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ABSTRACT
Owing to dense deployment of light fixtures and multipath-free
propagation, visible light localization technology holds potential
to overcome the reliability issue of radio localization. However,
existing visible light localization systems require customized light
hardware, which increases deployment cost and hinders near term
adoption. In this paper, we propose LiTell, a simple and robust
localization scheme that employs unmodified fluorescent lights (FLs)
as location landmarks and commodity smartphones as light sensors.
LiTell builds on the key observation that each FL has an inherent
characteristic frequency which can serve as a discriminative feature.
It incorporates a set of sampling, signal amplification and camera
optimization mechanisms, that enable a smartphone to capture the
extremely weak and high frequency (> 80 kHz) features. We have
implemented LiTell as a real-time localization and navigation system
on Android. Our experiments demonstrate LiTell’s high reliability in
discriminating different FLs, and its potential to achieve sub-meter
location granularity. Our user study in a multi-storey office building,
parking lot and grocery store further validates LiTell as an accurate,
robust and ready-to-use indoor localization system.

CCS Concepts
•Computer systems organization → Special purpose systems;
•Hardware→ Signal processing systems; Digital signal process-
ing; Noise reduction; Sensors and actuators; Sensor applications
and deployments; •Information systems → Location based ser-
vices; •Human-centered computing → Ubiquitous and mobile
computing systems and tools; •Computing methodologies→ Cam-
era calibration;
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1. INTRODUCTION
Indoor localization technology is bringing huge impacts on human

activities, in the same way that GPS did in revolutionizing outdoor
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navigation. Existing market research predicts that location-based
services in retail industry alone will generate 10 billion revenues by
2020 [1]. However, after decades of research, there still lacks an
indoor localization solution with desired simplicity and robustness. A
recent field test of state-of-the-art localization schemes [2] revealed
a common set of problems including high deployment overhead
and low reliability. The consensus is that robust meter-level indoor
localization remains an open problem, even in a small sandbox
environment (300m2) with simple layout [2].

WiFi based localization techniques are most extensively studied.
Prior research has explored fingerprinting [3, 4], propagation model-
ing [5], and directional antenna triangulation [6, 7]. However, the
elusive nature of radio signals renders them less reliable in real
environments, specifically due to three major challenges. (i) Mul-
tipath reflections. Multipath reflections are strongly dependent on
the geometries and construction materials in indoor environments,
which defeats model based approaches. (ii) Environmental dynam-
ics. Minor change in the environment (e.g., adding a new furniture,
human presence and mobility) can substantially disturb the received
signals strength (RSS) and phase, thus compromising location es-
timation [2]. Even the body orientation and holding position of
devices (which block the antenna in different ways) can cause 6 to 8
meters of location error [8]. (iii) Device heterogeneity. Depending
on model, co-located smartphone devices can observe up to 10 dB
RSS differences [9]. In enterprise environments, access points’ dy-
namic channel selection and power control further varies the signal
features.

Visible light (VL) localization techniques hold potential to over-
come such fundamental limitations. Using ceiling-mounted LEDs
as beaconing devices, VL localization can achieve sub-meter pre-
cision [10, 11], and can even determine the orientation of a smart-
phone [12]. However, almost all existing LED based localization
techniques require customized beaconing circuits to be added to the
LED driver [13], which involve substantial retrofitting cost and are
unlikely to be adopted pervasively in the near term [14].

In this paper, we propose LiTell, a simple and robust VL localiza-
tion scheme, which can be immediately used on unmodified light
fixtures and commercial-off-the-shelf (COTS) smartphones. LiTell
uses incumbent fluorescent lights (FLs) as location anchors, and
smartphones as the receiver devices. The key hypothesis is that an
FL’s driver acts as an oscillator with a resonance frequency. Due to
unavoidable manufacturing variation, different FLs have different
resonance frequencies, which will cause each of them flickering at a
characteristic frequency (CF), a high frequency (> 80 kHz) that is
not perceptible by human and remains relatively stable in practice.
LiTell uses the CF as a discriminative feature among different FLs
which in turn serve as location landmarks.

We have tested the hypothesis using a customized high-speed light
sensor. Our experiments demonstrate that the CFs are highly diverse:



among 500 FLs in an office building, over 99% have a pairwise CF
separation of more than 20 Hz. The CF is also highly reliable: it
is unaffected by typical environment dynamics or human behavior,
and varies by only a few tens of Hz across several months. To our
knowledge, this represents the first study to characterize the FLs’
optical frequency feature and use it to discriminate FLs.

However, many challenges emerge when using COTS smart-
phones as light sensors: (i) Low sampling rate. smartphones are
designed for snapshotting low-motion scenes at around 30 frames per
second. The rolling-shutter mechanism, which allows a smartphone
to capture several thousand samples within one image frame [12,15],
may alleviate the problem. But the sampling rate remains far be-
low an FL’s CF. (ii) Low sensitivity to high-frequency light signals.
Camera sensors have a limited dynamic range, majority of which is
already occupied by low-frequency but high-power (bright) signals
when capturing a real scene. Besides, substantial noise exists in high
frequencies, introduced by camera hardware (e.g., heterogeneity of
color pixels, salt-and-pepper noise) and spatial patterns of environ-
ment structures (e.g., latticed covers around FLs). These factors tend
to immerse the CF signals in the camera image’s noise floor.

To overcome camera’s low sampling rate, LiTell’s solution builds
on two observations. First, the CF is an extremely sparse feature,
representing a single peak in the frequency spectrum. Second, al-
though cameras inherently snapshot low-rate scenes, their analog
bandwidth can reach a few hundred kHz. Thus, when sampled at
a low rate, the CF will be “folded” back to low frequencies due to
aliasing effect [16]. By optimizing the camera’s sampling mechanics
(e.g., exposure time), along with the rolling shutter effect, we are
able to recover CFs well above 80 kHz. In addition, to combat
the low-sensitivity issue, we design a set of feature amplification
mechanisms that synthesize consecutive captures of the FL, isolate
the interference from ambient spatial patterns and mitigate the noise
from camera hardware. These mechanisms substantially boost the
SNR, allowing the CF to be easily identified in the spectrum.

LiTell’s actual location matching mechanism is fairly simple. We
first use a light sensor to measure the ground-truth CF of each
FL luminary, and store the 〈location, CF〉 pair in a fingerprinting
database. The fingerprinting overhead is bounded by the number
of light fixtures, each taking only a few seconds. Moreover, unlike
WiFi-based localization, LiTell’s fingerprinting procedure can be
conducted by anyone, without access to any managed infrastructure.
At run time, any smartphone can capture images of a nearby FL, run
the above sampling and amplification mechanisms to identify the
CF, and look up the location from the database. This affords light-
cell level localization, which translates into meter-level location
granularity, considering the pervasive and dense deployment of FLs
in typical public buildings. To improve reliability and counteract
occasional CF feature collisions, we use every two consecutive
FLs as a location landmark. Furthermore, we take advantage of
the scaling relation between the physical size and image size of
an FL, and use simple geometrical transformation to derive the
smartphone’s position relative to the FL. This makes it possible to
realize finer-grained localization with sub-meter precision.

We have implemented LiTell’s CF identification mechanisms as a
mobile app on Android smartphones, and also prototyped an indoor
navigation app atop. Our micro-benchmark experiments in a 4-storey
office building demonstrate that LiTell can identify the CF features
with high reliability. The identified features stay within 20Hz of the
ground-truth, with up to 2m light-to-phone distance, under various
usage behaviors and environment conditions, and across multiple
generations of Android phone models built from 2012 to 2015.

To verify LiTell’s localization accuracy, reliability and usefulness
in the wild, we conduct a user study with 10 volunteer participants.
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Figure 1: General circuitry model of FL.

