
Conductive Inkjet Printed Passive 2D TrackPad for
VR Interaction

Chuhan Gao
University of Wisconsin - Madison

chuhan@cs.wisc.edu

Xinyu Zhang
University of California San Diego

xyzhang@ucsd.edu

Suman Banerjee
University of Wisconsin - Madison

suman@cs.wisc.edu

ABSTRACT
Mobile virtual reality (VR) headsets, such as Google Card-
board and Samsung GearVR, can reuse a smartphone as
near-eye display to create immersive experience. But such
devices barely support any user interaction, even for sim-
ple tasks such as menu selection and single-character input.
In this paper, we design Inkput, a simple passive interface
attached to the unexploited backside of the headset to en-
able touch sensing. Inkput is a piece of paper substrate with
carbon ink patterns printed atop. It leverages the column
of electrodes near the edge of the smartphone touchscreen
to sense multi-touch on the 2D space, and is even able to
locate finger hovering. Our experiments demonstrate that
Inkput can precisely detect touch positions with mm-level
precision. Our case studies in actual VR applications also
verify that Inkput can support common VR interactions and
can even outperform high-end handheld controllers in terms
of efficiency.

KEYWORDS
Mobile virtual reality; VR interaction; Inkjet printing; Touch
sensing

ACM Reference Format:
Chuhan Gao, Xinyu Zhang, and Suman Banerjee. 2018. Conduc-
tive Inkjet Printed Passive 2D TrackPad for VR Interaction. In The
24th Annual International Conference on Mobile Computing and Net-
working (MobiCom ’18), October 29-November 2, 2018, New Delhi,
India. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3241539.3241546

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom ’18, October 29-November 2, 2018, New Delhi, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5903-0/18/10. . . $15.00
https://doi.org/10.1145/3241539.3241546

1 INTRODUCTION
The increasingly higher computation capability as well as
advanced pose-tracking technologies [1, 2] have made smart-
phones a self-contained virtual reality (VR) device. The smart-
phones can be slotted into a variety of headsets, such as
Google Cardboard [3], Daydream [4] and Samsung GearVR
[5], which form a low-cost head-mounted-display (HMD),
offering mobile VR experience to users anywhere, anytime.

One fundamental drawback of such mobile VR is the poor
interaction capability. Since the smartphone screen is cham-
bered in the headset and fully occupied by display, no intu-
itive touch interface is available, which severely limits how
the user interacts with the virtual world. Many mainstream
mobile VR systems attempt to alleviate this drawback us-
ing head-rotation and/or an external handheld controller. The
head-rotation approach employs the smartphone’s inertial
measurement units (accelerometer, gyroscope and compass).
The user can rotate her head to navigate a crosshair cur-
sor and select UI elements through a countdown timer. But
head-rotation can be cumbersome even for simple utilitarian
interactions such as navigating a menu and selecting items.
On the other hand, the external controller can have physical
click-buttons, built-in motion sensors, or a mini-touchpad
with swiping sensing capabilities [4, 5], to ease the selec-
tion. However, navigating a cursor with such an external
controller is far from convenient or expressive for certain
operations, such as text entry, where one or more fingers are
necessary to interact naturally with the application, similar
to the way one would interact with ordinary touchscreens.

Alternative hand tracking technologies may approach the
ideal and enable natural interaction within the virtual envi-
ronment through hand/finger gestures. Examples include
the gesture gloves which instrument the hand [6], Leap
Motion [7] which instruments the HMD with infrared sen-
sors/cameras, HTC VIVE’s Lighthouse [8] and Oculus Rift
[9] which instrument the environment with optical tracking
basestations, etc. Despite the high tracking accuracy, these
technologies are much more costly than the mobile VR HMD
itself. They entail heavy instrumentation overhead, and are
hardly practical for mobile VR systems such as Google Card-
board.

In this paper, we propose Inkput, a lightweight and passive
paper-based interface to enable multi-finger touch sensing
withmillimeter-level precision. As illustrated in Fig. 1, Inkput

https://doi.org/10.1145/3241539.3241546
https://doi.org/10.1145/3241539.3241546
https://doi.org/10.1145/3241539.3241546

Figure 1: Google Cardboard integrated with Inkput.
is a piece of paper with conductive stripe patterns printed
atop. A thin edge of the paper is attached to the edges of a
smartphone touchscreen, which extends its interaction area
to the backside of the HMD. Touches on the paper “propa-
gates” to the touchscreen, and can be localized by Inkput’s
sensing algorithms running inside the smartphone. Inkput
does not need any hardware/firmware modification to the
mobile device, nor does it require any additional infrastruc-
ture. It can be produced by a home printer, ordinary photo
paper and cheap carbon ink.

Despite its conceptual simplicity, Inkput faces three signif-
icant practical challenges. (a) How to sense 2D touch position
on a fully passive printed extension? Modern capacitive touch-
screens comprise a 2D grid of touch sensing units, i.e., the
electrodes. To avoid blocking the display, Inkput only at-
taches its conductive pattern with the column of electrodes
on the long edge of the touchscreen. This single column
of electrodes needs to sense touches on the 2D paper. To
meet this challenge, we use conductive carbon ink to print
extension stripes, each in contact with the smartphone edge.
Different finger positions, even along the same stripe, can
generate different resistance/capacitance which leads to dif-
ferent readings on the electrodes.

(b) How to detect multi-finger touch? The ability to de-
tect multiple simultaneous touches is crucial for complex
gestures such as zooming. With normal touchscreen, the
positions of multiple touches can be detected by identifying
local maximums in the 2D electrode grid output. In Inkput,
the effects of multiple touches can mix together on the same
stripe, and must be disentangled by a single electrode. In
addition, since the finger is in proximity of multiple stripes,
it may be capacitively coupled to multiple electrodes on the
screen. Such interference can make the local maximums even
harder to find. Inkput resolves these issues using a model-
based optimization mechanism that takes advantage of the
interference among stripes to estimate which stripes and
which positions are touched.

(c) How to detect hovering? Since the VR user’s eyes are
blinded by the HMD, she sees the exact touch position indi-
cated on the screen, only after touch occurs. Thus, a wrong

point may be touched before she realizes. Inkput alleviates
such a usability issue by detecting the finger hovering posi-
tion. It first distinguishes touch and hovering based on their
intrinsically different stripe interference models. Then, it
fuses the interference model for hover into the optimization
framework, to estimate hover positions.

