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Figure 1: (a) With ExGSense, user A is able to see the remote face of the user B and vice versa, despite the occlusion

of HMDs. (b - e) show the proof-of-concept prototype.
ABSTRACT

Immersive face-to-virtual-face telecommunication is one
unique use case for virtual reality (VR) technologies. Existing
camera-based telephony systems cannot be used for such
immersive VR video chat, due to the physical occlusions of
head-mounted displays (HMDs) and/or unwieldy positioning
of cameras. To address these, we present ExGSense, a new
VR input modality that can sense and reconstruct both upper
and lower facial gestures, by only using lightweight biopo-
tential sensors embedded within the HMDs. We optimize
the sensor arrangement based on facial anatomy and employ
a multiview classification pipeline to exploit the multiple
dimensions of signal features. We thus enable ExGSense to
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detect whole facial gestures by using a sparse set of biopo-
tential transducers. We prototyped ExGSense and evaluated
its performance with 42 facial gestures and across different
users. We showed a 93% accuracy for user-specific evalua-
tion, and 77% accuracy for user-independent evaluation with
low calibration overhead. We believe ExGSense constitutes
a promising input modality for immersive VR interactions.

CCS CONCEPTS

« Human-centered computing — Gestural input.

KEYWORDS

Biosensing, Face Gesture Sensing, Face Synthesis, Interactive
Virtual Reality, Wearables, Human-Computer Interaction

ACM Reference Format:

Chen Chen, Ke Sun, and Xinyu Zhang. 2021. ExGSense: Toward
Facial Gesture Sensing with a Sparse Near-Eye Sensor Array. In
Information Processing in Sensor Networks (IPSN’ 21), May 18-21,
2021, Nashville, TN, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3412382.3458268



IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

1 INTRODUCTION

Emerging virtual reality (VR) technologies are enabling a
new form of telepresence applications, where one wearing
head-mounted display (HMD) can perform face-to-virtual-
face interactions in an immersive 3D environment [20, 28, 46].
Webcam capturing has been widely adopted by traditional
video telephony systems such as Skype and Zoom. However,
these methods fail in the interactive VR contexts because
they cannot capture the upper face which is occluded by the
HMD [3, 4, 17, 64]. Existing research explored “see-through”
sensors, e.g., electromyography (EMG) transducers, for emo-
tion recognition. But emotion sensing alone can hardly sat-
isfy the needs of interactive VR, where realistic facial images
need to be delivered to the remote peers (see Sec. 6.2).

In this work, we present ExGSense, as a compact solution
to fill the technology gap. ExGSense acts as a lightweight
companion sensor kit that augments existing HMDs. It can
sense eye and mouth gestures, and reconstruct a whole face,
by leveraging sparse near-eye biopotential signal measure-
ments. ExGSense uses a few low cost commercially available
dry electrodes resting around the eyes, to extrapolate the
bio-signal features. These features provide a high level ab-
straction of the sophisticated facial anatomical patterns. To
make the feature extraction effective, ExGSense incorporates
a novel dual-branch multi-view decision pipeline, as well
as a model generalization mechanism. The solution frame-
work enables ExGSense to reconstruct whole-face gestures
with much less amount of training compared to prior arts.
ExGSense strikes a balance between sensing granularity, cost
and form factors. Its facial expression sensing mechanisms
constitute a sensing primitive for future interactive VR ap-
plications, e.g., creating 3D avatar faces and automatically
exchanging emoji streams or facial snapshots between two
users wearing HMDs for remote immersive interactions.

We prototyped ExGSense using consumer grade electron-
ics and eye mask, which were incorporated into a VR HMD
as a lightweight add-on (see Figure 1b-e). We adopted widely
used eye gestures in existing Human-Computer Interaction
(HCI) literature and mouth gestures inherited from lip-syncing
applications. Our experiments show that ExGSense achieves
an overall accuracy of 93% in sensing the eye/mouth ges-
ture of an individual. With a simple classification pipelines,
it achieves a competitive model transferability across dif-
ferent users with overall 63% accuracy. Benefited from its
multi-branch classification design, the cross-user classifica-
tion accuracy is improved to 77% with only an extra ~ 2 min
of mouth gesture training examples for model calibration.
While near-eye transducers have been widely used to sense
eye movement, ExGSense represents the first to explore an
indirect sensing modality with respect to the mouth ges-
tures by leveraging the underlying facial muscle anatomy
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patterns and biopotential signal propagation. The workflow
of ExGSense is summarized in Figure 1a.