The user study took place in 3 uncontrolled environments: an office
building (≈ 9000m2, 119 FLs), an indoor parking lot (≈ 2800m2,
91 FLs), and a grocery store (≈ 1000m2, 162 FLs). LiTell demon-
strates the following key features: (i) Accuracy and usability. LiTell
identifies the FLs with an average accuracy of 90.3% across the 3
sites. Typically, it navigates the user to randomly selected POIs with
50% shorter time and 60% shorter distance consistently, compared
with using visual landmarks and labels. It adds marginal overhead,
compared with an oracle walking trial (directly towards destination
with known routes). (ii) Robustness. By using the CF as signature,
LiTell’s localization accuracy becomes unaffected by heavy human
activities and environment dynamics. To our knowledge, LiTell
represents the first ready-to-use, real-time localization system to
achieve a combination of such desirable traits.

The main contributions of LiTell can be summarized as follows:
(i) We conduct the first comprehensive feasibility study to verify the
optical CF as a diverse and reliable feature to discriminate FLs. (ii)
We design a set of sampling and signal amplification mechanisms
that allow a COTS smartphone to capture the CF feature and single
it out from various noises. (iii) We develop simple fingerprinting
based schemes that enable LiTell to achieve robust and accurate
localization, with light level and sub-light level location granularity.
The real-time version of LiTell system is implemented on Android,
and verified in uncontrolled, multi-floor environment.

2. CHARACTERIZING ELECTRONIC AND
OPTICAL PROPERTIES OF FLUORES-
CENT LIGHTS

2.1 Background: Fluorescent Light and Its
Frequency Components

A fluorescent light (FL) produces visible light by striking an arc
across a tube lamp, causing the gas and fluorescent material inside
to glow. The amount of current passing through the lamp determines
the light intensity. FL driver acts as the core circuitry for light gener-
ation. It converts the AC mains voltage (110V/220V, 50Hz/60Hz) to
a high frequency AC voltage to sparkle the fluorescent tubes [17].

Fig. 1 depicts a general breakdown model of FL driver. The
rectifier converts AC mains to DC while leaving a residual AC
component on top of the DC, whose frequency is doubled from the
50/60Hz AC mains frequency to 100/120Hz. The current then goes
through some electromagnetic interference (EMI) filters. Afterwards,
the core of the FL driver, an inverter, modulates this DC into high
frequency AC to drive the fluorescent tube.

The resonance frequency of the inverter is determined by a group
of components [18]. Due to manufacturing variation, values of these
components usually vary within 5-20% range [19]. As a result, even
among FLs of the same model, their resonance frequencies tend to
vary significantly. Meanwhile, since FLs are designed to operate
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Figure 3: Light intensity (a) waveforms at different time scales and (b) frequency com-
ponents of FL.
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Figure 4: Distributions of characteristic
frequencies of FLs in the office building.
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tube FL.

efficiently and consistently over periods of years, such variation is
likely to remain stable over time.

The fluorescent tube converts the high frequency AC current
(generated by the inverter) into visible light. Due to the frequency
response of fluorescence [20], harmonics of more than a few MHz
are nearly completely filtered out. In general, the observable fre-
quencies usually span a wide range from above 40kHz (to avoid
interfering with infrared communication systems [21]) to 1 MHz.

2.2 Feasibility of FL Identification via Fre-
quency Characteristics

Based on the operating principle of FL circuitry, we hypothe-
size that individual FLs can be discriminated by their frequency
characteristics. In this section, we verify this hypothesis through
comprehensive experiments, focusing on the uniqueness and stability
of frequency features.

2.2.1 Uniqueness of frequency characteristics
Fig. 2 illustrates our measurement setup. We sample the FLs’ opti-

cal emissions using a customized high speed light sensor comprising
a BPW34 photodiode (PD) and a 2-stage amplifier, whose analog
bandwidth is 1.6MHz and output digitized by a portable oscilloscope
(PicoScope 2207A [22]).

Time/Frequency characteristics of FL’s optical emission.
Fig. 3(a) plots the time series of received signal strength (RSS)
from several example FLs, including tube lights and CFLs in an
office building. We observe that all the FLs’ waveforms manifest
quasi-periodic patterns, both at µs and ms scales. The periodicity
becomes obvious in frequency domain (Fig. 3(b)). More specifically,
all the FLs have a fundamental frequency component within the
40-60kHz range, followed by its harmonics (i.e., integer multiples).
Notably, the fundamental frequency of each light can differ by a few
kHz, which implies the feasibility of discrimination. The 120Hz AC
component (doubled from 60Hz by rectification) and its harmonics
are also visible in the spectrum, but only span a few kHz in total.

It is worth noting that the dominate frequency always occurs at
2× the fundamental frequency, and has a 20-30dB higher magnitude.
This is because the inverter creates different gains at the positive and
negative halves of its sine waves, resulting in a weaker frequency
component with half of the frequency [20]. As we will show in
Sec. 4, when using a smartphone, it is usually impossible to see
the features except for the strongest. Thus, we select the dominate
frequency as the characteristic frequency (CF) of the FL.

Diversity of characteristic frequencies (CFs). To see how di-
verse the CFs can be, we measured over 500 tube FLs and compact
FLs in our 4-floor office building. Fig. 4 plots the histogram of the
CFs. The results imply multiple types of FLs, with most CF features
ranging from 80 kHz to 160 kHz. Each type’s CFs approximate a
normal distribution. Fig. 5 further plots the CDF of pairwise dif-
ferences in CF (denoted as ∆f ) among the FLs. We observe that
only less than 0.1% of the pairs have ∆f ≤ 10Hz, and 0.2% have
∆f ≤ 20Hz, even among FLs of the same model. This confirms the
CF as a strong feature to discriminate FLs at a large scale. In Sec. 5
and 7, we will provide analytical justifications for the probability of
feature collision and implications for location discrimination.

We note that LEDs do not necessarily have CFs because they are
driven by DC current (Sec. 8). Thus, existing LED based visible-
light localization systems (e.g., [10, 12]) have to employ customized
drivers to modulate the LED lights, allowing them to emit digital
bits as identify information.

2.2.2 Stability of characteristic frequency
Start-up profile of CF. To investigate the start-up process of the

FLs, we cold start a tube FL in our office building, and measure
its CF across 1 hour. Fig. 6 plots the CF (error bars indicate std.
across 16 snapshots at each 1-minute timestamp). The frequency
first overshoots by a few hundred Hz (likely due to transient behavior
of the electronic components), and then gradually decreases as the
FL warms up. After around 40 minutes, it converges to a stable CF,
with less than 20Hz fluctuation. For most commercial place and
office buildings, the internal FLs tend to keep on for a long time after
the start-up, so the transient variation may not affect the robustness
of CF as a discriminative feature.

Temporal stability of characteristic frequency. To verify the
temporal stability of CF, we measure the CF of 8 randomly selected
FLs in our office building over short/long term. Fig. 7(a) plots the
CF values across 10 days, with 10 measurements per day per FL
(error bars denote 90-percentile values). The CFs demonstrate high
stability, with variation well below 20 Hz. Since the measurements
span different time of the day, with different load on the powerline,
the results also imply that the CF features are robust against different
powerline loads in large buildings. We also evaluated the temporal
stability over 15 weeks, sampling on a random day in each week.
The results in Fig. 7(b) show slightly higher variation compared
with the 10-day short-term variation, which also increases the risk
of feature collision among FLs. As a result, for robust localization
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Figure 7: Short-term and long-term stability of characteristic
frequency.
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using CF features, we must be able to tolerate small amount of
collisions. In Sec. 5, we will introduce LiTell’s error tolerance
mechanisms.

3. CAPTURING HIGH-FREQUENCY FEA-
TURES USING SMARTPHONES

Amid the photodiode sensors’ potential in discriminating FLs’
characteristic frequencies, fundamental challenges emerge when
we try to capture such high-frequency features using smartphones,
which are designed to capture static or low-rate scenes1. In this
section, we describe how LiTell overcomes such challenges by ex-
ploiting camera as a generic optical channel sampler.