We have prototyped Inkput using ordinary home printer
and photo-papers, and implemented the above 2D touch/hover
sensing mechanisms on Android phones. Our experiments
demonstrate that Inkput can localize touches on the printed
extension with millimeter (mm) level accuracy. Specifically,
for single-finger touch, the average error is around 1.7 mm,
and only increases to 5 mm for 4 simultaneous touches.
Inkput also achieves mm-level accuracy for hover position
detection. It incurs negligible sensing latency, and can out-
put the results at 25 Hz even for multi-touch. We further
conducted two case studies to verify the usability of Inkput
in a practical setup. In a VR text-entry application, Inkput
achieves comparable input efficiency as the heavily instru-
mented HTC VIVE, at even lower error rate. We also repur-
pose Inkput as a paper-keyboard to extend a smartphone
touchscreen, and observe that it achieves close to zero error
rate.

The idea of extending capacitive touch interface through
conductive stripes has been explored by previous work [10–
15], among which ExtensionSticker [10] is closest to Inkput.
However, these systems adopt silver nanoparticle ink with
near-zero resistance, and hence cannot locate touch points
along a stripe. Consequently, they can only detect 1D ges-
tures, i.e., tapping on one stripe or swiping across multiple
stripes. Inkput represents the first to realize 2D touch sens-
ing and hovering detection, using resistive carbon ink aug-
mented with sensor signal processing algorithms. To this
end, Inkput makes the following technical contributions:

(a) Proposing a simple paper-printable interface that bor-
rows tiny edges of the smartphone touchscreen, and realizes
2D touch sensing on the unexploited backside of a mobile
VR headset.

(b) Designing effective mechanisms to realize highly ac-
curate and reliable multi-touch sensing and hover sensing
capabilities on the printed extension.

(c) Integrating Inkput with VR applications, and verifying
its performance and usability through comprehensive micro-
benchmarks and use case studies.

2 RELATEDWORK
Many VR and augmented reality (AR) applications rely on
vision/optical tracking as an input method. Advanced VR
systems [8, 9] use external tracking stations to locate an
HMD instrumented with optical transceivers. Alternative

self-contained tracking solutions may use infrared or cam-
eras to track finger/hand gestures in the air [7, 16–18]. How-
ever, the high computation cost of such vision-based ap-
proaches limits the frame rate of tracking, which degrades
the user experience in interaction-rich VR applications. In
addition, cameras can quickly drain the smartphone battery
along with the power-hungry display and computationally
intensive VR applications.

Existing mobile VR systems usually resort to a bruteforce
way of controlling the device at a general UI level (e.g., menu
configuration and text input). The user has to execute such
operations on the touchscreen before wearing the HMD. To
change the settings the user has to take off the HMD again.
Besides touching/selecting utilitarian UI elements, some VR
applications create a virtual representation of user’s hands,
allowing interaction with virtual objects with arms’ reach
(assuming hand position can be precisely tracked). However,
unlike real objects, no haptic feedback is provided to the user.
So these approaches do not offer much usability advantage
comparedwith Inkput, which uses the HMDbackside itself to
provide passive haptic feedback. Eye gaze tracking [19] may
help navigate a cursor in VR, but it incurs high computation
overhead like other computer vision solutions, and suffers
from the same inconvenience as head-rotation.
Inkput is inspired by the back-of-phone interaction tech-

niques [20–23], which augment the devices’ backside with
physical buttons or an additional touch pad. Despite the cost
and form-factor limitations, they have shown the feasibil-
ity of mobile interaction and input, purely based on users’
sense of proprioception, i.e., ability to touch or select body
parts/accessories without seeing the fingers. Facetouch [24]
extended the principle to mobile VR HMD. But again, it
needs to add an additional touchscreen and wire it with the
smartphone inside the HMD.
Many wireless sensing techniques have been proposed

recently that use acoustic [25–29] or RF [30–34] signals to
identify hand gestures or even track finger movement. Al-
though the mean tracking accuracy can reach below 1 cm in
controlled settings, these approaches are severely limited by
their reliability in complicated environments. In particular,
frequent body and device movement create sophisticated
multipath reflections that compromise the signal strength or
phase measurements. Consequently, in practical use cases,
even with limited body movement, the 90-percentile accu-
racy of state-of-the-art wireless solutions can only reach a
few centimeters at best [27, 31], far from enough for touch
interactions with mobile VR. Besides, none of such systems is
capable of multi-finger touch sensing. Motion sensors on the
smartphone have also been used to sense touches on fixed
locations [35, 36], but cannot afford 2D continuous tracking.
RIO is another recently proposed system that detects touch
on RFID tags [37]. Although the tags are extremely cheap,
RIO requires a dedicated reader, which typically costs several

Figure 2: Inkput attaches a printed paper with conduc-
tive stripes to the edge of the touchscreen. An extra
piece of printed stripes connects the paper and touch-
screen so that printed pattern faces the same direction
as the screen.

hundred dollars. It also does not provide the capability to
detect touches continuously along the conductive material,
thus unable to support 2D touch sensing.
Recent work exploited conductive ink as a lightweight

medium to extend touch sensing interfaces. ExtensionSticker
[10, 11], in particular, attaches a series of thin conductive
ink stripes to extend a touchscreen, similar to Inkput. Yet it
can only recognize “on/off” touch on a low-resistance stripe.
In contrast, Inkput realizes 2D multi-touch and hover sens-
ing, by locating the exact touch point along each carbon ink
stripe and resolving coupling between stripes. Wiethoff et
al. [15] draw conductive ink on physical objects and turn
them into tangible interfaces. Holman et al. [14] wire resis-
tive patterns to a microprocessor to create a keyboard-like
touch device. Many other systems used different conductive
medium together with dedicated capacitive sensing circuits
to detect interactions [12, 13, 38, 39]. Operating at a larger
scale, Wall++ [40] instruments capacitive sensors in a wall,
turning the entire wall into a large 2D touch/proximity sen-
sor.

