynamics
at the link layer, which in turn degrades end-to-end network
throughput and stability. In this work, we first present a
measurement profiling of the handover behaviors of the Starlink
satnet, so as to better understand its dynamics and accurately
determine handover timings with millisecond precision. We then
introduce SATPIPE, a new mechanism to enhance TCP and make
it robust against satnet dynamics. SATPIPE exposes the link
layer handover schedule to the TCP sender, which then adapts
to the link interruptions in a deterministic rather than trial-
and-error manner. Our implementation and experiments over
Starlink indicate that SATPIPE delivers an average throughput
gain of 9.4% to 38%, achieves up to a 127.8% enhancement
in the 10% lower throughput, and exhibits a 24.7% reduction
in retransmission ratio, compared to the state-of-the-art TCP
BBR. This advantage further propagates to the application layer,
leading to a 10.8% increase in bitrate and 33.5% reduction in
rebuffering time for video streaming applications.

I. INTRODUCTION

Low Earth Orbit satellite networks (satnets) are emerging
as a transformative technology for internet connectivity, of-
fering low-latency and high-throughput access at planet scale.
Recent LEO mega-constellations such as Starlink [1], Kuiper
[2] and OneWeb [3] are poised to enable last-mile network
connectivity by integrating with existing terrestrial network
infrastructures. Among these, Starlink has taken the lead with
over 5000 operational satellites [4], achieving 100 Mbps to
200 Mbps throughput with latencies as low as 20 ms [1].

Unlike conventional geostationary (GEO) satellites, LEO
satnet constellations orbit the Earth at high velocities to coun-
teract gravitational forces. This intrinsic characteristic imposes
an unprecedented challenge for LEO satnets, i.e., the link
dynamics. To ensure continuous connectivity towards ground-
based user terminals, the serving satellite needs to perform
frequent handovers. Although each handover only lasts a few
tens of ms, this short “freeze” of the satnet link often leads
to a burst of packet losses and RTT escalation [5]–[8],. The
performance degradation tends to be amplified at the higher
layers. In particular, the transport layer protocols (e.g., TCP
CUBIC [9] and BBR [10]) rely on the loss/delay estimation as
indicators of network congestion. BBR reacts slowly since it
relies on smoothed measurements across multiple RTTs; and
when BBR actually respond, it tends to overreact, deeming
the burst of delay/loss as equivalent to a severe network
congestion. Consequently, TCP tends to underutilize the satnet
capacity even in an ideal situation without any congestion.

Although such handover-induced instability also occurs in
other mobile networks such as cellular networks, the impact is
less pronounced due to shorter RTTs and hence faster recovery
times [11].

In this paper, we first conduct a cross-layer measurement
study to unravel the impacts of satnet handover on TCP per-
formance. Our measurement begins by examining the physical
layer behaviors including signal strength patterns under satel-
lite mobility, using Starlink as a reference system. Then, we
investigate the link-level behaviors at fine-grained millisecond
timescale, from which we derive the precise handover start-
ing/ending times, frequency and duration. Our measurement
results corroborate the hypothesis in prior works [12] and
the Starlink’s FCC filing [13], which stipulate that a new
satellite has to be scheduled for the user terminal around every
15 s. Such periodicity will likely prevail in other LEO satnets
because the satellites are usually uniformly spread out within
the constellation. Furthermore, our measurement reveals that,
each handover lasts around 50 ms, yet the TCP’s response
lags behind by a few hundred ms, and TCP’s performance
degradation often lasts a few seconds before it recovers the
congestion window close to the true network capacity.

Based on the measurement observations, we propose a
new mechanism called SATPIPE to enhance TCP performance
over dynamic LEO satnets. SATPIPE follows two key design
principles to tailor the TCP congestion control: (i) Visibility:
SATPIPE exposes the handover-induced link-level dynamics
to the transport layer, rather than relying on the trial-and-
error adaptation based on end-to-end delay/loss statistics. (ii)
Determinism: SATPIPE leverages knowledge of the periodic
handover events to plan its reactions in a deterministic man-
ner. Ideally, these two principles should together bring TCP
sending rate close to the “ground-truth” capacity of the satnet
link. However, practical implementation of SATPIPE begs two
non-trivial questions.

(i) How does SATPIPE know the handover time? Our
observations of practical satnets reveal that simply using short-
term packet loss or RTT statistics cannot discriminate satnet
handover from ordinary network capacity variations (e.g., due
to congestion in the backbone network). We thus propose
two solution mechanisms. The first employs the network time
protocol (NTP) to synchronize the TCP sender to the global
schedule of handover, which is known for a given satnet
system through the “two-line element” [12]. This solution
requires the network nodes to periodically probe the NTP
server. Our second solution further evades this overhead, by
using a time-domain periodicity detection algorithm, which



accumulates loss/RTT evidence across multiple handover pe-
riods in order to pinpoint the periodic timestamps when the
network is “interrupted”.