3.1 Sampling Light Using Digital Cameras:
A Primer

Due to considerations in cost and speed, modern CMOS image
sensors used in smartphones usually expose different rows in the
image at different time, while pixels within each row are exposed
simultaneously (which can be summed into a single sample). This
is called the rolling shutter effect [23] and can act as a sampling
process with much higher sampling rate than the frame rate. As a
result, smartphones hold the potential for being used to sample high
frequency light signals.

Fig. 8 shows a simplified diagram of CMOS image sensor and its
sampling process. The image sensor’s rows are opened for exposure
sequentially. The delay between the opening of adjacent rows is
called sampling interval, denoted as ts. Duration of opening for
each row is called exposure time, denoted as te. The time between
the start of exposure of the first row and the end of the last row is
the minimum frame time or minimum frame interval, denoted as tf .
Denote N as the number of rows, we have ts = tf/N . Inverting
both sides, we can obtain the effective sampling rate of the camera
with rolling shutter effect, which is fs = NRf .

Contemporary smartphones commonly support full HD capturing
(1920×1080 resolution atRf = 30 fps frame rate). The correspond-
ing lower bound of sampling rate is thus fs = 1080 × 30 = 32.4
Ksps, which is far below the Nyquist sampling rate for typical FLs’
characteristic frequencies (> 2× 80 KHz, Sec. 2).

1Note that smartphones’ light sensors cannot capture the CF feature
because their sampling frequencies are limited to a few Hz.
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Meanwhile, this sampling rate is far more reliable than the frame
rate, since rolling shutter is controlled by hardware circuits instead
of software running on top of an operational system (OS), which in-
troduces significant amount of uncertainty and jitter. We have tested
2 Nexus 5 phones and found their sampling rate to be extremely
stable and consistent, varying only a few ppm (parts per million, or
less than 1 Hz error for 75 kHz sampling rate) in typical conditions.
This makes the rolling shutter a reliable sampling mechanism.

3.2 Adaptive Exposure: Preserving High-
Frequency FL Features

Modeling optical channel response of camera. The camera’s
sampling duration ts depends on hardware and is unaffected by
the exposure time setting te. In fact, te ≥ ts since exposure of
different row can overlap as shown in Fig. 8. However, the exposure
process can be considered as an integration (or moving-average
filter), so te does affect the analog channel response of the camera
and determines its capability to capture high-frequency signals.

More specifically, at sampling time t (after the beginning of an
exposure), the camera’s output is:

A(t) =

∫ +∞

−∞
I(τ)g(τ − t)dτ (1)

where I(t) is the light intensity at time t, g(τ − t) is a gate (rectan-
gular) function that evaluates to 1 during (t, t+ te) and 0 otherwise.
Applying Fourier transform on both sides, we have:

F(A) =

∫ +∞

−∞
I(τ)e−j2πfτdτ

∫ +∞

−∞
g(−T )e−j2πfT dT

= −F(I) · F(g) (2)
where T = t− τ . Now we can obtain the frequency response of the
sampling process as:

|H(f)| = |F(A)|
|F(I)| = |F(g)| = | sinc(πfte)| (3)

In practice, photoelectron continue to accumulate during the read-
out phase after exposure is completed [15]. Accordingly, the inte-
gration time should be te + tr , where tr is the readout duration. So
Eq. (3) should be updated as:

|H(f, te)| = | sinc[πf · (te + tr)]| (4)
Model validation and adaptive exposure design. To verify this

frequency response model does match actual smartphones, we use
the arbitrary waveform generator (AWG) on PicoScope to generate
sine tones across a wide range of frequencies, which are then used
to drive a white LED, serving as an ideal optical source. We capture
the signals using a Nexus 5 phone, which has a sampling rate ts =
75.1624 Ksps according to our measurement (to be discussed in
Sec. 3.3). Fig. 9 plots the RSS of the captured sine signals (relative
to the DC baseline) across different frequencies, which reflects the
frequency response of the camera.

The results reveal that under a given exposure time setting, the
camera’s response follows the sinc function, which matches the
above model. Whereas Nexus 5’s advertised minimum exposure



time te = 1/75586 s, the first notch of the sinc function appears at
around 1/65200 s, i.e., te + tr ≈ 1/65200 > te, which matches
the refined model in Eq. (4).

Note that under a given exposure time setting, the camera’s fre-
quency response has notch points at k/(te + tr), k = 1, 2, · · · . If
the characteristic frequency of an FL lies near a notch, then the
frequency feature will become extremely weak. The adaptive expo-
sure mechanism in LiTell is designed to overcome such situations.
Specifically, LiTell selects the optimal exposure time t∗e to maximize
the camera’s mean response to the characteristic frequencies of all
FLs (e.g., within the building of interest), i.e.,

t∗e = arg max
i

L∑
j=1

|H(fj , t
i
e)|

= arg max
i

L∑
j=1

|sinc(πfj · (tie + tr))| (5)

where L is the number of FLs. tie indexes the exposure time of the
i-th exposure setting. Since all notches can be avoided within limited
number of exposure time settings, the optimization can be solved by
LiTell’s backend server offline through an exhaustive search. Note
that tr is a constant for each camera and can be factory calibrated.

3.3 Aliased Sampling: Recovering High-
Frequency FL Features

The foregoing modeling/measurement reveals that the frequency
response of the camera remains high beyond the sampling rate. In
other words, signals with frequency higher than fs/2 can still be
sampled, since the analog bandwidth of the camera is much higher
than the digital sampling rate. LiTell leverages this property to
recover high-frequency signals.

It is well known that when sampling a high frequency signal at
sub-Nyquist rate, the frequency component will be aliased or folded
back [16]. The rule of aliasing is simple:

fa =

{
(N + 1)fs − f fs/2 < f −Nfs < fs

f −Nfs 0 6 f −Nfs 6 fs/2
(6)

where fa is the aliased frequency, f is the original frequency, fs
is the sampling frequency and N = 0, 1, 2, · · · . Given fs, we can
derive a few candidates of f from the measured fa:

f ∈ {fg|fg = Nfs ± fa, N = 0, 1, 2, · · · , fg > 0} (7)
where fg is a candidate estimation of f . For example, fs = 75kHz
and fa = 15kHz leads to f ∈ {15, 60, 90, 135, · · · }, and for fa =
3 we have f ∈ {3, 72, 78, 147, · · · }. In practice we find all FLs
have f well above 40kHz and below 200kHz, so frequencies beyond
the range can be excluded.

Whereas the error in fa will be carried to the estimation of f as
is, the error in fs can get amplified in the process when N is large.
Since the difference among FLs’ CF features can sometimes be as
small as a few tens of Hz (Sec. 2), this calls for a precise calibration
of fs. In practice, this can be done in factory since the sampling
frequency of the camera is supplied by high quality clock sources
and varies extremely slowly over time [24, 25].

In our experiments and implementation, we use PicoScope to send
a 10 kHz optical calibration signal, keeping other settings identical
as in Sec. 3.2. We then run MUSIC (an eigen spectrum analysis
algorithm [26]) over the camera-captured signals to get a super
resolution estimation of the received normalized signal frequency
fn (fn < 0.5). The camera’s sampling frequency is then calibrated
as: fs = 10 kHz/fn.

4. AMPLIFYING HIGH-FREQUENCY FEA-
TURES

Although it is feasible to sample the FL’s high-frequency charac-
teristic signals using a camera, the signals can be extremely weak
— inherently, the FL is designed for zero-frequency illumination
signals, and camera for snapshotting a still scene. In this section, we
present a set of signal processing and camera optimization mecha-
nisms in LiTell that together overcome these challenges.