ExGSense marks an important step towards the vision of
immersive VR interaction [65], through the following tech-
nical contributions: (1) We propose a new sensing modality,
using near-eye biopotential sensors to detect full face expres-
sions. To achieve this, we explore the paradigm of indirect
sensing where the lower facial gestures can be detected by
the transducers resting on the upper face. (2) We propose
a dual-branch multiview representation learning pipeline,
which can explicitly exploit the sensor diversities across
time-frequency-spatial domains. We further propose a simple
re-calibration approach for adapting the pretrained model
for different users. (3) We build a proof-of-concept prototype
of ExGSense and conduct user studies to verify its ability to
concurrently track the fine-grained upper face eye and lower
face mouth gestures by fully leveraging the facial anatomy
patterns.

2 RELATED WORK
2.1 Camera Based Approach

The most intuitive facial gesture sensing modality is camera
based approach. Today’s webcams are widely used by In-
stant Message (IM) and video conferencing applications for
remote face-to-face communications and collaborations [68].
Computational graphics tools, e.g., OKAO?!, iMotions?, and
OpenFace [3, 4, 17] are also widely used in affective com-
puting domain [13, 15, 50] to sense and analyze facial ges-
tures. With deep learning, these tools have achieved fine-
grained face tracking with competitive accuracy. For exam-
ple, OpenFace can accurately detect facial landmarks, head
pose, and gaze [3]. However, under the interactive VR setup,
users are not able to see the upper face of remote users due
to the occlusions of HMD. Although recent work [1] tried
to overcome the hindrance by leveraging the front-facing
camera on a smartphone inside the HMD, and has achieved
95.3% blink detection accuracy and 10.8° gaze tracking error,
the approach cannot capture the lower facial characteristics.
These issues are also witnessed by a vast majority of commer-
cially available devices, e.g., HTC Vive Eye Pro etc. Besides,
these products would also be subject to high cost. Other
researchers [62, 64] achieved face synthesis via multiview
head mounted cameras, but the high cost, complicated model
training procedures and demanding computing resources
pose significant challenges.

IThe OKAO: https://plus-sensing.omron.com/concept/
2The iMotions: https://imotions.com/
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Figure 2: Rapid proof-of-concept prototype.

2.2 Proximity and Pressure Based
Approach

To overcome the barriers of HMDs’ occlusions, researchers
have explored proximity and pressure sensors with “see-
through” capabilities. The idea is to approximate the surface
deformation caused by facial gestures. LiGaze [37], for exam-
ple, used an infrared (IR) camera to estimate gaze direction
inside HMD and smart glasses, and achieved 10.1° error. Oth-
ers [6] used transparent capacitive sensor arrays to estimate
gaze by computing the proximity. Such strategies typically
involve complicated hardware design, and can only detect
partial face due to limited sensing granularity.

Alternatively, Li et al. adopted a pressure based approach
with 8 strain gauges attached on the foam line of HMD to
sense upper facial gestures and a RGB-D camera to cap-
ture the lower facial gestures [35]. MindMaze® developed a
sensing mask that can make VR more emotional aware [45].
However, such mechanical movement enabled sensing ap-
proaches cannot concurrently detect eye activities and lower
facial behaviors due to limited field-of-view. Another limi-
tation observed by [35] is low model generalization across
users due to the dominance of user-dependent features over
gesture-dependent features encoded from sensing data. This
implies for each new user, a non-trivial pre-calibration is
required, causing low usability in practice.

2.3 Interferometry and Tomography Based
Approach

Instead of relying on sensing facial shapes (through proxim-
ity) and colors (through vision), interior anatomical patterns
of facial gestures could be sensed via interferometry and
tomography based approaches. Interferi [26], for example,
used 8 ultrasonic transducers to sense 9 face gestures with
89% accuracy. However, this approach fails to sense eye ac-
tivities, e.g., gaze changing. Similar ideas were also widely
used in multiple hand gesture sensing works. For example, by
sensing the cross sectional impedance of the wrist and arm to

3The MindMaze: https://www.mindmaze.com/
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form an electrical impedance tomography, [71, 72] can recog-
nize 11 hand gestures at within-participant accuracy of more
than 80%. However, building a globally generalized model is
challenging due to the cross-user variance of cross-session
anatomical patterns.