(ii) How should SATPIPE react to a handover event, so
as to maximize utilization of the end-to-end network capacity
while maintaining fairness? To match the congestion window
to the available network capacity, SATPIPE leverages BBR
[10], a state-of-the-art rate-based congestion control protocol
that employs delivery rate and delay together to estimate the
bandwidth-delay product. To overcome BBR’s slow reactions,
SATPIPE updates its state machine, and introduces a queue
maintenance state that explicitly flushes the data build-up due
to the short-term network freezing during handover, forcing the
end-to-end network path to accurately estimate the RTT by iso-
lating the interference from queuing delay. Unlike generic TCP
protocols, SATPIPE explicitly and deterministically respond to
short-term network capacity due to handovers. Unlike recently
proposed link-layer aware TCP adaptation [12] that directly
inhibits the congestion control during handover, SATPIPE is
essentially still a reactive protocol. It approximates the optimal
congestion window through an accelerated estimation rather
than blind inhibition, thus maintaining both efficiency and
fairness to competing flows.

We have implemented SATPIPE as a lightweight driver
patch to state-of-the-art TCP BBR. Furthermore, we have
conducted comprehensive experiments, covering diverse net-
work conditions including different path lengths, background
traffic levels, etc. We found that SATPIPE delivers an aver-
age throughput gain of 9.4% to 38% compared with BBR.
Zooming in the 10% percentile, SATPIPE achieves 127.8%
throughput enhancement. We have also evaluated SATPIPE
in a Dynamic Adaptive Streaming over HTTP (DASH) video
streaming system, which demonstrates 10.8% improvement in
average bit-rate and 33.5% reduction in rebuffering time.

In summary, our work makes the following contributions:
• We conduct fine-grained measurements to characterize

link handover and outage timing of real-world LEO
satnets.

• We design SATPIPE, the first TCP adaptation algorithm
that reacts to handover interruptions in an explicit and
deterministic manner.

• We implement SATPIPE as a patch to the standard TCP
module and validate its performance in Starlink satnet.

II. RELATED WORK

Starlink PHY layer signal identification and localization.
Recent measurement studies have investigated the physical
layer signal characteristics of Starlink. Researchers [14], [15]
have developed blind signal identification techniques to under-
stand detailed signal structure and to simulate received signals
for positioning applications. Based on the signal structure and
prior knowledge, the beamforming strategies of Starlink satel-
lites were studied in [16]. A Ku-band dish antenna was used
to capture the Starlink signals, combined with a low-noise-
block (LNB) for converting the signals to lower frequencies
and a USRP software radio for baseband processing. A similar

setup has been used to repurpose Starlink downlink tones for
opportunistic positioning [17], [18].

Starlink upper layer characterization and evaluation.
Existing research has shown that Starlink can achieve much
lower latency and higher throughput compared to conventional
satellite communications using GEO satellites [5]. However,
significant packet losses occur during satellite handovers, as
highlighted in [6]. These packet losses lead to substantial
throughput reduction on the transport layer. To gain insights
into the timing details of the Starlink system, multi-timescale
measurements were conducted at the network layer [19].
These measurements identify a coarse-grained handover period
of 15 s at medium timescales and observe decreased link
utilization during handovers. The scheduling mechanism of
Starlink satellites is comprehensively studied in [7], which
confirm the allocation period and reveal that local on-satellite
controllers manage flow scheduling from user terminals. In this
paper, we use inter-packet delay (IPD) to estimate the exact
time of handovers, rather than a metric for network stability.

TCP adaptation in dynamic networks. Cross-layer con-
gestion control has been widely explored in cellular networks
to address the mobility and resource allocation problems.
In particular, leveraging physical and link layer statistics to
inform TCP adaptation shows promise in dynamic cellular
networks. For instance, CLAW [11] and piStream [20] use
signal strength information to predict available bandwidth
of the cellular last-hop link. This prediction is in turned
used to drive precise rate adaptation at the transport layer
or application layer. SATCP [12] is a link-layer informed
TCP adaptation algorithm for LEO satnets, which shares
similar spirit as SATPIPE, and was evaluated using the LeoEM
emulator. SATCP assumes the ground station can provide
explicit handover timestamp to the user terminal to assist the
end-to-end TCP rate adaptation. Due to lack of information
about the handover duration, SATCP conservatively freezes
the congestion window (CWND) for 2.3 seconds, which
results in suboptimal use of available network capacity and
potential fairness issues. In contrast, SATPIPE is an end-
to-end mechanism running entirely on the TCP hosts. Our
experiments within the operational Starlink satnet verify its
superior performance over SATCP.

III. MEASUREMENT STUDY OF STARLINK HANDOVER

In this section, we present comprehensive measurements of
Starlink handover behaviors at both the physical layer and
network layer, uncovering the fundamental mechanisms of the
Starlink global controller.

A. PHY Layer Measurements

The Starlink downlink signal features 8 channels, each
occupying a bandwidth of 240 MHz within the Ku-band
(10.7 GHz to 12.7 GHz) [14], [21], with a 10 MHz guard band
between adjacent channels. Such large bandwidth exceeds
the capabilities of most commercial software-defined radios
(SDRs). However, in the middle of each active channel, there
are multiple tones occupying several MHz of bandwidth,



which can be treated as the indicators of the Starlink downlink
signals.