4.1 Spatial Noise and Interference Suppres-
sion

Owing to the rolling shutter effect, LiTell can sample the same FL
at high frequency across different rows of an image. This assumes
the FL is an ideal homogeneous light source and fully occupies the
camera’s FoV. But two practical challenges can break this premise:
(i) “Salt-and-pepper” noise in dark area, though barely visible to
human eyes, may create substantial noise at high frequencies. (ii)
Strong ambient light (e.g., sunlight reflected to ceiling) may also
raise the noise floor. In LiTell, we address such challenges by
isolating irrelevant pixels from the camera image, which we refer
to as spatial noise and interference suppression (SNIS). We now
describe SNIS’ major steps.

Cleaning up image for reliable contour detection. Unlike mod-
ulated LEDs in previous works [12, 15], LiTell faces two new chal-
lenges: (i) it must be able to isolate closely placed FLs, which is
common in many buildings; (ii) it must be able to process million-
pixel images on smartphones with minimum latency. These chal-
lenges make it difficult to follow the exact procedures in [12], which
applies blur to mitigate noise, and then threshold the image into a
black-and-white mask to identify the light. We thus threshold [27]
the image into a mask first, and then use morphological opening and
closing [28, 29] on the mask, a classical image processing algorithm
that recovers a single shape by connecting densely distributed dots,
while removing noisy outliers. After such step, the mask will only
contain one or a few large connected components, which speeds up
light contour detection.

Generating a rigid contour. The morphological processing
yields a single shape which can be isolated by finding the largest
contour, but it leaves one problem unattended: the shape is irregular,
causing different number of pixels in each row to be summed into
the sample. Consequently, the gain provided by summing varies
across samples, which introduces high-frequency artifacts in the re-
sulting spectrum. To solve the problem, we create a rigid bounding
box around the FL image following [29]. Since most light fixtures
appear rectangular on cameras, this method effectively minimizes
inclusion of noisy pixels. It also ensures each row of the image has
the same number of pixels, which provides similar summing gains.
Otherwise, spurious frequency components may be introduced by
gain variation across rows.

Speeding up processing by sub-sampling. Processing million-
pixel images on a smartphone directly costs substantial time, which
hinders real-time localization. To speed it up, we observe that
the FL shape is quite regular and we can shrink the entire camera
image without corrupting the contour of the FL. Therefore, we
first subsample the image to 1/256 of its original size, before the
thresholding and morphological processing. This allows LiTell’s
processing speed to grow from less than one picture per second to
roughly 10 pictures per second while preserving necessary accuracy.
After obtaining the bounding box, we scale up its size/position, and
select the pixels inside its boundary for CF identification.

Fig. 10 summarizes the entire work flow of SNIS. Since we use
RAW images for processing, all pictures are in grayscale. A side
product of SNIS is a geometrical outline of the FL, which will be
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Figure 10: Reducing spatial interference by extracting FL related pixels in the RAW camera image.
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used for sub-light localization (Sec. 5.2). It also isolates the light
fixture containing the most pixels in the picture, thus CFs from
different lights will not get mixed up.

4.2 Optimizing Camera Configurations to
Amplify High Frequency Features

Defocusing: isolating spatial frequency components.
Many FLs come with shades or covers that bear certain spatial
patterns, which creates noisy frequency components after the rolling
shutter sampling. To remove the spatial artifacts, we can use a
low pass image filter. Such a filter must only be applied to spatial
features alone, i.e., filtering the signal spatially before it enters the
camera sensor. Otherwise, it will destroy the temporal frequency
components. In LiTell, we use the camera’s macro mode to force
the focus distance to a minimum, thus defocusing the far-away FL
by acting as a spatial low-pass filter.

Fig. 11 plots an example spectrum measurement of an office FL
with patterned plastic covers. The spatial features result in multiple
peaks that are much stronger than the CF, and vary depending on
camera viewing angle and distance. With defocusing, the impact is
almost completely eliminated.

Overcoming interleaving in CMOS sensors. A camera’s image
sensor typically comprises millions of light sensors. The sensors of
different colors are interleaved with each other [30] (Fig. 12). In
practice, an FL’s color may not appear white to the CMOS sensor
[31]. Thus, the image sensor’s odd and even rows can have quite
different responses to the FL’s signal, which again translates into
unwanted frequency artifacts. To counteract such gain mismatch,
we first obtain the mean values of even and odd rows to estimate
the different gains applied to each row, and then divide the rows
with the corresponding gain. Fig. 13 shows the effectiveness of de-
interleaving on a Nexus 5 smartphone. We see that the interleaving
induces a fs/4 frequency component, which is even stronger than
the characteristic frequency, but completely removed after the gain
compensation.

Optimizing ISO. A camera’s low-noise amplifier (LNA) is con-
trolled by ISO number. The higher the ISO, the higher the gain, and
thus the more sensitive the camera is. Whereas a high ISO allows
a camera to capture weak signals, it also creates more noise. In
Fig. 14 we show how SNR of a tube FL’s CF feature changes with
different ISO settings. Overall, a higher ISO always results in better
SNR, implying that the improved sensitivity outweighs the increased

noise level. Thus, LiTell configures the camera to the highest ISO
to maximize SNR. Note that this choice differs from LED based
visible light communication systems, which intentionally generate
high power flickering signals, sufficient to be captured by the camera
even at low ISO [12].

4.3 Sequential Image Combining and Peak
Frequency Identification

Amplifying SNR via sequential imaging combination. After
the foregoing processing of a camera image, we obtain a column
vector, with each element being the sum intensity of a row of pixels.
To identify the peak frequency, we can simply run FFT over the
vector of samples. However, we found this results in a low SNR of
only around 2 dB under typical conditions.

To boost the SNR, we capture multiple camera images, and con-
catenate their samples into a long sequence as FFT input. Image
concatenation brings two immediate benefits: (i) Higher frequency-
resolution. Suppose fs and N denote the sampling frequency and
number of samples, respectively. Denote L as the length of samples
per image, which may deviate from maximum image height due
to SNIS. FFT operation’s resolution equals fbin = fs/N [16]. To
discriminate the characteristic frequency of different FLs, our em-
pirical results show that at least 10Hz resolution is needed (Sec. 5).
So we need to concatenate at least fs/10/L images, considering
SNIS may remove some noisy samples. For example, since Nexus
5 has a sampling rate of roughly 75Ksps and each picture provides
about 2000 samples (Table 1), we concatenate 7 pictures to get a
sufficient resolution of around 5Hz. (ii) Higher processing gain. It
is well known that FFT can achieve a “processing gain” with more
samples, i.e., the peak frequency’s SNR increases logarithmically
(in dB) asN increases, assuming the noise power spread evenly over
the spectrum (i.e., white noise). Our experimental results, shown in
Fig. 15, indeed verifies this quantitative relation. However, we note
as N becomes large, SNR improves marginally whereas the image
processing time increases substantially. We thus choose N to be the
minimum value that satisfies the resolution requirement.

One caveat in image concatenation is that overwhelming discon-
tinuities occur near the edge (cf. output samples in Fig 10), which
again induce high frequency artifacts that contaminate the CF feature.
We identified two underlying reasons: (i) Camera lens vignetting,
which makes outer area of the image darker than the central areas;
(ii) smartphone not perfectly parallelizing the ceiling, resulting in
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one end of the image brighter than the other. We use a simple equal-
ization procedure to mitigate these effects. Specifically, we first
fit each series of samples to a 6-order polynomial function, which
is common in lens correction and can capture slow varying spatial
response. Then we divide the samples element-wise by this poly-
nomial function since the distortions are essentially multiplicative
scaling. This restores the samples to their undistorted form and
avoids huge jumps at concatenation points.

Identifying characteristic frequency in the spectrum. After
the foregoing processing on the image samples, most spurious peaks
have been removed, making aliased CF the highest peak. We then
run a 2-step search to identify the peak frequency. We use Savitzky-
Golay filter [32] on the spectrum to get a smoothed spectrum, iden-
tify a coarse peak region, and then search for the exact peak position
within the corresponding region inside the original spectrum. The 2-
step approach helps preventing false positives when SNR is marginal.
Fig. 16 shows an example, where without filtering a spurious peak
can be misidentified as CF.