3 OVERVIEW
Fig. 2 illustrates how Inkput acquires touch sensing capabili-
ties by borrowing the edge of the smartphone touchscreen.
The primary physical components of Inkput are a series of
conductive stripes printed on normal photo paper. In Inkput’s
coordination system, the top left corner of the printed paper
extension is the origin point. The objective is to precisely
sense a touch position (xT ,yT) within this 2D space. Infer-
ring yT is relatively easy, because touches on the stripe only
affect the electrodes in its close contact. On the other hand,
to determine xT , we print carbon-ink stripes with relatively
high resistance (over 100kΩ). The resistance between the
finger and the touchscreen changes with the xT , resulting in
different output values on the touchscreen electrode, which
can be utilized together with the signal processing compo-
nents of Inkput to infer touch/hover positions.
Before putting Inkput into use, a simple one-time cali-

bration is needed to parameterize its sensing algorithms.

Specifically, a user needs to swipe across the stripes, which
allows Inkput to obtain twomodels: (a) Stripe resistance curve,
which characterizes how touchscreen output changes with
the resistance between finger and screen, i.e., xT (Sec. 5.2); (b)
Stripe interference pattern, which characterizes how a nearby
stripe is affected when one is touched. These two models are
used together to perform touch and hover detection, as well
as a model-based optimization to identify multiple touches
(Sec. 6.2, 7). Note that the calibration does not need to be
repeated unless the user switches to a new smartphone, or
the stripes’ geometry/material changes. In addition, we find
through experiments that the two models do not vary across
users, so the calibration does not need to be repeated for
different users, either.
Due to its low-cost, easy-to-build features, Inkput can

easily be produced at home with normal printer and cheap,
consumer-grade conductive ink. Beyond the use case of back-
of-HMD touch sensing for mobile VR, Inkput can serve as
a generic solution to extend the interaction area of mobile
devices (Sec. 12.3). The passive and lightweight printed sheet
can be a separate smartphone accessory or integrated with
flip case, and serve as a convenient touchscreen extension
anytime, anywhere.

4 PROTOTYPING OF INKPUT
4.1 Touch Sensing Device
We prototype Inkput on two Android smartphones: Nexus 5
(N5) and Galaxy S5 (S5). Both have capacitive touchscreens
that are commonly used by many other phone models. Un-
derneath the screen are touch sensing electrodes organized
in a 27× 15 (28× 16) grid for N5 (S5). Each electrode (sensing
unit) measures the capacitance variation upon finger touch.
Aside from touch, hover detection is naturally supported by
touchscreen hardware. Finger hovering causes slight vari-
ations of the measured capacitance (explained in Sec. 9.4),
and therefore a close hover can be detected by hardware,
although the detectable range is usually short. Hover detec-
tion is usually disabled by the driver as reporting measured
small capacitance variation might cause more false positives
frequently in touch detection.
Both N5 and S5 implement the Synaptics touchscreen

controller, which controls the touchscreen hardware and
extracts the RAW touch sensing data. The RAW data is then
processed by the touchscreen controller driver (de-noising,
phantom removal, interpolation, etc.) and estimated touch
positions are reported to the OS kernel. In order to acquire
the RAW data as input to Inkput, we use a modified Synaptics
touchscreen driver that supports RAW data reporting [41],
which we integrated into N5 and S5’s kernel. The driver was
initially found in the Moto X 2013’s kernel source, named
Synaptics DSX, and by enabling the test-reporting function,
the RAW data become accessible.

4.2 Conductive Inkjet Printing
Conductive inkjet printing has been widely used in fast pro-
totyping electronics due to its low-cost and reconfigurability.
The conductive ink (typically made of silver or carbon) is
inkjet-printed on either photo paper or specialized substrates
to form conductive wires. Different types of ink differ in
terms of conductivity, dielectric properties, surface tension,
etc., which affect the printed circuit’s performance, especially
under high frequency.
Inkput only uses conductive patterns to create resistors

operating at very low frequency, as the scanning frequency of
touchscreen is only 10-50 Hz. The only property that matters
is the conductivity of the ink. We use a type of conductive
carbon ink which has a sheet resistance of around 4.5kΩ/sq
and can be printed on normal photo paper [42]. We will
explain the choice of conductivity level in Sec. 5.
To produce conductive patterns, we simply fill the car-

bon ink into the cartridge of a home inkjet printer, Epson
Stylus C88+ [43]. Today’s home printers fall in one of two
categories: (i) Inkjet printers produce images by dropping
spots of ink onto the paper. (ii) Laser printers do this by scan-
ning laser beams across photoreceptors. The latter are more
popular in office environments due to faster printing speed,
while inkjet printers are more often used to print photos or
image-heavy documents due to higher image quality. Since
the carbon ink is in liquid form under room temperature, it
needs to be used on inkjet printers.

The Epson Stylus C88+ costs around $120. The carbon ink
from NovaCentrix [44] costs around $100 for 50 ml, and the
Epson photo paper we use costs $10 per 20 8× 10 sheets. We
find that 50 ml of ink could produce more than 500 sheets of
extensions used by Inkput (Fig. 2). Therefore, each extension
only costs around $0.4 worth of conductive ink and paper.
The cost can be further reduced under massive production.

Finally, to integrate the printed extension with touch-
screen, we fix the extra piece of printed stripes to the touch-
screen edge using tapes. This only occupies a tiny width (3
mm) of the screen, but suffices to trigger the edge column of
electrodes. Although we use tape for the connection, a more
elegant solution can be an additional folding structure in the
VR HMD, which physically touches the smartphone when it
is mounted. In addition, note that the touchscreen electrodes
are not visible to users, and Inkput does not require each stripe
to be aligned with each individual electrode because the yT it
resolves is a continuous variable (Sec. 6.2).