2.4 Biosignal Based Approach

Facial behaviors can also be approximated through the biosig-
nals, which are explored in existing HCI and wearable design
research.

The first kind of signal used to measure eye activities is
electrooculography (EOG), which is a 4V level corneo-retinal
standing potentials. With this primitive, [8] used 4 dry elec-
trodes and accelerometers to detect 8 gestures at ~ 90%
accuracy. JINS glasses have achieved approximately 70% ac-
curacy for detecting 4 daily activities with 3 electrodes [27].
However, such solutions are limited to either eye, or high
level daily activities. Others [53, 54] used JINS glasses to
sense 4 upper face non-eye gestures by leveraging the sig-
nals collected by EOG sensors and accelerometers, which
however cannot detect the lower facial gestures.

Electromyography (EMG) is the second approach being
widely used for facial expression evaluations. Researchers
have employed EMG to evaluate facial gestures and speech
activities. For example, AlterEgo [29] used 7 near-mouth
EMG transducers to detect a small set of words with 90%
accuracy. Nonetheless, such sensors can neither detect up-
per facial activities nor be easily incorporated into HMDs,
due to the uncomfortness after adding mounting-racks near
the mouth. Commercial available solutions such as EMTEQ*
powered by FaceTeq [42] proposed a similar wearable hard-
ware kit that can be mounted on top of HMDs with 9 De-
gree of Freedom (DoF) accelerometer, gyroscope and photo-
plethysmograph (PPG) pulse rate sensors. However these
tools focused on cognitive valence-arousal analysis [43], emo-
tion detection [41] and rehabilitation of Parkinson patients
[63]. In contrast, we use a novel end-to-end sensing pipeline

4The EMTEQ: https://emteq.net/
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to detect a total of 42 combined upper facial eye and lower
face mouth gestures to address the requirements of inter-
active VR. To enhance the sensing capability of such an
approach, researchers have explored a wide variety of trans-
ducer configurations to maximize the information entropy
[11, 23, 27, 29, 34, 40, 54, 63, 73]. While making the final de-
sign choices for ExGSense, we have compared our transducer
arrangements with several prior arts (see Sec. 4.2).

The third approach is to use Electroencephalogram (EEG),
which is usually in the order of nV to pV, generated by
the activation of neurons in the brain. Researchers have
explored the potentialities of using EEG to detect coarse-
grained emotion induced facial gestures for human-robot
interactions [2]. Others [22] tried to build a silent speech
interface with EEG measurements to indirectly infer lip and
mouth gestures. However, the overwhelming complexities of
the transducer setups hinder the practical usability in mobile
VR systems.

Finally, using a mixture of aforementioned bio-signals are
also applied in the existing works. PhysioHMD [7], for ex-
ample, used a combination of aforementioned bio-signals to
classify 12 emotion states with LeNet-5 at more than 90%
accuracy. However, detecting emotion states is different to
recognizing facial gestures. Discovered by Scherer et al. [56],
facial characteristic is only one of five metrics being used for
evaluating one’s emotions. Although, besides those emotions
investigated in [7] (e.g., happy, sad, and angry etc.), many
coarsed grained emotions can be discriminated by the upper
facial characteristics, one can still hide their emotion via fa-
cial gestures [5]. Unlike this work, our focus is to transform
the experience and feelings of VR based remote communi-
cation to face-to-face physical communication as close as
possible. Therefore, instead of making emotions transparent
to the remote user, we rely on one’s innate ability to infer the
internal emotion states from facial characteristics of remote
collaborator [58].

3 PRELIMINARY

Although the signals being measured from the on-face biopo-
tential transducers are heterogeneous, the primary signal
sources for sensing eye and mouth gestures are EOG and
surface EMG.

EOG is Involved with Eye Movements: The EOG sig-
nal signatures induced from eye movements are contributed
by the positive charges at cornea side and negative charge at
retina side [10]. A fine-grained measurements of such signal
variations will provide informative eye activities and gaze
direction.