5. FEATURE MATCHING AND LOCAL-
IZATION

LiTell uses a simple linear search algorithm to match the
smartphone-extracted CF feature with CF fingerprints in the
database. Specifically, after obtaining an aliased copy of the CF,
fa, we first derive a collection F of possible original CFs following
Eq. (7). For each fg ∈ F , we find the fingerprint with minimum
difference in CF. Finally, the fg with minimum matching distance is
considered as the FL’s CF.

To guarantee accuracy, LiTell further uses history information to
provide tolerance against CF feature collision. Further, we show that
LiTell can also provide sub-light localization accuracy whenever an
FL falls into the camera’s FoV.

5.1 Multi-Light Matching: Improving Accu-
racy

To ensure high accuracy in location matching, we leverage the
fact that the user typically passes multiple lights consecutively, al-
lowing LiTell to use a group of consecutive lights together as a
location landmark as the user travels. From a high level, multi-light
matching provides an error-correction mechanism for LiTell— the
strict location relation between FLs dictates that each FL only has
a few candidate neighbors. Thus, even if one FL within a group is
mistaken, it may not fundamentally change the Euclidean distance
(in feature space).

Asymptotic collision probability. To understand the asymptotic
benefit from multi-light matching, we first analyze the probability
that a group of m consecutive lights is not colliding with another
group. As discussed in Sec. 2.2.1, we can reasonably assume fre-
quency of all Nl lights follow the same normal distribution, i.e.
fn ∼ N(µ, σ), n ∈ {1, 2, . . . , Nl}. A Gaussian fitting shows that
the 2 types of lights have µ = 90.25 kHz, σ = 1.62 kHz and
µ = 138.25 kHz, σ = 2.34 kHz, respectively. Consider the sce-

nario when one of 2 groups has CFs very close to the mean value
µ (i.e., fn,1 ≈ µ). Since in normal distribution probability density
peaks at µ, this represents the worst case scenario where the colli-
sion probability is the highest. The Euclidean distance between their
characteristic frequencies equals:

D =

√√√√ m∑
i=1

∆f2
ni, D

2 =

m∑
i=1

∆f2
ni (8)

(D2/σ2) follows χ2(m) distribution since ∆fn = fn,1−fn,2 ∼
N(0, σ2). For LiTell to distinguish 2 groups, we need D > a

√
m,

or (D2/σ2) > (a
√
m/σ)2, where a is the tolerance, i.e. minimum

distinguishable frequency difference. Denote P (k,m) as the CDF
of χ2(m) distribution, then the probability of 2 groups’ feature not
colliding with each other equals:

Pg(m,a) = 1− P
[
m
( a
σ

)2
,m

]
(9)

For the case of pairs (m = 2), Pg = 1−P
[
2(a/σ)2, 2

]
. Further,

the worst-case probability of one particular pair not colliding with
any other pair is:

Pn(Np, a) =

Np∏
i=1,i 6=n

Pg(2, a) = Pg(2, a)Np (10)

where Np is number of consecutive pairs and usually Np < 4Nl
since each light can at most make 8 pairs at 8 directions (including
diagonals), and each pair is shared by 2 lights.

When m = 1, D reduces to normal random variable ∆f and
Pn =

{
erfc

[
a/(
√

2σ)
]}Nl−1

. The asymptotic collision proba-
bilities for single light and pair matching under 10 Hz and 20 Hz
tolerance for σ = 1.62 kHz are shown in Fig. 17.

Choosing group size. In LiTell, to avoid excessive sampling, we
set m = 2, i.e., using each consecutive light pair as location feature.
Yet even this small m is sufficient to achieve high accuracy. For
example, with the same parameter a = 0.01, σ = 1.62 and the
worst case scenario for pairs Np = 4N , Eq. (10) gives Pn ≈ 98.5%
for a region of 100 lights, and Pn ≈ 97.0% for a region of 200
lights.

Empirical validation. We verify the effectiveness of single-light
and light-pair patching in an office building. The database contains
each ceiling FL’s coordinate, and characteristic frequency measured
using the photodiode (Sec. 2). We first evaluate the single-light
matching by testing over 4 regions containing 22, 28, 33 and 36 FLs,
respectively (Fig. 18). The non-collision probability turns out to be
86.4%, 81.5%, 82.9% and 80.5%, respectively, slightly lower than
the asymptotic analysis. In contrast, with light-pair matching, across
3 regions with 28, 64 and 119 lights, we achieve an accuracy of
92.9%, 91.7% and 90.8%, much higher than single-light matching.
The results are summarized in Fig. 19.

We emphasize that LiTell can distinguish which light in the pair
the user is currently at as long as CFs for the 2 FLs in the pair are dif-
ferent, thus matching pairs will not comprise localization granularity.
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Also note that LiTell uses a pair of characteristic frequencies as a
single landmark, so wrong localization results will not propagate
across different pairs.

5.2 Achieving Sub-light Granularity
Cameras are designed to produce undistorted images. From geom-

etry relations in the image, we can derive information that enables
sub-light level accuracy, which decouples LiTell’s granularity from
the density of FLs. To simplify the problem, we focus on the case
when user holds the smartphone roughly at level position in parallel
to the ceiling fixture. Then, the center of the camera image C corre-
sponds to smartphone location, since it points to the smartphone’s
projection on the ceiling.

We first observe that the geometry of lighting fixtures can be
easily known and added to LiTell’s database. Meanwhile, the SNIS
in Sec. 4.1 can provide the geometry of the light in the image. This
allows us to establish the relation between physical size and number
of pixels in the image as a ratio gi. Thus, we can get the smartphone’s
position in terms of pixels and then map it to physical location on
the 2D plane.

Fig. 20 illustrates a smartphone’s FoV which captures an FL
but is not perfectly aligned with it. We use w, h and θ to denote
the width, height and tilt angle of the FL’s image. L denotes the
center of the FL, whose physical location is known. C and P
denote the center of the image and its projection onto the light’s axle.
The coordinate of L, C and P are denoted as (xl, yl), (xc, yc) and
(xp, yp), respectively. By definition, LP⊥PC, thus LP ·PC = 0.
In addition, tan(θ) = (yp − yl)/(xp − xl), and (xl, yl), (xc, yc)
are known. Consequently, we have 2 equations to solve 2 unknown
variables xp and yp, which in turn lead to |LP| and |PC| in terms of
pixels. We then translate them back to meters with gi. The resulting
physical coordinate of C gives the smartphone’s position relative to
the center of the light.

6. IMPLEMENTATION AND SYSTEM EF-
FICIENCY

CF fingerprinting. We use the photodiode setup (Sec. 2) to col-
lect 2 seconds of samples from each FL and identify its ground-truth
CF. We then manually mark the FL’s location on a map, whose
zero coordinate is defined at an anchoring FL near the building en-
trance. The map is later digitized into 〈location, CF〉 and entered in
LiTell’s database backend. The whole fingerprinting process takes
one student volunteer around 3 hours for a medium-sized grocery
store (≈ 1000m2, 162 FLs), which is already an order of magnitude
faster than radio-based fingerprinting [2]. Overall, LiTell’s finger-
printing process is simple, efficient and non-intrusive, and involves
no management/infrastructure cost in realistic environments.

Receiver (smartphone) side implementation. We have imple-
mented LiTell’s sampling (Sec. 3) and feature amplification mecha-
nisms (Sec. 4) on Android. Further, we prototype a simple navigation

app that finds the shortest path towards a destination FL, and navi-
gates users with basic on-screen instructions (e.g., forward, left). Our
experiments run on several popular Android smartphones, whose
camera capabilities along with fs (measured following Sec. 3.3) are
summarized in Table 1. Unless noted otherwise, we use Nexus 5
for testing, with default ISO 10000, 7 image samples per FL, and
exposure time set by the adaptive exposure scheme (Sec. 3.2).