5 DETECTING TOUCH POSITION ALONG
A SINGLE STRIPE

5.1 A Primer on Capacitive Touchscreen
A touchscreen generally contains a grid of sensors under-
neath an insulating layer, such as glass or polymer [45].
Among a variety of sensing approaches, including resistive

(a) (b)
Figure 3: Equivalent circuit model of touch sensing
hardware and charging voltage before/when touched
(a) original touchscreen electrode; (b) with Inkput
stripe.
[46], surface capacitive [45], and optical [47] technologies,
capacitive sensing is most widely today due to its high effi-
ciency, robustness, sensitivity and low cost [48]. Capacitive
touchscreen is used by more than 92% touch sensing devices
shipped in 2014, and predicted to be 98% in 2018 [49].
When a conductive object is in close proximity or direct

contact, the touchscreen’s capacitive sensing electrodes are
coupled with it [50]. The variation of capacitance is detected
by the electrodes by measuring the change of charging time
of an inner capacitor. Fig. 3 (a) illustrates an equivalent cas-
cade RC circuit model for one electrode, where the voltage
of inner capacitor, denoted by VC , can be written as,

VC = VS (1 − e
−

Cin+CF +CP
Cin (CF +CP)Rin

t
) (1)

where VS is a fixed supply voltage; Rin, Cin are the inner re-
sistor and capacitor; CF and CP are finger capacitance and
parasitic capacitance, respectively; and t represents the time
sinceVS is supplied [51]. Parasitic capacitance exists in every
AC circuit due to proximity between conductive components.
To detect touch, a touchscreen controller periodically trans-
mits a probing signal to scan through all the electrodes, and
measures the capacitance through the charging time τ , i.e.,
the time it takes for VC to increase to δCVS , where δC is a
threshold (0 < δC < 1). τ can be represented as [51],

τ =
Cin (CF +CP)Rin
Cin +CF +CP

ln(
1

1 − δC
) (2)

5.2 Detecting Touch on a Conductive Stripe
For simplicity, we start with the basic setup where one end of
a single stripe physically contacts one electrode on the touch-
screen. When touching the stripe, it can be regarded that
a resistor RS is connected between finger capacitor CF and
the sensor, as illustrated in Fig.3 (b). The RS value depends
on the length of the stripe in between the finger tip and the
screen, as well as the resistivity of the printed stripe. For a
printed thin film conductor, the resistance can be calculated
as ρs L

W , where L,W are its length and width, respectively;
and ρs represents sheet resistance, which characterizes the
resistivity of the film [51]. More specifically, ρs describes
the relation between resistance and the length/width of the
pattern, given a certain thickness. ρs is usually fixed for a
certain material and printing technique. For example, a sheet

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500

S
im

u
la

te
d
 τ

 (
u
s
)

RS (kΩ)

Figure 4: Simulation on impact ofRS on charging time.

resistance of 4.5kΩ/sq means the film has 4.5kΩ resistance
for a square shape pattern. Based on the resistance model, we
know that the overall resistance is only affected by the ratio
between L andW , thus any similar square patterns would
have the same resistance.

Impact of RS on charging time. Adding an additional
resistor in series with the finger capacitor decreases the
charging time. Without RS , the initial value of VC is zero
during the charging, while adding RS lets VC have a non-
zero initial state, which reduces the time for VC to reach the
threshold. Increasing RS further increases the initial voltage
of VC , thus decreasing the charging time. However, as RS
becomes too large, the CP connected in parallel becomes
dominant, so the charging time will decrease much more
slowly.
To validate the analysis, we use numerical simulation to

quantify the time it takes for VC in Fig. 3 (b) to reach 0.7VS .
As the exact implementation of commodity touchscreens is
unknown, we set the parameters of the simulated circuit such
that the output (charging time) is sensitive to capacitance
change caused by finger touch (10 pF to 100 pF). Specifically,
R in is set to 2MΩ.Cin ,CF andCP are set to 100 pF, 50 pF and
10 pF, respectively. The results in Fig. 4 show that indeed a
one-to-one mapping exists between τ and RS , and the relation
is monotonic.

Estimating xT from the output of touch sensing unit.
To model the relation between the touchscreen output and
touch position xT along the stripe, Inkput first performs a
one-time calibration to get a stripe resistance curve. Since
a monotonic relation exists between the touch sensing unit’s
output and RS /xT , Inkput can infer xT from the stripe resis-
tance curve and the touch sensor readings.

In order to validate the rationale, we print a single stripe
and connect it to one touch sensing unit on the S5 phone. We
touch different positions along the stripe and measure the
actual resistance RS using a LCR meter. The touch sensing
output is normalized so that it equals zero when not touched.
Moreover, since the stripe has uniform width and resistivity,
the position xT should be equal to RS divided by a constant.
From the results in Fig. 5 (a), we see that the touchscreen’s
output decreases monotonically with the increase of stripe
resistance (and hence XT), which fits our analysis and simu-
lation above. We expect similar observation to be made on
other smartphones as well. In general, Inkput should behave

similarly as long as the touchscreen uses capacitive tech-
niques, which has been dominate and is unlikely to change
significantly in near future. Note that certain touchscreen
hardware may not necessarily output the charging time τ
directly, and may instead measure a scaling function. But
this does not change the monotonic relation, and the effect
can be naturally handled in the one-time calibration.

Deriving the proper resistivity and geometry of the
stripe. The resistivity and total resistance of the stripe is cru-
cial to the performance of Inkput. The resistivity determines
the spatial resolution, i.e., the minimal distance between two
distinguishable touch positions along a stripe. Although the
measured charging time decreases monotonically with RS ,
the touch sensor’s ADC has a limited resolution. Moreover,
the touchscreen output has minor fluctuations due to noise
(e.g., unstable finger contact). Therefore, two adjacent touch
points need to have sufficiently different RS to be distin-
guished. For a stripe with uniform resistivity, the resistance
difference should be proportional to ρsD, where D is the
distance between the two touch points. As a result, increas-
ing the resistivity of the printed conductive stripe would help
improve its spatial resolution.
On the other hand, the resistivity should not be too large,

in order to limit the total resistance of the stripe. Recall that
the touch position does not affect the measured charging
time much when RS becomes too large (Fig. 4). An extremely
large RS would make the initial value of VC during charging
exceed the detection threshold δCVS , rendering the touch
points near end the stripe end not measurable.
Our empirical results in Fig. 5 (a) show that the overall

resistance should not exceed 200kΩ to ensure sufficient sen-
sitivity. We set the length of each strip to 90 mm to fit the
dimension of Google Cardboard. Based on the conductiv-
ity of our carbon ink (4.5kΩ/sq sheet resistance), we set the
width of each stripe to 3mm, which leads to a total resistance
of 130kΩ to 140kΩ, well below the 200kΩ requirement. For
other touchscreen models and printing material, the stripes’
geometry can be determined in a similar way.
In addition, the gap between stripes needs to be small

enough, so that the finger tip always has direct contact to one
or two stripes whenever touch occurs. Our prototype sets the
gap to 3 mm by default.