EMBG is Involved with Mouth Movements: The signals
involved with lower facial (mainly mouth) gesture sensing
are mainly contributed by facial surface EMG. In ExGSense,
we explore indirect sensing, i.e., using transducers resting
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Figure 3: Transducer arrangement design. (a) Trans-
ducer placements; (b) Facial anatomy; (c) Channel con-
nections;

on the upper face to infer the lower face mouth gestures
indirectly. Essentially, although the transducers are partially
contacting the LLS (Levator Labii Superioris), ZYG (Zygo-
matics Majors) and RIS (Risorius) round the eyes (Figure 3b),
they can still capture mouth induced signals that propagate
through Nasalis. By analyzing surface EMG signal captured
from near mouth muscles, Eskes et al. [16] demonstrated
these muscle groups are involved with several mouth activi-
ties (e.g., retractor of the upper lips, closure and sealing of
the oral commissure).

However, besides facial gestures, the EMG signal is also
subject to 2 potential unwanted noise, posing challenges to
our algorithm design [44, 66]: (1) inter-person variations,
caused by the diverse distributions of muscle fibres among
different people; (2) and inter-session variations, caused by
minor temporal variations of motor units firing pattern.

With these signal sources, ExGSense also harness the sig-
nal diversities from 3 parts. First, the time-domain diversity
is majorly used for eye gesture tracking, where the eye and
gaze can be inferred from the EOG patterns, e.g., wave shape.
Second, the frequency-domain diversity is used to demix the
eye-induced EOG signals and mouth-induced fEMG signals.
The key idea lies in our observation that the surface EMG
energy is mainly aggregated at much higher frequency band
compared to that of EOG. Finally, we explore spatial diversity
resulting from a multi-transducer arrangement that creates
“virtual channels” (see Sec. 4.2).

4 IMPLEMENTATION
4.1 Sensor Board and Prototype Setups

Data Acquisition: Our proof-of-concept setup (Figure 2a)
is built on the OpenBCI Cyton Board [48]. The kit (Figure 2b)
is developed around ADS1299 chip with 8 16-bit analog-to-
digital converter (ADC) channels for pV accuracy data ac-
quisition [25]. We configured the amplifier gain to x24 and
the data communication link is supported by BLE 4.0 [52].
We mount the sensing electrodes on a customized made eye
mask® (see Figure 2c). The head strap of the eye mask helps

SEyeMask: https://amzn.to/33C43rt
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Figure 4: A taxonomy of transducer arrangements.
The red dots and blue connections indicate the elec-
trode placements and channel measurements. The
clustering of red dots indicate the high density elec-
trode array, e.g. [34].

us enhance the skin-electrode contacts for maximizing the
performance. We use 250 Hz as the sampling frequency, 1 s
as the window size.

Transducers: Traditional clinical research prefers to use
the sticky wet gel electrodes for recording patients’ biosig-
nals, due to their reliable contact with skin surfaces and
hence more accurate data acquisition [57]. However, this is
not be practical in mobile cases due to one-time disposal and
uncomfortness issues while pasting on human face. Ag/Cl
dry electrodes are used instead considering their compact
form factors and easy system integration. However, the rela-
tive high cost impedes many application usages. A typical
Ag/Cl flat electrode costs around ~$20° whereas a wet elec-
trode costs only ~$0.14. In ExGSense, we choose to modify a
low-cost wet electrode (3M 2560 Red Dot)’. By removing the
surface conducting wet gel and sticky foam tape (Figure 2c),
we enable comfortable reuse of the electrodes, at the cost of
minor signal quality degradation.

4.2 Transducer Arrangements

ExGSense optimizes the transducer arrangements in order
to capture the fine-grained whole facial gestures through a
sparse sensor setup. To highlight the advantages, Figure 4
summarizes a wide variety of design choices that prior re-
searchers adopted. For example, [11] detects eye and gaze ac-
tivities through the eye-centered design. JINS [27] and WINCE
[54] sense eye and upper-facial activities through the nose-
centered design. Besides, [23, 40] used forehead-centered and
ear-centered transducers respectively to achieve similar func-
tionalities. Other systems [29] used mouth-centered design
for silent speech recognition. In contrast, our goal is to con-
currently sense the eye and mouth gestures only using the
upper-face biopotential transducers. Thus, we design a sparse
transducer array (Figure 3) based on 2 design choices.