Sever backend. We run a MATLAB backend that maintains
a spreadsheet as database. Rather than sending RAW images to
the server (which makes wireless network the bottleneck), LiTell’s
smartphone app first processes the image following Sec. 3 and 4.
Upon receiving the processed samples, the server extracts aliased
characteristic frequency (CF) fa (Sec. 4.3), generates possible una-
liased CFs (Sec. 3.3) and match them to a specific FL using the pair
matching algorithm (Sec. 5.1). It then returns navigation instructions
to the smartphone app. In case the matching confidence is low, the
app will instruct the user to move to the next light for rematching.

Energy consumption. We profile the energy consumption of the
LiTell app using the Monsoon Power Monitor [34]. The Nexus 5
consumes 741.84± 11.52mW when idle, and 2001.60± 28.50mW
when the camera’s viewfinder is active. When the LiTell app is
capturing, processing and sending simultaneously, the power con-
sumption is 2669.69 ± 29.47mW, but a localization attempt only
lasts less than 2 seconds and consumes 1.20 ± 0.01mWh energy.
Considering that Nexus 5 has a 8.74Wh battery [35], it may support
over 1000 localization attempts per battery cycle.

Computational load and latency. On Nexus 5, our LiTell im-
plementation uses OpenCV [36] to process the images for SNIS
(Sec. 4.1). Processing each full-resolution RAW image takes
92±35ms, and around 700 ms for 7 images. We find that a majority
of the processing time is due to suboptimal implementation (Java
instead of native C) of the gluing operations, which cost around
70ms per image. We hence believe that with proper optimization,
the computation can be done within one frame interval (33ms [37]),
allowing 7 pictures to be processed within 233ms.

For the database server, including frequency estimation and match-
ing (Sec. 3.3, 4.3 and 5.1), all computation takes 112ms per request
on average, with 138 MB memory usage while running on a Dell
Latitude E5430 laptop with Intel Core i5 3340M CPU. Experiments
in our office building show an average location query-response time
of 1.62s in total, which includes the app’s processing time, database
server, network latency and other system level overhead. Also, it is
feasible to migrate the server side processing entirely into the app
by preloading the database or loading the database from storages
such as NFC tags, allowing localization when network connection is
unavailable, or when location privacy is of utmost concern.

7. EXPERIMENTAL EVALUATION
LiTell’s localization performance depends on two main factors:

diversity of characteristic frequencies (CFs) across FLs, and stability
of the CF feature in each FL. Our foregoing discussion has profiled



Table 1: Summary of camera parameters for the Android phones in our experiments.
Phone Year Resolution and Framerate Estimated fs (Sec. 3.1) fs (Sec. 3.3) SNR (Sec. 7.1)

Nexus 4 2012 3280× 2464 (8MP) @ 22.5 fps 55.440 Ksps 56.3347 Ksps 4.24 dB
Moto X a 2013 4320× 2432 (10MP) @ 30 fps 72.960 Ksps 60.6981 Ksps 9.20 dB
Nexus 5 2013 3280× 2464 (8MP) @ 30 fps 73.920 Ksps 75.1624 Ksps 10.26 dB

Nexus 5Xb 2015 4032× 3024 (12MP) @ 34.97 fps 104.910 Ksps 105.1089 Ksps 6.12 dB

aSensor might be down-clocked. The best configuration available in its software is 1920× 1080 @ 60 fps, corresponding to 64.800 Ksps.
bThis phone has non-linear RAW output (gamma compression [33]) and its SNR value is not comparable with others.
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the diversity factor and its implications on location discrimination
(Sec. 2 and 5). In this section, we first conduct experiments to verify
the stability factor based on LiTell’s smartphone-side algorithms
(Sec. 3 and 4), and then use field tests to evaluate LiTell’s overall
performance.

7.1 Mirobenchmark Experiments
Robustness across different light-to-camera distances. We

first put a smartphone under a single FL, vary the light-to-camera
distance (measured using a laser ranger [38]), and measure the SNR
and CF. Each measurement repeats 5 times. Fig. 21 shows that
SNR decreases proportionally to distance, but remains high (> 3
dB) even at a distance of 2m. Fig. 21 also plots the 90-percentile
CF variation under different noise conditions, with dark green line
showing ground-truth CF and gray area showing 20Hz tolerance
(Sec. 5). As long as the SNR exceeds 3 dB, the variation stays within
the 20Hz tolerance. This implies that LiTell can robustly capture
the CF features for a light-to-camera distance of up to 2m, which is
longer than ceiling-to-smartphone heights in most cases.

It is worth noting that SNIS nearly doubles the usable range for
LiTell. In some cases, we found the spectrum smoothing in Sec. 4.3
helps identify CF even under negative SNR, which indicates its
importance when SNR is marginal. Moreover, we found when LiTell
misidentifies CF, it tends to pick up a random frequency with low
confidence (far away from all fingerprints), and thus gets rejected.

Robustness across temperature. Recall an FL’s electronic com-
ponent ratings and hence stability of its CF is affected by tempera-
ture. We evaluate the impact in a small office, where we control the
temperature settings via a thermostat and verify the change using
a DS18B20 sensor [39] (0.1◦C precision). Fig. 22 shows that the
CF decreases as temperature increases, which is consistent with the
heat-up behavior in Fig. 6. However, within 4◦C temperature gap,
the CF fluctuates by less than 20Hz, well within LiTell’s stability
tolerance (Sec. 5). Since the temperature in most public buildings
tends to be tightly regulated, this experiment implies that LiTell is
robust across typical temperature changes in indoor environments.
Our field tests will provide more evidence (Sec. 7.2). Meanwhile,
we also tested LiTell in an outdoor parking ramp and do find the CF
becomes unusable due to large (> 10◦C) air temperature variations.

Robustness across human behavior. We also verify that LiTell
can work consistently across different users, whose usage behaviors
may vary. In the experiment, we sample an FL from various direc-
tions and while walking. To cover extreme scenarios, we hold the
smartphone within 1m to the FL, so the viewing angle can change
rapidly with position. Then we create the following test cases: (i)
normal test case: the phone is placed level right under the FL and
aligned with its tube direction. (ii) rotate case: the phone is mis-
aligned with the tube by about 30◦; (iii) tilt axial / lateral case (“T.
Ax.” and “T. Lat.”): the phone photos the fixture sideways from the
axial and lateral direction of the tube; (iv) walking axial / lateral
case ( “W. Ax.” and “W. Lat.”): the user walks across the FL along
its axial and lateral directions.

Fig. 23 shows that LiTell successfully detects the CF in all the
cases, with 90-percentile deviations of less than 10 Hz. The SNR
is consistently above 3 dB with a large margin. This shows that
LiTell’s CF detection and amplification mechanisms make it robust
to the extra variation on light intensity and effects caused by elusive
usage behaviors. More specifically, the sampling and processing
work fast enough to ensure the CF remains visible during capture of
7 images. LiTell’s SNIS is also robust against placement and shape,
and the macro defocusing mechanism can successfully filter spatial
features, leaving only the temporal frequencies in the spectrum.

Different smartphone models. LiTell’s CF identification per-
formance may be affected by different smartphone models, with
varying resolution and speed (which determine the rolling-shutter
sampling rate) and sensor quality (which determines SNR). Whereas
it is infeasible to exhaust all smartphones, we test 4 of them repre-
senting different generations that were launched in the past 4 years,
by sampling a tube FL 1 meter away. Table 1 summarizes the mea-
surement results. Despite the different camera capabilities, all the
phones can detect the CF with high SNR (> 6 dB except for Nexus
4). It is worth noting that Nexus 4 and Moto X do not allow exposure
time or ISO configuration, and only allow JPEG imaging which may
distort the CF features due to non-linear processing [40]. The SNR
of detected CF is relatively lower, but still exceeds LiTell’s 3 dB
minimum requirement, based on LiTell’s other camera optimization
mechanisms.