5.3 Detecting Two Touch Points on a
Single Stripe

Note that one sensing unit is not capable of detecting more
than one touches on that stripe. To solve this problem, we
connect both ends of the stripe to the two long edges of the
touch screen (Fig. 1). Together, the two connected sensing
units provide two readings, which reflect the impacts of
up to two touches on the stripe. The underlying rationale
is that the touchscreen sensor is coupled with the finger

 0
 20
 40
 60
 80

 100
 120

 0 100 200 300 400 500T
o

u
c
h

s
c
re

e
n

 o
u

tp
u

t

RS (kΩ)(a)
0

3

6

9

12

15

0 3 6 9 12 15F
in

g
e

r
b

 t
o

u
c
h

 p
o

in
t

Finger a touch point

 0

 20

 40

 60

 80

 100

 120

T
o
u
c
h
s
c
re

e
n
 o

u
tp

u
t

Finger b closer

Finger a closer

(b)

Figure 5: Touchscreen sensor output with (a) one sin-
gle touch (b) two simultaneous touches.

that is physically closer, which has smaller stripe resistance
between itself and the sensor.

To verify the effect, we randomly touch a series of points
along a stripe with two fingers. Fig. 5 (b) plots the touch-
screen output, where the axes indicate the touch positions of
two fingers, and separation between adjacent touch points
is 6 mm. The region below the dashed line indicates finger
b is closer to the touchscreen, and vice versa for finger a. It
can be observed that in both regions, the touchscreen output
is only determined by the touch that is closer to the electrode.
In addition, we find that the relation between touch position
and output is exactly the same as Fig. 5 (a), which means
stripe resistance curve can be used directly when both ends
of the stripe are connected to the screen.

6 INTERFERENCE AMONG
NEIGHBORING STRIPES

6.1 Interference Pattern
Ideally, the touch on each stripe would only affect the touch
sensing unit in direct contact with the stripe. However, we
find in measurement that nearby stripes suffer from non-
trivial coupling effect. Fig. 6 plots the touch sensors’ output
as a single stripe connected to sensing unit #9 is touched. It
can be observed that the nearby 6 touch sensing units also
have non-zero output. The main reason is that the finger is
in close proximity and coupled to the adjacent stripes as well
through equivalent capacitors, which can also be counted as
parasitic capacitance, as depicted in Fig. 8. It is equivalent
that an additional capacitorCC is connected between RS and
CF in Fig. 3 (b). The combined capacitance of CC and CF in
series is smaller than CF , leading to a shorter charging time
τ . So the outputs of nearby touch sensors are lower than the
center one’s. There also exists parasitic capacitance between
the end of the stripe and nearby touch sensing units, which
affects the reading in the same way.

Although the center stripe still generates the highest out-
put, the interference among nearby stripes will cause prob-
lems when multiple close-by stripes are touched. In Fig. 7, for
example, two stripes are touched, with the same xT , and the
effects of these two touches are mixed together, making it dif-
ficult to identify whether there are two or three touch points.
More importantly, even if we assume two touches generate
two local maximum outputs, it is non-trivial to estimate xT

 0

 10

 20

 30

 40

 50

 60

1 3 5 7 9 11 13 15 17

T
o
u
c
h
s
c
re

e
n
 o

u
tp

u
t

Touchscreen sensor index

Figure 6: Touchscreen out-
put as a single stripe is
touched.

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 3 5 7 9 11 13 15 17

T
o
u
c
h
s
c
re

e
n
 o

u
tp

u
t

Touchscreen sensor index

Touched
stripes

Figure 7: Touchscreen out-
put as two stripes are
touched.

for each, since the mixed effects of two touches corrupt the
stripe resistance curve, i.e., the touchscreen output for #8 is
also affected by touch on #10.
In Inkput, we use a stripe interference pattern to char-

acterize the coupling between neighboring stripes and subse-
quently resolve the multi-touch. Stripe interference pattern
consists of K +1 curves, including the stripe resistance curve
of the center sensing unit, and the touch sensing outputs of
its K/2 degree neighbors as a function of RS . The model is
obtained during the one-time calibration phase. In Inkput,
we empirically set K = 6 as up to 3-degree neighbors are
affected by touching on one stripe (Fig. 6). Fig. 9 plots the
stripe interference pattern measured on the S5 phone. We
see that the neighbors’ output curves have the same trend
as center one’s stripe resistance curve, except that the am-
plitudes are lower. For different phone models and printing
materials, this same measurement is needed as a one-time
calibration.

6.2 Model-Based Optimization Algorithm
for Multi-Touch Detection

To resolve the multi-touch positions, we design an opti-
mization algorithm based on the model of interference pat-
tern. Suppose there are N touches, positions denoted by
(xT (i),yT (i)), i = 1, 2 · · ·N . Let vector A⃗ represent the out-
puts of the electrodes on the edge of the touchscreen. To
determine the values of N and xT (i),yT (i), we leverage two
observations to make the solution extremely efficient.

Observation 1:Wefind in experiments that the interference
patterns of simultaneous touches are added together in the
touchscreen output, which can be expressed as,

A⃗ =
N∑
i=1

I⃗T (x
T (i),yT (i)) (3)

where I⃗T (xT ,yT) represents the output when a single fin-
ger touches position (xT (i),yT (i)). When multiple fingers
touch nearby stripes, they are all capacitively coupled to the
touchscreen in a similar way, generating similar interference
patterns with different amplitudes due to different touch po-
sitions xT . Eq. (3) imposes a linear constrain to the unknown
variables N and (xT (i),yT (i)), i = 1, 2, · · · ,N .

Stripes

CF

CC

CC

Figure 8: Cause of
interference to adja-
cent stripes.

 0
 20
 40
 60
 80

 100
 120

 0 100 200 300 400 500

T
o

u
c
h

s
c
re

e
n

 o
u

tp
u

t

RS (kΩ)

Center unit
1-Neighbor
2-Neighbor
3-Neighbor

Figure 9: Touch sensor output
under nearby stripe interfer-
ence.

Observation 2: One or multiple nearby touches generate a
cluster of outstanding values in the touchscreen output A⃗. In
addition, since each touch affects only a few most adjacent
stripes on both sides, the two ends of each cluster are usually
the interference readings rather than actual touch. In our
Inkput prototype, we find that touches separated by no more
than 3 stripes apart can usually form such a cluster.
Based on observation 1, we formulate an optimization

problem that derives the number and positions of touches,
N ,xT (i) and yT (i), by minimizing the error between the
measured output A⃗mes , and the predicted output A⃗pred based
on the model in Eq (3), i.e.,

minimize
N ,xT (i),yT (i)

A⃗mes − A⃗pred

2

subject to A⃗pred =

N∑
i=1

I⃗T (x
T (i),yT (i))

(4)

To solve the problem more efficiently, we leverage obser-
vation 2 to narrow down the solution space near the center
of each cluster, through the following steps.