®Dry AgCl Eelctrodes: https://bit.ly/2MMcJou
"Wet Electrode by 3M 2560 Red Dot: https://bit.ly/2MmPYZ8
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m Eye Gestures m Horizontal Mouth Gestures m Vertical Mouth Gestures

Figure 5: Performance of different transducer place-
ment scheme. We used green and blue underscores the
mark scenarios using symmetric design tenet respec-
tively.

Indirect Sensing and Symmetric Design: ExGSense aims
to sense the lower facial gestures by only leveraging the
transducers resting on the upper face in an indirect manner.
We observe 3 muscle majors (Figure 3b), named LLS, ZYG
and RIS engaged with upper and lower facial movements.
This motivates us to put 6 transducers, marked as (C) - ) on
top of these 3 muscle majors at the left and right of the face
for maximizing the signal-to-noise ratio (SNR) (Figure 3c).
While placing other transducers such as (B) and (D, we also
consider the auxiliary muscle majors related to mouth move-
ments, e.g., Temporails, to maximize the entropy of captured
relevant gesture signatures. We used symmetric design for
introducing spatial redundancies, to minimize the imperfect
sensing performance in mobile interaction settings.

Virtual Channel Measurements: Inspired by the tomo-
graphic based sensing approach for hand gestures [71, 72]
which maximally exploit the impedance responses of each
probing path, we introduce the concept of virtual chan-
nel measurements shown by the pink arrow in Figure 3c.
Hereby, we define the physical channel measurements as
the pairwise potential measurements directly pulled from
the ADS1299 chip configured in continuous data reading
mode [25]. The virtual channel measurements are instead
computed algebraically based on physical channel measure-
ments. The goal is to exploit the spatial sensing diversities
without adding additional hardware complexities. With this
approach, we can approximate the EOG-V (vertical EOG)
signals with virtual channel 7, 6, 13, 12 and EOG-H (hori-
zontal EOG) with virtual channel 0, 19, 3, 16 (see Figure 3b
for the EOG-V and EOG-H measurements). Such additional
dimensions of features would make the facial gesture sensing
more reliable and finer grained.

Benchmark: To validate this, we conduct a small scale study
with 4 participants (mean age = 23.75, mean face dimension
(height x width) = 9.53" X 5.10"), 6 eye gestures, marked as
neutral, blink, gaze up, gaze down, gaze left, gaze right, and 3
mouth gestures in horizontal as well as vertical movements
directions, marked as small, medium and large.

Evaluations: We focus on the design of Figure 4{a-c, f, g}.
For asymmetric design, we averaged out the results when
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Figure 6: Our 6-stage dual-branch multi-view pipeline, capable of using a 13-non-mixed-gesture trained model to
predict 42 gestures by leveraging the signal demixability over frequency domain.

transducers are placed at left and right part of the face. We
use an AlexaNet [32] to evaluate the classification perfor-
mance. Figure 5 shows the results with our solution reach-
ing the highest overall accuracy across eye and 2 different
mouth gesture directions. This verifies the feasibility of indi-
rect sensing with respect to mouth gestures. We observed a
slightly higher sensitivity of horizontal mouth gestures than
the vertical one. This is consistent with our initial analysis
of the facial anatomy pattern where the horizontal mouth
movement involved more with the mid and upper facial
muscles, e.g., LLS, ZYG and RIS. In contrast, the gestures
involved with vertical mouth movements can be more easily
inferred from the lower facial muscles, e.g., Depressor Labii
Inferioris. The results also verify the benefits of the spatial
redundancies from the symmetric design. On the other side,
the asymmetric design can result in higher standard devia-
tions of accuracies across participants, leading to less stable
accuracies. Our solution greatly boosts the SNR of collected
data and implies that with symmetric design, we would have
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higher possibilities of collecting more accurate data in the
contexts of high mobility and variations of wearing styles.