Impact of ambient light. To evaluate LiTell’s robustness against
ambient light interference, we put the smartphone 1.5m away from
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Figure 26: Field test venues. From left to right: office building,
parking lot, grocery store.
a tube FL close to a window. The experiment started on a sunny
day at 2:30pm until sunset. A Lux meter [41] is placed nearby to
track ambient light intensity. Fig. 24 shows that LiTell consistently
captures the CF with more than 3 dB SNR except for extreme cases.
In contrast, when LiTell’s SNIS is disabled, the SNR drops to 0 dB
under sunlight interference, making it impossible to discriminate CF
from noise. Therefore, SNIS not only improves SNR, but also makes
LiTell more robust under ambient sunlight interference.

Granularity of sub-light localization. To evaluate the granular-
ity of sub-light localization, we use a light fixture with a 1.2m-long
tube FL, 1.8m above the phone. We place the phone on a motored
slider [42] and move it to 20 locations 5cm apart from each other
in a 1.1m × 0.4m area (limited by slider length and camera FoV).
We record the localization error of 10 attempts, and then repeat the
experiment with a user holding the phone while “walking” on the
spot. Fig. 25 shows that LiTell can achieve 10cm accuracy 90% of
the time if placed still and level. When held by a walking user, the
phone is no longer strictly level, which affects LiTell’s geometrical
model (Sec. 5.2). But the median precision is still as high as 15cm
and 90% at 25cm. We believe the accuracy can be further improved
when combined with phone orientation sensing and compensation
mechanisms.

As the distance gets larger, the physical distance that a pixel
covers also increases linearly, so the error will grow linearly with
distance. Considering most buildings have heights less than 5m and
users usually hold the smartphone at least 1m above the floor, the
error of sublight localization should remain below 0.5m in most
cases.

7.2 User Study and Field Tests
To test LiTell’s robustness and accuracy in the wild, we conducted

field trials across 3 different venues (Fig. 26): an office building
(≈ 9000m2, 119 FLs, ceiling height ≈ 3.0m), an indoor parking
lot (≈ 2800m2, 91 FLs, ceiling height ≈ 2.8m), and a medium-
sized grocery store (≈ 1000m2, 162 FLs, ceiling height ≈ 4.0m).
Our field trials were conducted approximately two months after FL
fingerprinting, and span over 2 weeks. We recruited 10 volunteer
users who frequent the venues, but may not have precise knowledge
of all the points of interest (e.g., room number, parking spot, and
storage shelf of goods). Average height of the users is around 1.7m.

The trials are conducted across different time of the day, with heavy
human activities around most of the time. In each test, we ask a
participant to start from the building entrance, and find a random
POI which may be on a different floor. We perform 3 sets of trials:
(i) Controlled test: A user finds the POI with common sense or help
available (maps on walls, direction signs and people walking by).
(ii) LiTell test: A user (different from the controlled one) uses the
LiTell navigation app to find the same POI. (iii) Oracle baseline.
After the above two tests, we let all users know the shortest path and
walk directly to the POI.

In each test, we follow the user and record the walking time and
path on a map. Then, we derive the extra distance and percentage
of extra time spent on navigation for test (i) and (ii), by subtracting
the oracle baseline from them. We use percentage in walking time
to compensate for different walking speeds. Since the prototype
LiTell implementation uses back cameras, the users sample the light
with the phone facing down when requested by the app, and then
turn the phone upright again to read instructions, which causes some
unnecessary overhead in time consumption.

7.2.1 Accuracy
Our field trials focus on accuracy of FL identification. This is

because most public indoor venues have densely deployed FLs (1.5
to 3 m separation), which allows us to achieve meter-level granu-
larity, sufficient for navigation purpose even without the sub-light
localization module. Fig. 27 plots the localization accuracy. Across
all randomly selected POIs, LiTell can discriminate the FLs along
the way, with mean accuracy of 90.3% and a small variation of 11%
from the best to the worst, which is very close to results obtained in
controlled environments (Fig. 19), despite different light models and
ceiling heights. In particular, FLs in the grocery store are closely
placed in lines 2 meters away from the phone, resulting in multi-
ple lights being captured simultaneously. However, LiTell’s SNIS
mechanism can successfully isolate the lights, and only include the
nearest one, which has the largest area in the image. Additionally,
busy customers in the grocery store and moving cars in the park-
ing lot did not degrade LiTell’s accuracy, since the CF feature is
deterministic even when RSS varies significantly. The results also
show temperature in most indoor environments is stable enough for
LiTell to operate, and verify that LiTell is consistent and reliable in
multiple types of realistic environments, with negligible deployment
efforts [2].

We also notice that most errors are caused by single light sampling,
which are accidentally introduced by users. When the location
matching confidence is low, LiTell advises the user to sample a
single neighboring light to get the correct result. Thus, occasional
location errors do not actually cause navigation failures.

7.2.2 Performance for Indoor Navigation
To test LiTell’s effectiveness in indoor navigation, we randomly

select 6 targets in the office building: 1, 4 and 5 are on the 1st floor,
while 2, 3 and 6 are on the 2nd. In addition, 5 and 6 are in a corner
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Figure 27: Accuracy across all venues.
“O”: office building, “P”: parking lot, “G”:
grocery store. Error bars show min/max
values across 10 users’ trials.
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Figure 28: Extra time spent on navigation
by users. Error bars show min/max values.
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Figure 29: Extra distance walked by users.
Error bars show min/max values.

of the building not far from the entrance. The oracle routes vary
from 35m to 132m including the stairs, each containing at least one
turn.

Fig. 28 shows the extra time cost w.r.t. the oracle. Compared with
the controlled tests, LiTell saves different amount of time depending
on how hard the target can be found. Particularly, target 5 is only
about 35m away from the entrance point, and even the controlled
group can easily find it with only 7 seconds of extra time compared
with the oracle baseline. However, when the user is unfamiliar
with the target POI, LiTell can save over 50% time on average
compared with the control group, for both single-floor and cross-
floor navigation. On the other hand, LiTell’s extra time cost w.r.t.
oracle is consistent at roughly 40% across all targets, regardless of
distance, usage habits, area, number of turns or floors. This again
confirms that LiTell’s CF extraction mechanism is robust against
practical usage scenarios.

Fig. 29 further plots the extra distance cost w.r.t. the oracle. Extra
distance needed by LiTell is typically only a few meters, owing to
its high localization precision. Interestingly, we find even for the
control group users who frequent the building (for classes), their
trajectory can be highly suboptimal. And LiTell can help prevent
them from traveling to wrong places or along detour paths. The
average distance saving can be 50 m to 70 m for POI 2, 3 and 4,
and up to 120 m for certain users. Compared with such distance
saving, the time saving in Fig. 28 might seem relatively small. This
is mainly due to LiTell’s processing overhead in each localization
attempt. We believe an optimized implementation (Sec. 6) can cut
the time overhead and enable seamless real-time navigation.

8. LIMITATIONS AND FUTURE WORK
Ubiquity of FL vs. LED. While LEDs are likely to replace FLs

eventually, current progress is slow. The main reason is that FL has
already saturated the market, and its low cost and availability still
lead to new deployment. Moreover, LED hardware still bears certain
limitations, such as lower color quality, narrow beam angle and lower
lumen output [43]. Thus, the US Department of Energy [14] predicts
that FLs will continue dominating the market, occupying more than
60% of the market till 2020, and 30% to 40% till 2030. From our
experience, buildings with any LED lightings remains scarce for
now, and even in these buildings the major force of lighting is still
FL. In addition, LEDs used for commercial lighting may differ
from “smart” bulbs that can send unique beacons. Due to cost, size
and management issues, we expect “smart” bulbs and regular LED
bulbs or even FLs to be deployed together in the future. This means
systems that work with regular LED bulbs will still have unique
values.