We have established a testbed setup to capture these down-
link tones following recent work [18], as illustrated in Fig. 1.
Using a universal Ku-band LNB [22], we capture and down-
convert the Starlink signals from the Ku-band to lower fre-
quencies. While a parabolic dish could enhance received
signal strength, we opted for the LNB-only approach to widen
the field of view, facilitating signal reception from multiple
satellites. The LNB connects to a USRP N310 [23] for
baseband signal processing. The N310 samples at 2.5 Msps
with and centers at 11.325 GHz – the carrier frequency of
one of the active Starlink downlink channels. To ensure the
downlink transmission is active, we continuously download
high-definition videos through the Starlink User Terminal
(UT), which is co-located with the LNB during measurements.

Starlink UT
Universal LNB

Parabolic dish

Host Laptop

USRP

Figure 1. Starlink downlink
physical layer signal receiver

15s

15s

SAT1 Beam1

SAT1 Beam2

15s

SAT2 Beam1
SAT2 Beam2

15s

GEO Satellite

DC Spike

Figure 2. Received Starlink downlink mid-
dle channel signals.

Fig. 2 shows the frequency map of different satellites,
including broadcast GEO satellites and Starlink LEO satel-
lites. We can observe two different Starlink satellites based
on Doppler shifts. Satellite 1 exhibited the strongest signal
strength for 15 seconds before experiencing a sharp drop,
indicating a handover event. Subsequently, Satellite 1 switched
to a different beam (beam 2), possibly covering a different
region, so the leaked signal strength captured by our receiver
became much weaker. Meanwhile, Satellite 2 showed the
strongest signal strength. After 15 seconds, Satellite 2 also
switched beams, but no further handovers were detected. The
reason for this could be that the satellite used an alternate
active channel for data transmission, while our signal detection
system is set up to monitor only a single channel. We con-
ducted multiple independent experiments and the measurement
results consistently support our findings and speculations.
Based on the physical layer observations, we can conclude that
each satellite indeed serves a target region for approximately
15 seconds before it hands over to the next.

B. Fine-grained Handover Profiling Using Network Statistics

For a more fine-grained understanding of Starlink han-
dovers, we measure the packet-level RTT and TCP throughput
variations. We generate TCP traffic from an AWS EC2 server
iPerf3 3.14, and receive the data using a Starlink UT. The
UT is located in California, whereas the server is in Ohio by
default. A 1 Gbps Ethernet cable connects the UT with a PC
which acts as the TCP client.

We repeat several iperf3 measurements running with sin-
gle TCP connection using CUBIC. We then calculate the
throughput within each 100-millisecond window. The results
in Fig. 3 reveal significant TCP throughput drops around every
15 seconds. Fig. 4 further shows the periodic pattern of RTT,
which is likely caused by the routing path changes upon
handover from one satellite to the next. We also notice that
while RTT variance can indicate periodic handovers, there are
times when changes in RTT are not significant, which makes
it difficult to pinpoint the exact timing of the handover directly
from RTT.
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Figure 3. Throughput measurement
from OH to SD using TCP CUBIC
shows periodic throughput drop.
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Figure 4. RTT collected in TCP BBR
shows periodic patterns.

Meanwhile, after analyzing the absolute timing of each
received packet, we found the RTT change tends to occur
deterministically, at the 12th, 27th, 42nd, and 57th second past
every minute. This observation matches recent measurement
studies [7].

To obtain a precise estimation of the handover duration,
we establish multiple independent TCP connections from the
client to the AWS EC2 server and use TCPdump [24] to
capture the timestamp of the receiving packets. We record the
timestamps of two consecutively received packets and obtain
the corresponding IPD. The IPD should be a random variable
with a negligible mean value when the satellite handover is
not included between the two consecutive packets, and should
have a relative large mean value otherwise.

t

Trandom

Trandom TrandomThandover

Handover Dependent IPD

Packet received timestamp Handover starts Handover ends

Handover
Independent IPD

Figure 5. Illustration of calculating inter-packet delays.

We perform a 10-minute iperf3 measurement and analyze
received packets whose the timestamps falls within the inter-
vals [12s-∆, 12s+∆], [27s-∆, 27s+∆], [42s-∆, 42s+∆], [57s-
∆, 57s+∆] past every minute. The value of ∆ is set to 100 ms,
used as an estimated upperbound for handover duration. Hav-
ing a coarse-grained estimate of when the handover happens
decreases the amount of data we need to process, and mitigates
the interference from backbone traffic. These data points
constitute the experimental group, from which the IPD values
are extracted. In order to more accurately depict the variance
in IPD distributions in different time slots, we use the intervals
[10s-∆, 10s+∆], [25s-∆, 25s+∆], [40s-∆, 40s+∆], [55s-∆,
55s+∆] as control group, which deviates from the ground-truth



handover timing (observed in the physical layer measurement)
by around 2 seconds. Since handovers occur about every
15 seconds, we expect at most 40 handovers in a 10-minute
test. To minimize the possible IPD outliers due to backbone
network congestion, we take the largest 30 IPDs out of all
the data points within the experimental and control groups,
respectively. We then remap the timestamps to the [0s, 15s]
period and plot the IPD values in Fig. 6. Each line segment
represents an IPD, with IPDs from the experimental group
serving as unbiased estimations of handover duration.The time
offset of the experimental group is relative to 12s past every
minutes, while the control group is relative to 10s.
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Figure 6. Distribution and length of Top 30 IPD values