5 SENSING ALGORITHMS

We design a deep learning based decision making pipeline
to identify participants’ facial expressions by explicitly ex-
ploiting temporal, frequency and spatial features from the
ExGSense data. Figure 6 demonstrates the workflow com-
prised of 6 stages. Note that the raw biopotential signals
are weak and easily contaminated by noise and interference.
Therefore, during prepossessing, we use a cascaded high
pass filter, cutoff at 0.2 Hz and a notch filter at 60 Hz to
minimize the baseline drift and electromagnetic interference
(EMI) [33]. Our informal measurement shows a very weak
interference caused by the harmonics of EMI, thus we only
remove the fundamental components at 60 Hz explicitly.

5.1 Signal De-mixing

In this stage, we take advantage of frequency-domain diver-
sity to separate the EOG signals for tracking eye gestures
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Figure 7: (a — b) Cross channel merging for distilling of EOG signal. Note that D indicates the array of virtual
channel measurements. The index of each channel can be referred to Figure 3c. (c — d) Segmentation process for

EOG signal.

and the EMG signal for detecting mouth shapes. This sep-
aration simplifies the model training process and reduces
the number of training classes from KL to (K + L), where
K and L represents the number of eye and mouth gestures,
respectively.

Estimations of Cutoff Frequencies: Our initial goal is
to approximate the optimum frequency position that can well
separate the EOG and EMG signals. We pilot a small-scale
benchmark experiment by asking 4 participants to perform
the 6 eye gestures and 6 mouth gestures used in Sec. 4.2.
We then compute the FFT of each sampled window at each
channel, and adopt the Kendall’s tau to perform a feature
significance test of each FFT features [30]. The results of
these p-value tests corresponding to mouth and eye gestures
are plotted in Figure 8a and 8b. Note that the smaller p-
value corresponds to the higher feature significance. We then
plot the average p-value computed across each channels at
each frequency position, shown in Figure 8c and 8d. With
this observation, we approximate 25 Hz as the separating
frequency to de-mix the eye and mouth induced signals.

Dual-Branch Classifications: With signal de-mixability
over frequency domain, we propose a dual-branch classifi-
cation method, which separates the classification processes,
and hence the weight parameters, for tracking eye and mouth
gestures, as illustrated in Figure 6. Our strategy differs from
the prior work, which tends to use a coherent bulky decision
making framework, such as SVM (support vector machine)
[71, 72], random forest [26], or standardized deep learning
model [7]. Such frameworks need to be trained by feeding
all the possible combinations of mouth and gesture classes,
which involves huge training overhead. In contrast, our ap-
proach can train the model with non-mixture gestures, but
predict both mixture and non-mixture gesture sets. With
the boundary for separating EOG and EMG over frequency
domain in Figure 8, we apply a low-pass and high-pass filter
for eye and mouth classification branch, respectively, before
further processing.
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5.2 Cross-Channel Feature Extractions and
Segmentation

ExGSense uses EOG signals for tracking eye gestures. Unlike
the clinical use case, user mobility and variations of wear-
ing styles incur significant noise. We mitigate this issue by
harnessing the redundancies of EOG-H and EOG-V channel
measurements from the left and right part of the face. We
also introduce a temperature parameter A to synthesize the
channel measurements collected from the two parts. Based
on our pilot study, we empirically set A to 0.9. Figure 7a and
7b illustrates the algorithms used for estimating the synthe-
sized EOG channel measurements. Although prior work [67]
used the product of RMS and sample entropy as the signif-
icance indicator, to minimize computing latency, we only
used the RMS value for this purpose, indicated by Cj.r; and
Cright~

A typical eye movement comprises two forms, namely
saccades and fixations. Saccades refer to the case when the
eyes are moving around constantly to locate the interesting
objects, and fixations occurs when gazes are held upon a
specific location [8]. Our work targets to the saccade and
blinking, which typically last for 80 ms and is more useful to
analyze interests shifts of VR users [12]. Thus, perfectly la-
belling the eye gestures within a time series of ExGSense sam-
ples would be challenging (Figure 7c). To address this, we
implement a segmentation block (see Figure 6) for picking
sanitized eye gesture window automatically only during
training process. Specifically, we compute the RMS value of
each coarse segmented window, and use the window corre-
sponding to the peak of RMS as well as its neighbours within
a pre-tunned margin as relevant data segment. We consider
this RMS value as the window significance indicator. With a
small scale pilot benchmark, we set this margin parameter
to 2. This process can be illustrated in Figure 7d.
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Figure 8: The p-value test results. The raw results can be referred to Figure 8a and 8b. The averaged results across
each channel can be referred to Figure 8c and 8d. The lightblue region in subplot 8c and 8d indicate the error

computed by + standard deviation.