Most existing LEDs are driven by constant current drivers [44],
which oscillate much like FL drivers [45]. Since LEDs are driven
by DC, manufactures may add capacitors to the output of the driver

to suppress flickering introduced by the AC mains voltage. This,
however, apparently attenuates the characteristics frequency (CF)
even more severely. From our measurements, some LEDs exhibit
CFs that are 60dB weaker than the 120Hz and DC signal, while
others do show very strong CF. Due to the limitation of SNR, current
version of LiTell may not be able to work with all varieties of LEDs.
However, once high-SNR, high-speed light sensors (e.g. photodiodes
used in visible light communications (VLC) [46]) are available on
smartphones, LiTell will also work with majority of the LEDs.

Front-facing cameras. Current LiTell implementation relies on
back cameras, which are usually more powerful than the front-facing
ones. We expect LiTell will need to concatenate more images to
overcome the lower resolution and quality of front cameras, and
eventually reach sufficient SNR. However, driven by popular appli-
cations such as selfie, the specifications for front-facing cameras
have improved dramatically over past a few years, jumping from
720p to full-fledged 5-mega-pixel cameras. With up-to-date hard-
ware, LiTell should be able to perform as well with such cameras.

Front cameras of modern smartphones can already capture pic-
tures at nearly 30 FPS as needed by video calls, so collecting enough
number of samples should not require substantially longer time,
while the time spent on processing may reduce due to reduced num-
ber of pixels. As a result, using the front cameras should not increase
LiTell’s localization latency substantially.

Compensating for temperature. LiTell is unsuitable for envi-
ronments where temperature varies dramatically across days, which
changes the CF feature accordingly (Sec. 7.1). Currently, we see
offices and shopping centers as LiTell’s target application scenarios,
where room temperature is always tightly regulated. For example,
during a period covering winter and early summer, CFs of FLs in our
office building did not drift significantly enough for recalibration to
be necessary. However, for places with large dynamics in temper-
ature, it is possible to derive a CF-vs-temperature model for each
FL model, and use it to calibrate the fingerprinting database based
on current temperature. Since LiTell mainly targets stable indoor
environment, we leave such exploration as future work.

Energy consumption. We choose to build LiTell on top of the
camera due to the fact that nearly every smartphone today has built-
in camera, while none is known for embedding photodiodes or other
high-speed light sensors. This leads to unnecessarily high power
consumption since information from most pixels in the camera is
discarded and wasted. The availability of such high-speed light
sensors on mobile devices, however, may see growth in the future
as VLC techniques mature. LiTell can easily be adapted to leverage
photodiodes as high SNR, alias-free and energy-efficient light sen-
sors. On the other hand, even though cameras are energy-hungry,
LiTell can use low-speed, low-power and ubiquitous ambient light
sensors to determine when to turn the camera on, which may help
reduce overall energy consumption considerably.



Towards large-scale and long-term deployment. While
LiTell’s location matching mechanism (Sec. 5.1) gives it some
tolerance to collisions, the probability of collisions among group of
lights will eventually be too high when number of lights gets larger
and larger. One solution is a multi-level hierarchical localization
system: radio-based (e.g. Wi-Fi) localization system provides a
rough region which limits LiTell’s collision domain, and then LiTell
provides fine-grained localization result within each domain.

Across our nearly half-year observation, the CFs of experimented
FLs did not change significantly. But over a longer term, the CF
change might eventually happen, e.g. due to severe aging or replace-
ment of worn-out lights. When such change does occur, LiTell will
either give low confidence in matching (with single or pair match-
ing), or find user’s trajectory to be discontinuous. Users may choose
to allow the localization server to analyze such matching confidence,
and then isolate and correct for the changes.

9. RELATED WORK
Radio and sensor based localization. Fingerprinting based ap-

proach is arguably the most accurate way to realize radio-based
localization [8]. Using RSS [3, 4] or more detailed physical-layer
information [47], the location granularity can reach 1 ft2. However,
suffering from environment changes, human presence/mobility, etc.,
RF fingerprinting is highly unreliable – typical 80-percentile error
fall in 6 to 8 meters [7, 8]. More importantly, the training overhead
is unbounded because under multipath effects, nearby locations do
not have a deterministic signature correlation. For example, lat-
est WiFi fingerprinting method needs to employ a robot to survey
each 1 ft2 location spots for 100 times to average out signature
variations [47]. The fingerprints will soon become stale in practical
environments [4]. The daunting deployment/maintenance overhead
prevents fingerprinting from being adopted.

Model based approaches can avoid the labor-intensive fingerprint-
ing. Existing work along this direction has employed statistical
propagation models [5, 48], crowd sourcing [49], as well as lat-
eral sensing modalities such as motion sensors [50]. The location
precision varies depending on testing environment, anchor density,
etc. But due to inherent vulnerability of RF signals, the robustness
problem remains unsolved [2].

Visible light localization. Visible light (VL) localization has
been fueled by the growing popularity of LED luminaries, and the
emerging VL communication standard 802.15.7 [51]. Earlier works
[52–54] used light fixtures as landmarks to achieve cell-level location
precision. State-of-the-art VL localization has further exploited co-
located LEDs [12, 55], spin-lights [56], polarized LEDs [11], and a
combination of light and motion sensors [10] to achieve sub-meter
location precision. However, all these schemes need customized
LED drivers to emit identity beacons, which further increases LEDs’
hardware/retrofitting cost – a major roadblock to the adoption of
LEDs [14]. High precision VL localization schemes often require
well-shaped LEDs [10, 55, 57] (for propagation modeling) or ultra-
dense deployment [10] (multiple LEDs within camera FoV), which
limits their use cases. In [58], Xu et al. proposed to use LEDs
as periodic landmarks to complement pedestrian dead-reckoning.
However, the accuracy of dead-reckoning becomes the performance
bottleneck and the error often rises to 8-10 meters.

Upgrading existing mobile handset with new hardware is a chal-
lenging problem. Therefore, many systems use smartphones as
receiver for VL localization [12] and communication [15,59]. These
systems aim to detect low-rate beacons (a few bytes/second) from
LEDs, and can be realized by directly processing the rolling-shutter
pixels. In contrast, LiTell imposes stringent requirements on the
sampling rate and SNR, which need new mechanisms to optimize

the capture settings. It leverages the inherent signatures of FL lumi-
naries and needs no dedicated VL communication hardware. Many
existing video sampling algorithms take advantage of rolling shutter
effects to achieve super-time resolution, but they commonly rely on
customized camera hardware, which can configure exposure/readout
time at pixel granularity [60].

Electrical appliance identification. LiTell’s key idea was in-
spired by research in electromagnetic interference (EMI) detec-
tion [61]. When interfacing with the 50/60 Hz powerline signals,
different electrical devices may echo weak EMI back to the power-
line. In particular, switching mode power supply (SMPS) devices
(e.g., FLs, LEDs, chargers) exhibit continuous harmonic signatures
in the current waveform. These signatures can be measured by
current probes on powerlines, and used to disaggregate the energy
usage of different types of appliances [62]. In contrast, LiTell can
extract signatures from the same type of appliances, i.e., FLs, by
discriminating tiny differences in the optical frequency.

10. CONCLUSION
In this paper, we explore the feasibility of using unmodified FL

fixtures to build a robust indoor localization system. We design
and implement LiTell, a system that can discriminate subtle differ-
ences in the weak, high frequency characteristics of FLs’ emission,
utilizing COTS smartphones’ cameras augmented with customized
sampling/amplification algorithms. Our field tests show that LiTell
holds the promise as a ready-to-use, easy-to-deploy indoor localiza-
tion system that is robust against environment and user habits. While
refinement is ongoing, LiTell leads to a new direction for robust,
infrastructure-free indoor localization with visible light.
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