Unlike randomly distributed IPDs in the control group, the
top-30 IPDs in the experimental group are densely concen-
trated within the same interval, around [-30,60] ms. These
periodic large IPDs are caused by the link outage during the
handover. These IPDs can be considered as unbiased estimates
of handovers, allowing us to deduce that the estimated han-
dover duration is almost always less than 100 ms.
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Figure 7. CDF for IPD starting and ending time before NTP synchronization

However, while the duration of the link outage remains
relatively stable, the starting and ending times vary across
measurements. We conduct these measurements from different
servers to different clients. The CDF for the starting and
ending times of each measurement is depicted in Fig. 7.
Clearly, the relative starting and ending times differ across
various measurements, where the timestamps are generated by
different local clocks. Therefore, time synchronization plays a
crucial role in reducing the estimation error of the handovers
for different servers and clients.

To verify the feasibility of truly deterministic estimation
of the handover timing, we synchronize the client to a global
stable clock through Network Time Protocol (NTP) [25]. Fig. 8
illustrates the CDF for both starting and ending times, which
are highly consistent across different measurement tests.

In summary, we can conclude that the handover process
in Starlink follows a periodic and deterministic pattern. All
the handover events are observed to take place within some

specific time intervals: [12s + ∆1, 12s + ∆2], [27s + ∆1, 27s
+ ∆2], [42s + ∆1, 42s + ∆2], [57s + ∆1, 57s + ∆2]. Using
a conservative setting of ∆1 = 15 ms and ∆2 = 100 ms, we
observe no outliers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-50  0  50  100  150  200

test1 test2 test3

C
D
F

Relative Time Offset(ms)

(a) CDF for IPD starting time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-50  0  50  100  150  200

test1 test2 test3

C
D
F

Relative Time Offset(ms)

(b) CDF for IPD ending time

Figure 8. CDF for IPD starting and ending time after NTP synchronization

IV. SATPIPE SYSTEM DESIGN

In this section, we explain the system design logic behind
SATPIPE and how it can be implemented through a lightweight
patch to existing TCP.

A. SATPIPE Overview

SATPIPE is a generic TCP enhancement mechanism that
mitigates the inaccurate responses of TCP to handover-induced
network dynamics. SATPIPE employs two methods to de-
termine when a handover occurs: an NTP-based scheme,
requiring the TCP sender to synchronize to global clock, thus
knowing the absolute timing of periodic handover events; and a
blind estimation scheme, requiring an initial IPD measurement
period (around 3 minutes) to determine the relative timing of
handovers, relative to the sender’s local clock, with periodic
recalibration of clock drift in the background.

Given the handover schedule, SATPIPE modifies the TCP
behavior during each handover period. It freezes classical
TCP’s short-term overreaction to the RTT/loss surge during
handover. Instead, it enforces a reestimation of the available
network capacity and reapplies the TCP’s CWND estimation
method immediately after the handover period. This design
principle is applicable to all TCP variants. Yet without loss of
generality, we demonstrate its use for the state-of-the-art TCP
BBR. BBR is preferred over the widely used CUBIC due to
satellite link instability because Starlink experiences persistent
packet loss, and CUBIC’s sensitivity to packet loss impedes
reaching bottleneck bandwidth efficiently. In contrast, BBR
can utilize available bandwidth more efficiently than CUBIC,
as we will show later in our experimental validation.

B. How does TCP BBR React to Satnet Handover?

Before introducing the detailed design of SATPIPE, we
explain why BBR struggles to fully utilize the bandwidth in
satnets. To this end, we compare its behavior when running
across a WiFi network versus the satnet. Specifically, we first
rerun the iperf3 TCP measurement using aforementioned AWS
EC2 server and Starlink user terminal connection. Then we
change the last-hop to be a campus WiFi network. Our ex-
periments ran during late evenings to mitigate the interference
from competing traffic. Fig. 10 plots the measured time-series
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Figure 9. TCP metrics during transmission

of BBR throughput in both cases. We observe that the BBR
throughput over WiFi is relatively stable, except for a sharp,
ephemeral drop-and-recovery around every 10 seconds. On
the other hand, when running over the Starlink satnet, BBR
experiences prolonged periods of throughput degradations. We
also ran a UDP session which reveals stable network capacity
with periodic, ephemeral drop every 15 seconds. Yet the TCP
BBR throughput is much lower than this upper limit. BBR’s
behavior also drastically differs from other TCP variants such
as CUBIC (Fig. 3), which shows a clear periodic throughput
drop corresponding to the 15 second satnet handover schedule.
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Figure 10. BRR throughput variance over Starlink network and Wi-Fi

To investigate the reasons behind such discrepancies, we
visualize the BBR behavior and corresponding transport layer
statistics before/after handover in Fig. 9. When the handover
starts (at timestamp T1), the delivery rate abruptly drops to
zero due to last-hop link outage. However, the CWND re-
mains unchanged across the short handover duration, because
BBR uses bottleneck bandwidth (BtlBW) filter to estimate
the bandwidth, resulting in a moving-average lagging effect.
Consequently, the TCP sender keeps injecting a large amount
of data into the end-to-end network pipe. Upon completion
of the handover and a new satnet link being reestablished (at
T2), the in-flight data exceeds the bandwidth delay product
(BDP) for a period of time, resulting in a surge in RTT, which
in turn causes a drop in the estimated bottleneck bandwidth.
Once the bandwidth filter in BBR expires (at T3), the CWND
is reduced to a relative low value in commensurate with the
low estimated bandwidth, and it requires a significant amount
of time to recover to its normal level (T4) due to the slow
additive increase.