It’s worth noting that our circuit analytic model described
in Sec. 5.1 is not coherent with observation 1. Due to lack
of information on the Synaptics touchscreen controller’s
implementation, our analyticmodel is only an approximation.
Although being able to fit the experimental observation in
Sec. 5, the model does not well characterize the observation
in multi-touch scenario, which is a limitation.

(i) Detecting cluster: Inkput detects cluster using a com-
putationally efficient heuristic: It looks for d (d ≥ 9) consec-
utive outputs in A⃗ with amplitudes larger than a threshold
δI . Each touch generates a cluster with width K + 1 (Fig. 6).
Since each stripe is only 3 mm—much narrower than finger
tip—we assume two different touches need to be separated
by at least one stripe’s width; otherwise they are regarded
as one single touch. Each touch sensor grid on the screen
is 4 mm by 4 mm. In this case, a cluster generated by two
touches should have a width of at least 9.

To determine a proper δI , we reuse the stripe interference
pattern (Fig. 9). In our Inkput prototype, a 90 mm stripe
has 140kΩ total resistance. We can observe from Fig. 9 that
when the center stripe is touched at the position with 140kΩ

resistance, the sensor output of 3-degree neighbor is around
6. Therefore, we set δI = 5 in our implementation. This
process of parameter tuning can be automated during the
one-time calibration.

(ii) Narrowing down solution space for yT (i) and N :
When a cluster with widthd is detected, Inkput only searches
for touches in the center d − 2δ sensing units of each cluster,
and ignores the ∆ ones near the the cluster edge which are
primarily interference. In this way, we reduce the search
spaces of N from d to d − 2∆ possibilities. ∆ can be set
empirically and equals 3 in our prototype.

Given these steps, we add two more constrains to problem
(4): First , the continuous variable yT (i) is within the range
of center d − 2∆ sensing units of a cluster (with width d),
where i = 1 . . . ,N . Second, we have N ≤ d − 2∆. The re-
sulting problem is a quadratic optimization problem, which
can be solved efficiently with Conjugated Gradient method
[52]. In our Inkput prototype, we use a Java quadratic pro-
gramming solver running on Android. Among a handful of
commonly used optimization solver, we chose to use CPLEX,
due to its support for quadratic programming [53]. We will
show through experiments (Sec. 10) that the computational
overhead is negligible even when running on a smartphone.
We emphasize that Inkput does not require each stripe

to be perfectly aligned with the (invisible) electrode on the
touchscreen. In case when a stripe connects to two elec-
trodes, a touch may trigger high output to two center elec-
trodes. Nonetheless, the optimization is unaffected, as the
corresponding change in stripe interference pattern has been
accounted for in the calibration phase. And the optimization
will solve for the continuous variable yT which naturally
runs an interpolation between the stripes’ y-axis locations.

7 HOVERING DETECTION
On ordinary hovering-enabled touchscreens, the hovering
position can be determined in the same way as touching. Yet
on the same position, hover generates much lower amplitude.
This can be again explained by the circuit model (Sec. 6.1).
Hovering is equivalent to connecting an extra parasitic ca-
pacitor between the finger tip and the conductive sensing
medium. This capacitor is connected in series with the finger
capacitor, which decreases the overall capacitance and hence
the touch sensor’s charging time Cin.
In Inkput, detecting hovering above the printed stripes

faces a unique challenge: either hovering above a position
with small stripe resistance, or touching a position with large
stripe resistance, could result in the same small output value.

To distinguish them solely based on the touchscreen out-
put, we leverage an observation that, due to different cou-
pling medium with the stripes (air vs. carbon layer), touch
and hovering lead to different stripe interference pattern.
To elucidate the difference, we measure the stripe interfer-
ence pattern in the same way as in Fig. 6 and Fig. 9. The

 0

 5

 10

 15

 20

 25

 30

 35

1 3 5 7 9 11 13 15 17

T
o

u
c
h

s
c
re

e
n

 o
u

tp
u

t

Touchscreen sensor index(a)

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500

T
o

u
c
h

s
c
re

e
n

 o
u

tp
u

t

RS (kΩ)

Center unit
1-Neighbor
2-Neighbor
3-Neighbor

(b)
Figure 10: Stripe interference pattern of hovering (a)
snapshot (b) complete model.

results (Fig. 10) show that the interference patterns of touch
and hover show similar trends with RS , but the amplitude
of the center stripe is lower for hovering. Similar to touch,
we obtain the stripe interference pattern for hovering in the
calibration phase, and denote the vector of sensor output as
IH (x

T ,yT) for hovering position (xT ,yT).
To detect multiple simultaneous hovers, we formulate an

optimization problem similar to (4), but add a binary variable
αT indicating touch (αT = 1) or hover (αT = 0). The predicted
touchscreen output can be rewritten as,

A⃗pred =
N∑
i=1

[αT · I⃗T (xT (i),yT (i)) + (1 − αT) · I⃗H (xT (i),yT (i))]

In principlewe could assign a separateαT for each touch/hover
to detect simultaneous touch and hover. However, we find
doing so increases computation time, and yields sub-optimal
accuracy due to drastically larger variable space. Since si-
multaneous touch and hovering is rarely used in practical
interaction, we do not implement it in Inkput.

Improving hovering detection range and accuracy.
Note the sensitivity of hover detection depends on the elec-
trode hardware. We find that N5 can detect a hover of up to
3 mm above the printed stripes, while S5 supports up to 5
mm. This is because most smartphone touchscreens do not
natively support high-sensitivity hovering detection. Here
we argue and prove that the detectable hover range can be
increased with some simple parameter changes in the touch-
screen electrodes. Specifically, we simply need to increase
the charging time induced by a hover (Sec. 5.1, Eq. 2). This
can be realized by increasing the inner resistor Rin of the
electrodes on the screen, which “magnifies” the detectable
charging time proportionally.
We conduct a proof of concept study to demonstrate the

feasibility. Specifically, we prototype a touch sensing unit
following the equivalent circuit model (Fig. 3) which contains
inner resistor Rin and capacitor Cin connected in series with
a voltage source. Cin is then connected with a printed stripe
to serve as touch sensor. Cin is set to 100 pF. We use an
Arduino board to provide the power source and measure
charging time. Fig. 11 plots the measured maximum hover
range corresponding to a detectable charging time.
We observe that the hover range increases significantly

with Rin. Although different touchscreens have different im-
plementations, it can be expected that the hover detection
sensitivity can be enhanced with equivalent modifications.