5.3 Multiview Channel Fusion

To exploit the spatial diversity from the ExGSense transducer
arrangement (Figure 3), we use a variant of the multiview
framework proposed in [69, 70]. As illustrated in stage (B) to
(® in Figure 6, the augmented features of each channel, noted
as < X;,y >, will be fed into separate multiview convolution
channel encoder with the output of h;, where i refers to the
virtual channel index. Simultaneously, these feature maps
will also be fed into a globally shared encoder to extract the
global views, noted as hy. After that, we concatenate these
outputs to compute the gate allowance rate that is similar
to the forget gate design in the LSTM (Long Short Term
Memory) cell [24]. This gate allowance rate can be computed
by logistic function (Equation (1)), where we use @ to denote
feature concatenations and F(-) to represent the function
approximator for the fully connected layers.

rieR

" T exp(—F(hy ® hy))’ M
Next, we use the computed allowance rate r; to fuse the
output from i-th channel encoder h; and global encoder A,
heuristically, as shown in Equation (2), where we use © to
represent the operation of element-wise multiplications.
H,-:(l—rl-)@hg+ri®h,~ (2)
Therefore, the global attention energy vector a, can be de-
rived in Equation (3), where C indicates the total number of
channels. Based on the strategy proposed in [69], we use a
temperature value A = 0.9 to control the aggressiveness of
the exponential normalization.

_ exp(AF(hy)) &
Yk exp(AF(hy))

By merging the globally shared attention energy vector a,
and the fused feature map h_g using Equation (4), we are able
to compute the globally contextual vector c,.

C
cg = ZagiQh_i (4)

i=1
Finally, we used a stacked fully connected layer, as the last-
step classification stage based on contextual vectors. Notably,
during the training phase, we used a class balancer to remove

ag = [agh agz’ L) agCL agi
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samples from the majority class. Further, only the classifica-
tion stage for mouth gesture branch will be unfreezed when
the model is re-calibrated for a new user, whereas the eye
branch needs no calibration (see Sec. 7.3). For each branch,
we uses the cross-entropy losses [21] as the optimization
object. We summarize each block of our deep learning model
in Figure 6.

6 DEPLOYMENT AND IMPLEMENTATION

6.1 Data Collection

To collect data, we invite 10 participants (mean age p = 24,
o = 1.41; face height 1 = 9.38”, o = 0.50”; face width p = 5.36”,
o = 0.517) to wear the ExGSense HMD and perform the in-
structed facial gestures. For the event based facial gesture,
we ask participants to repeat 20 times in each session. For
the state based facial gesture, around 20 seconds samples are
required in each session. To avoid artifacts caused by par-
ticipants’ learning experience and physical muscle fatigue
[39], participants were allowed to have ~ 10 seconds breaks
in between sub-sessions. Finally, the same gesture may vary
when performed by different participants. We faithfully in-
corporate such practical effects, by requiring participants to
perform the gestures at the levels they found comfortable
and repeatable. Each session takes approximately 40 min
excluding the break time. Our study was approved by the
Institutional Review Board (IRB).

6.2 Sensed Events

Although emotion sensing may help in social interaction
context [40], practically it is hard to use this approach to
realize the goal of immersive VR communication. First, the
granularity of easily observable emotional expressions is
relatively low. For instance, there are only 6 basic emotion
catalogues as proposed in [14]. Second, emotional expres-
sions represent a higher level semantic abstractions of low
level facial gestures, i.e., the former can be easily derived
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Figure 9: Final non-mixed gesture set: (a) neutral, (b) blinks, (c) gaze looking up, (d) gaze looking down, (e) gaze
looking left, (f) gaze looking right, (g) mouth gesture A - smile, (h) mouth gesture B - mouth open, (i) mouth
gesture C - kissy mouth, (j) mouth gesture D - tongue touch upper teeth, e.g. mouth shape when pronouncing
"L" sound, (k) mouth gesture E - raising left cheek, (1) mouth gesture F - raising right cheek. The total number of
gesture set including mixed and non-mixed are 6 X7 = 42. We used green and blue underscores to indicate eye and

mouth gestures respectively.