We note that the WiFi network does not experience a long-
lasting throughput degradation (Fig. 10), mainly because the
network capacity is relatively stable and there is no drastic
in-flight queue buildup. The periodic sharp throughput drop
(around every 10 s) is mainly due to the RTT probing
mechanism in BBR, which attempts to flush in-flight data to

obtain an accurate estimation of RTT by minimizing queue
effects (Section IV-C).

C. SATPIPE Workflow

Fig. 11 illustrates the state machine of SATPIPE in
contrast to BBR. SATPIPE introduces an additional stage
called Queue Maintenance to manage CWND during
handovers. Otherwise, it remains similar to the default BBR
as detailed below:

Startup

Drain

ProbeBW

ProbeRTT

(a) BBR workflow

Startup

Drain

ProbeBW

ProbeRTT

Queue
Maintenance

(b) SATPIPE workflow

Figure 11. State machines for BBR and SATPIPE

Startup: Similar to the slow start phase of classical TCP,
this stage exponentially increases the sending rate and CWND
to probe the current bottleneck of the network. The growth rate
of CWND is precisely designed so that it will compete fairly
with other data flows.
Drain: If the RTT is increasing while the estimated

bandwidth remains essentially unchanged, BBR determines
the system has reached its bottleneck capacity. Accordingly, it
enters the Drain phase, which rapidly changes the sending
rate to reduce the in-flight data volume to the size of the BDP.
ProbeBW: Once the in-flight data volume matches the BDP,

the system transitions to the ProbeBW phase, where it spends
most of its time. Pacing gain adjustments (1.25, 0.75, 1, 1, 1,
1, 1, 1) intermittently increase the sending rate to check for
increased bottleneck bandwidth.
ProbeRTT: In this stage, BBR sets CWND to a very small

value to drain the current amount of in-flight data and ensures
that the RTT is a theoretical minimum during this time to adapt
dramatically environment change. BBR enters ProbeRTT
once the estimation of round-trip propagation (RTprop) has
not been updated for 10 seconds by default.
Queue Maintenance: During the predefined handover

intervals, SATPIPE forces the stage machine to transition



into the Queue Maintenance phase. Here, CWND is
reduced to 0 to prevent queue buildup during handovers.
After a short period (equal to the handover duration)
in Queue Maintenance, SATPIPE transits directly to
ProbeRTT. This step is crucial as it prevents network queue
overflow during handovers and forces an instant update of
the propagation delay estimation to adapt to new routing
conditions, rather than waiting for the default 10-second
RTprop update as in BBR.

The change in transport layer statistics for SATPIPE is
illustrated in Fig. 9. During handover, SATPIPE automati-
cally reduces the CWND, preventing an increase in in-flight
data. After ProbeRTT, SATPIPE quickly restores the original
CWND. During handover, the estimated bandwidth falls to
zero as no ACKs are received. When the handover is complete,
the previously buffered ACKs, delayed by the handover, reach
the sender and cause a relatively low estimated bandwidth,
similar to BBR. Subsequently, because of the low CWND
during ProbeRTT, the estimated bandwidth stays at zero until
the CWND returns to original level.

D. Other Design Considerations
Eliminating dependency on external handover indica-

tors. SATCP [12]–state-of-the-art satnet TCP design–mainly
relies on incoming handover reports from ground stations. A
relay application is designed in the user space to listen to han-
dover reports, pass them to the kernel, which further triggers a
freezing of the CWND during the handover period. However,
such external report signals can introduce unnecessary delays
and overhead that require a longer freezing window, thereby
increasing the likelihood of using an outdated frozen CWND,
which either causes underutilization of network capacity or
unfair aggression over competing flows.

In contrast, SATPIPE can abandon the handover report de-
sign thanks to its lightweight mechanism for accurate handover
time estimation (Section IV-E). We implement the handover
estimation directly in the kernel to ensure instantaneous re-
sponse to handovers.

CWND inhibition versus reactive CWND adaptation.
SATCP’s proactive approach of inhibiting the CWND may in-
advertently affect TCP fairness. Despite the inhibition window
being relatively short, maintaining the same CWND before,
during, and after the handover may still unfairly deprive
bandwidth from competing flows in the backbone network,
especially those newly started flows during the handover pe-
riod. In effect, SATCP’s default 2.3-second CWND inhibition
is equivalent to tens of RTTs which amplify the effect.

SATPIPE represents a reactive approach for TCP adaptation,
focusing on reducing the sending rate during handover and
flushing the queue afterwards. Thanks to the filter in the
BBR protocol, the estimated available bandwidth remains
unaffected. Draining the queue for 100 ms results in a 1%
decrease in throughput performance but we can gain a lot more
by preventing CWND fallback due to queue buildup.