 0

 5

 10

 15

 20

 25

 1 5 9 13 17 21 25 29

H
o
v
e
r

ra
n
g
e
 (

c
m

)

Rin (M Ω)

Figure 11: Proof of concept study of increasing hover
range.

In fact, certain touchscreens for mobile devices already sup-
port up to 35 mm of hovering range [54, 55]. Meanwhile,
hovering detection accuracy can also be improved as the
measured output becomes less sensitive to noise. The cost
of increasing Rin is increased charging time for both touch
and hover detection, which increases detection latency.

8 ONE-TIME CALIBRATION
The purpose of calibration is to obtain the stripe resistance
curve and stripe interference pattern. Since these two mod-
els primarily depend on the configuration of touchscreen
and the ink stripes, the calibration only needs to be per-
formed once when an Inkput extension is printed. During
the calibration, the user uses a single finger to touch different
positions on each stripe, Inkput then runs a cubic Hermite
interpolator on the sample points to recover the stripe re-
sistance curve. In our experiment, we find that 5 equally
spaced samples on each 90 mm stripe (around 140 kΩ) are
sufficient for recovering the curve. Meanwhile, Inkput stores
the touchscreen outputs of up to 3-degree neighbors for each
touch point, and establishes the complete stripe interference
pattern with the same interpolation. Then, the user needs to
repeat the swiping process, but with hovering, to obtain the
stripe interference pattern for hover.

The calibration points can be marked out during printing.
Suppose there are 6 calibration points per stripe. Then the
user simply needs to swipe across all the stripes 6 times, and
similarly for hovering. The whole process takes nomore than
2 minutes, which is a negligible overhead. In addition, it’s a
one-time process that does not need to be repeated unless a
new touchscreen device is used, or the conductivity of the
printed stripes changes. In practice, we find environmental
factors such as temperature and humidity do not change
conductivity of the ink. Once the patterns are printed, their
electric property stays stable for a long time.

9 EVALUATION
We use two Android phones, Nexus 5 (N5) and Galaxy S5 (S5),
for the experiments. By default, the printed extension is made
up of 20 stripes, each 90mm long, 3mmwide, with 3mm gaps.
Both ends of the stripes are connected to the touchscreen
unless otherwise specified. For experiments with multiple
users, we recruited 10 volunteer participants (4 females, 6

 0

 5

 10

 15

 20

 25

 30

 35

 3 5 7 9 11 13 15

M
S

E

Number of calibration points(a)
 0

 20

 40

 60

 80

 100

 3 5 7 9 11 13 15

M
S

E

Number of calibration points(b)

Figure 12: The MSE of (a) stripe resistance curve (b)
stripe interference pattern with different number of
calibration points.
males between the ages 23-28). None of them were provided
with any benefits or rewards. They were instructed to inter-
acted with the printed extensions as they would normally
interacted with a touchscreen, but were untold regarding the
technical details of Inkput, nor did they have any practice
on Inkput or similar systems prior to the user study.

9.1 Calibration Performance
We first evaluate how many calibration points are needed to
estimate the stripe resistance curve and stripe interference
pattern accurately. The accuracy is quantified by the Mean
Square Error (MSE) between ground truth curves and cali-
brated curves, obtained by interpolation of 20 points, and 3
to 15 points, respectively. Fig. 12 shows that, for both stripe
resistance curve and stripe interference pattern, the MSE de-
creases with the number of calibration points. Interestingly,
it flattens out as the number exceeds 5, due to the fact that
the curves of these two models are relatively smooth. There-
fore, around 6 calibration points should suffice to reduce the
calibration overhead without compromising accuracy.

9.2 Single Touch Tracking Accuracy
To evaluate the accuracy of single-finger touch sensing, we
first use normal non-conductive ink to draw ground-truth
line/curve patterns on the printed extension. We then ask the
10 users to use a finger to follow the pattern. Fig. 13 shows
an example star pattern, in contrast to the touch trajectory
estimated by Inkput. We repeat the experiment across 5 other
patterns with similar size. Fig. 14 plots the error CDF across
all patterns drawn by each user. Clearly, Inkput can track
the finger positions very accurately among all the users. The
median error is only around 1.7 mm, 90-percentile around 4
mm, and even 99-percentile is only around 5.5 mm, barely
larger than half of the finger tip width.
We next investigate the spatial error distribution across

the touch area. We divide the printed extension into 5 mm
by 5 mm grids, and place the finger tip on each grid for
10 times. For this particular experiment, we only connect
one end of the stripes to the touchscreen to characterize
the impact of stripe resistance between touch point and the
screen. The average detection errors are plotted in Fig. 15,
which shows that the error is slightly higher at the end of the

 0

 25

 50

 75

 100

 0 20 40 60 80 100 120

x
T
 (

m
m

)

y
T
 (mm)

True
InkPadput

Figure 13: Patterns com-
puted by Inkput and
ground truth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
D

F

Error (mm)

Figure 14: Finger tracking
error of 10 participants.

0

25

50

75

100

0 35 70 105

x
T
 (

m
m

)

y
T
 (mm)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

E
rr

o
r

(m
m

)

Figure 15: Average finger position detection error.

stripe that is far away from the screen. The reason is that the
stripe resistance curve is relatively flat as xT increases, and
the same level of noise would have larger impact at the far
end of the stripe. Nonetheless, even in this region, the mean
error is only around 3 mm, while in the majority parts of the
printed extension, the mean error falls below 2.5 mm.

One interesting question is how resilient Inkput is to vari-
ation of touch pressure. Unlike touchscreen that can locate
the center of a touch, Inkput essentially detects the contact
point along a stripe that is the closest to the screen (Sec. 5.3).
So, pressing harder would make the detected position ap-
pear closer. In practice, however, we find natural touches
barely cause any errors, and even extreme force (which is
unlikely to occur in real use cases) only causes up to 3 mm
deviation. On the other hand, we find that stripe resistance
curve and stripe interference pattern do not exhibit measur-
able changes across people, so Inkput’s performance remains
consistent for different users (Fig. 14).