Index| Eye Mouth |index| Eye Mouth |index| Eye Mouth |index| Eye Mouth |index| Eye Mouth
o None None 9 None D 18 Gaze Up B 27 Blink D 36 | Gaze Right E
1 Blink None | 10 None E 19 Gaze Down B 28 Gaze Up D 37 Blink F
2 Gaze Up None | 11 None F 20 Gaze Left B 29 | Gaze Down D 38 Gaze Up F
3 | GazeDown None | 12 Blink A 21 Gaze Right B 30 | Gaze Left D 39 | Gaze Down F
a Gaze Left  None | 13 Gaze Up A 22 Blink c 31 | Gaze Right D 4D | Gaze Left F
5 | GazeRight None | 14 | Gaze Down A 23 Gaze Up c 32 Blink E 41 | Gaze Right F
6 None A 15 Gaze Left A 24 Gaze Down C 33 Gaze Up E
7 None B 16 | Gaze Right A 25 Gaze Left C 34 | Gaze Down E
8 None C 17 Blink B 26 Gaze Right C 35 Gaze Left E
Figure 10: Class index and corresponding sensing
event.

from the latter. In the context of VR face-to-virtual-face com-
munication, conveying the remote users’ emotions is only
one important component to achieve our goal. We envision
the remote users to perform the face-gesture-to-emotion
translations cognitively so as to exploit the richer informa-
tion besides basic emotions. For example, the users can figure
out whether the remote users are distracted based on the
visually perceived gaze directions. To compose our sensed
events, we adopt the commonly used eye gesture sets in
[1, 8, 26] and mouth gesture sets inherited from lip-syncing
applications [59] to form the fine-grained gesture set in our
study. Traditionally, as a critical post-production phase in
film industry, lip-syncing is used as a mapping technique
between predefined lip shape and utterance, and thus be-
ing widely used for dubbing and creations of visually vivid
animation avatars [9, 59]. This includes 6 eye gestures and
7 mouth gestures (Figure 9). Together there are 42 gesture
combinations, which cover a wide range of practical facial
expressions.

6.3 Sensing Model Implementation

The ExGSense model is developed using Pytorch [49]. The
collected data are split to 70%, 10% and 20% for training, vali-
dation and testing purposes. The batch gradient descent [36,
55] with Adam Optimizer [31] is used for training all models,
with batch size 64. To ensure convergence at global optimum
and prevent overfitting, we set both learning rate and weight
decay [38] to 107> and run 100 epochs for all networks during
the training phase.
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7 EVALUATION
7.1 Single User Evaluation

Recall that, by using our decision making pipeline in Figure 6,
the model can classify all facial gesture combinations by
solely training over the individual gestures. For the standard
facial expression set comprised of 6 eye gestures and 7 mouth
gestures, ExGSense only needs to collect training data for
7 + 6 = 13 gestures, instead of 7 X 6 = 42 gestures. We now
compare the sensing performance with these two levels of
training overhead.

With the collected data from Sec. 6, we evaluate the F1
score, recall and precision with only 13 non-mixture ges-
tures and 42 gestures being used for training purpose re-
spectively. We used F1 score as the overall metric in order to
balance between precision (low false positive) and recall (low
false negative) [60]. The confusion matrix with only 13 non-
mixture training gestures for 10 participants can be found in
Figure 11.

Signal Demixability: We show the signal demixability
with an overall accuracy for eye and mouth gesture classi-
fication being 90% and 97% respectively. This implies our
lightweight model training can effectively recognize concur-
rent gestures.

Merits of Dual Branch Classification Pipeline: Our
evaluation also shows a competitive performance of our sens-
ing approach with the dual-branch model being trained by
only 13 non-mixture gestures. For comparison purpose, we
also evaluated the single branch model used to classify lower
facial gestures (see Figure 6). Notably, to train the single
branch model, dataset with 42 classes is required. Our ap-
proach shows an overall 93% accuracy that is approximately
same as the traditional way of training over all gesture com-
binations. However, it substantially reduces ~ 69% overhead
in collecting training data from users, leading to higher us-
ability and scalability.

Merits of Multiview Encoding Pipeline: We also show
the merit of the multiview pipelines over the traditional SVM
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