E. Blind Estimation of Handover Time
NTP is the default “time server” for most major Linux dis-

tributions [25]. As mentioned in Section III-B, when both ends
of the TCP are synchronized to NTP, the handover schedule
can be predicted in an almost deterministic manner. Frequent
NTP synchronization through the satellite link may affect
the throughput performance. Fortunately, NTP dynamically
chooses the optimal poll interval within the range defined
by a minpoll and maxpoll, which typically default to 64
and 1024 seconds [25], respectively. These values are suitable
for the majority of environments and the clock mismatch is
negligible within the polling intervals. Given that these polling
intervals are relatively long compared to the handover window
we intend to operate, the NTP synchronization overhead can
be ignored for SATPIPE.

To address the cases when the NTP synchronization is
unavailable (e.g., due to security restrictions) to the TCP
nodes, we introduce a blind estimation algorithm. Specifically,
we estimate the precise handover time by analyzing the IPDs.
By mapping the start and end times of each IPD to a [0,15]
second interval, we create a counter for each small time slot
(1 ms) to represent the possible intervals in which the large
IPDs occur. Given the deterministic nature of handover times
and the random distribution of non-handover related IPDs, a
sufficient numbers of IPD samples will result in a peak in
the counter corresponding to the handover time, as depicted
in Fig. 12. Identifying the peak location allows us to pinpoint
the precise handover time.
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Figure 13. Blind estimation error
compared to NTP synchronization

The pseudo-code for the blind estimation is shown in Algo-
rithm 1, where IPD is the difference between adjacent received
packet timestamps and topIndex is the list containing the
index of top num largest IPDs. The blind estimation can be
executed in user space, and the results can be passed to the
kernel for handover time synchronization without NTP.

Theoretically, the more IPD samples we collect, the higher
confidence the blind estimation can achieve. Fig. 13 shows
the estimation error relative to the NTP ground-truth, as we
accumulate more IPD samples. We observe that achieving an
error of less than 10ms requires capturing 3 minutes of IPD
samples. This implies that the user terminal (or the client
device connected to the user terminal) needs to initialize itself
by running the 3-minute blind estimation once in a bootstrap
phase. Afterwards, it only needs to rerun the calibration peri-
odically to offset potential local clock drift. Such recalibration
can be performed in the background because it only requires
collecting and analyzing the IPD samples. Modern computing
devices commonly have a clock stability of 10ppm or less,
corresponding to at most 18 ms of drift over 30 minutes.



Given that the handover during is around 100 ms, such drift is
unlikely to adversely impact the SATPIPE operations. In other
words, recalibration in the background for every 30 minutes
should suffice.

Algorithm 1: Blind Estimation of Handover Time
Data: PktTimestamp: List of Int
Result: peakPosition: Int
Res ← 15000 // Millisecond resolution
Cnt ← zeros(Res) // Create Counter list
IPD ← diff(PktTimestamp)
topIndex ← argsort(IPD, num)
n ← 0
while n <= len(topIndex)-1 do

index ← topIndex[n]
start ← int(PktTimestamp[n])%Res
end ← int(PktTimestamp[n+1])%Res
if start < end then

for i ← start to end do
Cnt[i] ← Cnt[i] + 1

else
for i ← start to Res-1 do

Cnt[i] ← Cnt[i] + 1
for i ← 0 to end do

Cnt[i] ← Cnt[i] + 1

n ← n + 1
peakPosition ← argmax(Cnt)
return peakPosition

F. SATPIPE Implementation

SATPIPE is implemented as a lightweight kernel patch to
the TCP driver. The pseudo-code for SATPIPE is shown in
Algorithm 2. We emphasize that SATPIPE runs entirely at the
TCP sender side. The aforementioned blind estimation uses
the IPD of consecutive ACKs to gauge handover schedule,
which in turn drives the state machine in Algorithm 2.

The boolean variable Queue_Maintenance_Flag
serves as an indicator to determine whether the congestion
window should currently be set to zero to avoid queue stacking
during the handover, and Force_RTT_Flag determines
whether SATPIPE should transition to the ProbeRTT phase to
drain the in-flight data and obtain accurate RTprop estimation.

In ProbeRTT, the CWND is set to 4 maximum segment
size (MSS) and lasts for 200 ms by default. Given the short
handover duration and the requirement for ProbeRTT imme-
diately following the handover, we can merge ProbeRTT and
Queue Maintenance by prolonging the ProbeRTT du-
ration. Similar to Queue Maintenance, ProbeRTT also
sets CWND to a low value to make sure the queue is empty
and measures the RTT. This adjustment allows the system to
enter ProbeRTT when the handover starts. Based on previous
measurements, the ProbeRTT duration can be set to (200 +
handover duration) milliseconds.

It is important to note that the SATPIPE is not strictly

Algorithm 2: SATPIPE implementation on Linux

Procedure Queue_Maintenance()
if Current_Time ∈ [Tstart, Tend] then

CWND ← 0
Force_RTT_flag ← True
Queue_Maintance_flag ← True

else
Queue_Maintance_flag ← False

Procedure Force_RTT_Probing()
if Force_RTT_flag and

!Queue_Maintance_flag then
Force_RTT_flag ← False
Enter ProbeRTT()

hard-coded to the Starlink characteristics. The periodicity and
determinism of handover is a universal phenomenon due to the
periodic nature of the LEO satellite constellation. SATPIPE’s
blind handover estimation algorithm ensures that it can adapt
to any LEO satnet’s deterministic handover schedule.

V. EVALUATION

In this section, we evaluate SATPIPE in comparison with
widely deployed TCP protocols including Reno, CUBIC [9],
the state-of-art BBR [10] and SATCP [12] across a wide range
of scenarios in real-world satnets. We also examine how well
SATPIPE’s performance gain translates into improved quality
of experience for video streaming applications.

A. Experimental Setup

We performed our measurements using Gen-2 Starlink user
terminal, installed in open areas. The user terminal connects
to the laptop via a 1Gbit Ethernet cable instead of WiFi link,
which avoids the uncertainties caused by the wireless links.

We conducted experiments using 6 AWS EC2 server in-
stances located in different places, each representing different
path lengths: North California (NC), Oregon (OR), Ohio
(OH), London (LD), Singapore (SG) and Canada (CA). The
EC2 servers run Amazon Linux 2023 with kernel version
6.8.10. We used a Linux laptop as the client, located in San
Diego, California. By default, the clients and servers are NTP
synchronized.

For application-level measurements, we modified dash.js
[26] for DASH video streaming to collect enhanced video met-
rics including bitrate and rebuffering time. In our assessments,
we used Big Buck Bunny [27] as the reference video, encoding
it with the H.264/MPEG-4 standard. This video is encoded at
bitrates in {210, 951, 1451, 2642, 4906, 7427, 13611} kbps,
pertaining to video resolutions of {144, 360, 480, 720, 1080,
1440, 2160}p. The video has a total length over 10 minutes,
and is divided into 318 chunks following the DASH standard.
Unless otherwise noted, DASH servers ran on Amazon EC2
t2.large instances.

Similar to the state-of-the-art video streaming system [28],
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Figure 14. Comparing SATPIPE with existing TCP protocols by analyzing their performance
through iperf3.
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Figure 15. Starlink throughput measurement us-
ing iperf3 shows SATPIPE judiciously reduces
CWND during handover and recover rapidly.

we consider a variety of QoE metrics derived from the
following general equation with different parameters:

QoE =
1

N
(

N∑
n=1

q(Rn)−λ
N−1∑
n=1

Tn−µ
N−1∑
n=1

|q(Rn+1)−q(Rn)|)

for a video with N chunks. Rn denotes the bitrate of chunk
n, and q(Rn) translates this bitrate into the perceived quality
by a user. Tn indicates the rebuffering time caused by fetching
chunk n at bitrate Rn. λ and µ represent the penalty for
rebuffering time and smoothness, respectively.

We assess three options for q(Rn), including linear bitrate
utility used by MPC [29], logarithmic utility used by BOLA
[30] and High Definition (HD) favored utility introduced in
Pensieve [28]. We also examine SATPIPE across various QoE
preferences, including balance, smoothness preference (SP),
and favoring a low stall rate (RP). The parameters for different
QoE metrics are summarized in Table I.

To minimize the effect of network traffic variations through-
out the day, all the measurements are carried out consecutively
in the shortest possible time frame. Also, we intentionally
introduce additional background traffic to represent real-world
scenarios with competing flows.

Table I
THE QOE PARAMETERS WE CONSIDER IN OUR EVALUATION.

QoE linear QoE log QoE HD
q(Rn) Rn log(Rn/Rmin) Rnlog(Rn/Rmin)

λbalance Rmax log(Rmax) Rmax

λRP 2Rmax log(2Rmax) 2Rmax

µbalance 1 1 1
µSP 2 2 2

B. Performance Evaluation

SATPIPE throughput and retransmission ratio. We per-
formed multiple 3-minute iperf3 measurements with single
TCP connection from the EC2 servers to the Starlink UT.
Fig. 14 shows the average throughput over Starlink for servers
at different locations. Error bars span ± one standard deviation
from the mean unless otherwise noted. We notice that packet
loss based algorithms, such as TCP Reno, TCP CUBIC
and SATCP can not utilize available bandwidth efficiently.
For example, BBR can achieve 4.3× to 7.6× the average
throughput of CUBIC. One possible reason is that loss-
based algorithms are overly conservative in responding to
frequent losses over the satellite wireless link. SATCP keeps

the CWND unchanged before and after the handover, thus
experiencing a performance boost compared to CUBIC in most
cases. However, SATCP’s aggressive congestion inhibition
window (2.3s) may result in a prolonged period of suboptimal
CWND, causing only minor improvement or even performance
degradation. Also, packet loss on the wireless link during non-
handover periods is the main factor behind SATCP’s inferior
performance compared to BBR in real-world measurements, as
LeoEM [12] does not account for wireless link characteristics.

In contrast, SATPIPE can increase average throughput by
9.4% (SD ↔ SG) to 38.2% (SD ↔ OH) compared to BBR.
For instance, SATPIPE can achieve 200 Mbps throughput over
the SD↔ NC path, which reaches the limit of the link capacity
claimed by Starlink [1]. Zooming in the long-tails, we observe
that SATPIPE significantly enhances the throughput perfor-
mance at lower percentiles. Specifically, SATPIPE increases
throughput at the 10th percentile by up to 127.8% (SD ↔
OH), effectively addressing the issue of transient throughput
drops during handover periods [12].

SATPIPE is designed to mitigate the effect of bursty queue
accumulation during the handover. SATPIPE reduces CWND at
a particular time interval every 15 seconds and the throughput
should recover rapidly after the handover. Fig. 15 demonstrates
that the real-world throughput performance of the Starlink
network aligns with the design of our system. Additionally,
the throughput behavior is similar to the ideal behavior of
BBR observed in a stable WiFi network as shown in Fig. 10.

We further compare the traffic patterns of BBR and
SATPIPE from Ohio to California. BBR takes a con-
siderable amount of time to recover from the effects
of the handover, which can negatively impact real-time
applications, such as video streaming. In contrast, SATPIPE
ensures that there is no queue buildup thanks to properly
designed Queue_Maintenance and ProbeRTT stages,
thus maintaining high CWND after the handover. The
periodic CWND drop for SATPIPE in the figure is caused by
Queue_Maintenance and ProbeRTT, lasting for around
300ms, during which SATPIPE tries to flush the in-flight data
accumulated during the handover.

Fig. 16 shows the achieved retransmission rate and through-
put for the SD ↔ NC path. Compared to BBR, SATPIPE
significantly reduces the retransmission rate from 1.27% to
0.956%. Interestingly, the decrease in retransmission ratio
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multiple data flows
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existing congestion control algorithms.
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Figure 20. Performance under different QoE definitions.

corresponds to the percentage of the handover duration (50ms)
relative to the entire handover cycle (15s). It is a solid
proof that SATPIPE successfully reduces retransmission during
handovers and thus improves bandwidth utilization.

SATPIPE fairness. To understand the impact of competing
flows and verify that SATPIPE remains fair across different
data streams, we consider a situation where multiple SATPIPE
flows share the same Starlink bottleneck link. The experiment
is set up such that new SATPIPE flows initiate every 30 seconds
and last for 60 seconds. Fig. 17 shows the throughput of three
SATPIPE data flows over time. During the initial 30 seconds,
only a single SATPIPE flow is active. We observe that SATPIPE
reaches good fairness across competing SATPIPE flows when
we create or terminate SATPIPE data streams. Table II shows
the average throughput for different data flows and verifies
that coexisting data streams can all share available bandwidth
fairly. Since SATPIPE does not change the logic of BBR
for calculating CWND in non-handover situations, SATPIPE
and BBR theoretically have the same fairness. During the
handover, for all the data streams, SATPIPE will reduce the
CWND simultaneously and empty the queue at the same time,
which will not affect the fairness among different data streams.

Table II
THROUGHPUT OF MULTIPLE DATA FLOWS

Time
Interval

SATPIPE Flow 1
Avg. Throughput

SATPIPE Flow 2
Avg. Throughput

SATPIPE Flow 3
Avg. Throughput

[0,30]s 156.4Mbps × ×
[35,60]s 89.3Mbps 90.8Mbps ×
[65,90]s 74.2Mbps 77.8Mbps 76.7Mbps

[95,120]s 160.4Mbps × 159.6Mbps
[125,150]s 225.9Mbps × ×

SATPIPE latency. To measure TCP RTT, we utilize TCP-
dump to timestamp packet transmission and receipt of cor-
responding ACKs. Fig. 18 illustrates the RTT for three rep-
resentative server locations. SATPIPE shows similar RTT as
BBR. We also notice that CUBIC has a significantly lower
RTT than BBR and SATPIPE, especially for the SD ↔ NC

path. The reason is that CUBIC overly reacts to handover in
Starlink, resulting in low bandwidth utilization, and hence low
queuing delay.

DASH video streaming QoE. We conduct video streaming
measurements to examine how SATPIPE benefits the applica-
tion layer. The achieved average bitrate and rebuffering time
is shown in Fig. 19. SATPIPE achieves 10.8% improvement in
bitrate and reduces 33.5% of the rebuffering time, leading to
higher QoE. Fig. 20 demonstrates that SATPIPE outperforms
state-of-the-art TCP algorithms across all variants of the
general QoE definition. Compared to BBR, SATPIPE enhances
QoE by 9.6% to 19.4% across these variants. Notably, SAT-
PIPE achieves the highest average improvements of 16.2% in
smoothness-favored mode. The primary enhancement provided
by SATPIPE in video streaming lies in increasing the playback
bitrate and maintaining consistent bitrate before and after
handovers, thereby improving smoothness.

VI. CONCLUSION AND FUTURE WORK

We have introduced SATPIPE, an enhanced TCP for highly
dynamic satnets that avoids unnecessary throughput fallback
caused by handovers. Unlike prior solutions, our algorithm
does not rely on satellite tracking and handover reports. It
only requires minor modifications to state-of-the-art conges-
tion control algorithms. Our implementation and experiments
show that SATPIPE can significantly improve TCP throughput
and video QoE. We believe SATPIPE can be adapted to
different LEO satellite networks which inevitably experience
periodic handover. Our future work will focus on developing
more precise physical-layer informed bandwidth estimation
algorithms [11], [20] for satnets. The source code of SATPIPE
is available at https://github.com/dzhao99/SatPipe
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