9.3 Multi-Touch Tracking Accuracy
To evaluate the accuracy of multi-touch detection, we ask
the 10 participants to draw a series of patterns that contain
2 to 5 curves, using two or more fingers simultaneously.
We make sure no more than 2 curves cross the same stripe
simultaneously, because Inkput can only discriminate up to
2 simultaneous touch points on the same stripe.
Fig. 16 shows an example pattern which contains three

curves, and Fig. 17 plots the error CDF across all patterns
for each user. We can see that the accuracy of multi-touch
tracking is slightly lower than single touch (median 2.4 mm).

To quantitatively evaluate touch detection accuracy with
different number of simultaneous touches, we have each par-
ticipant touch multiple points simultaneously. Fig. 18 shows

 0

 25

 50

 75

 100

 0 20 40 60 80 100 120

x
T
 (

m
m

)

y
T
 (mm)

True
InkPadput

Figure 16: Multi-touch
patterns computed by
Inkput and ground truth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

C
D

F

Error (mm)

Figure 17: Multi-finger
tracking error of 10
participants.

 0

 3

 6

 9

 12

1 2 3 4 5

A
v
e
ra

g
e
 e

rr
o
r

(m
m

)

Number of simultaneous touches

w/o smoothing

w/ smoothing

Figure 18: Average touch detection error with differ-
ent number of touches. Error bars indicate standard
deviation.
that the average error increases from 1.7 mm to 8.8 mm as
touch points increases from 1 to 5. Although we calibrate
the stripe interference pattern in advance, the exact patterns
presented in application phase may experience variations
due to noise and how the user places the finger. As more fin-
gers touch simultaneously, the errors of each finger’s stripe
interference pattern are added together, which eventually
increases the error of touch position estimation.

However, the accuracy of 2 to 3 simultaneous touches (2.1
mm and 2.7 mm average error) is more than enough to make
Inkput fit for most sophisticated multi-finger gestures (e.g.,
pinch to zoom in/out, or rotating objects), mostly used for
control and gestural interactions.

To make touch sensing more resilient to noise, a standard
solution is spatial smoothing, i.e., use filters or curve-fitting
to estimate the trajectory along consecutive touch points. To
test the effectiveness of this approach in Inkput, we apply a
median filter with a widow size of 7 points on the estimated
curves in Fig. 13 and Fig. 16. This window only spans 0.16
second when the touchscreen scans at a typical frequency
of 18 Hz. The latency is unlikely to affect user experience.
Fig. 18 plots the error after filtering. We find that the average
error significantly decreases (e.g., from 9 mm to 5 mm for 5-
finger touch) even with this simple spatial smoothing. Note
that the smoothing is best applicable for applications that
involve multi-finger gestural interaction, which continuous
finger movement trajectories.
Finally, to evaluate Inkput’s ability to resolve close-by

touches, we touch the extension with two fingers. The two
touch points have the same xT (position along the stripe),
and are separated by 1.5 cm and 2 cm along yT direction. The
average detection errors under 1.5 cm and 2 cm separation

0

25

50

75

100

0 35 70 105

x
T
 (

m
m

)

y
T
 (mm)(a)

0

25

50

75

100

0 35 70 105
y

T
 (mm)

 2

 3

 4

 5

 6

 7

E
rr

o
r

(m
m

)

(b)
Figure 19: Hover detection error on 5 mm by 5 mm
grids of (a) N5 (b) S5

 0

 5

 10

 15

 20

 25

1 2 3 4 5

A
v
e

ra
g

e
 e

rr
o

r
(m

m
)

Number of simultaneous hovers

Figure 20: Average hover
detection error with mul-
tiple simultaneous hovers
(S5). Error bar indicates
standard deviation.

 0

 20

 40

 60

 80

 100

1 2 3 4 5

L
a

te
n

c
y
 (

m
s
)

Number of simultaneous touches

25 fps

15 fps
12.5 fps

Touchscreen frame rate

Precise
control

Gesture
input

Figure 21: Average pro-
cessing latency. Error bar
shows 90-percentile mini-
mum and maximum.

are 5.5 mm and 3.1 mm, respectively, demonstrating that
the Inkput’s model-based optimization framework is able to
distinguish and detect close-by touches.

9.4 Hover Detection & Tracking Accuracy
To evaluate hover detection accuracy, we first have the par-
ticipants hover a finger 3 mm above the 5mm × mm grids.
Fig. 19 plots the measured average error for N5 and S5. Here
we also only connect one end of the stripes to the screen.
We find that S5 provides slightly higher hover detection ac-
curacy than N5. For S5, the hover detection error is around
4.5 mm in the center of the printed extension, and around
6.1 mm for N5. Although not as accurate as touch detection,
the performance of hover detection is still able to provide
user the hint of where the finger is about to touch, which
is especially beneficial for back-of-the-phone touch sensing
in mobile VR. Note that Inkput automatically distinguish
touch and hover, taking advantage of their different stripe
interference pattern. In this same set of measurements, 97.1%
of the hovers are correctly detected, while in only 2.9% of
the cases they are misclassified as touches.

Next we evaluate the case where multiple fingers are hov-
ering above the printed extension. The setup is the same
as the multi-touch experiment, except that the finger tips
are up to 5 mm in the air above the stripes. Fig. 20 shows
that average error increases from 4.7 mm to 11 mm as the
hover points increase from 1 to 5. Thus, the current ver-
sion of Inkput may not be suitable for hovering detection
applications that require very precise tracking of 4 or more
fingers.

10 PROCESSING LATENCY
Apart from accuracy, latency is another crucial aspect of
touch and hover detection. It determines the output frame

Figure 22: Panoramic view displayed with a 8 mm di-
ameter target showing up in random locations. Partic-
ipants are instructed to touch the back of the phone to
select the target.rate of the detected interaction events and positions. We
found the touchscreens of both N5 and S5 provide around
15 to 18 frames of output per second.

Inkput’s maximum frame rate is bounded by the touch-
screen’s frame rate, as it relies on the output from touch-
screen to infer interaction on the stripes. Recall that Inkput
takes the output from the touchscreen and runs an optimiza-
tion framework for detection. Given a set of output, Inkput
needs to finish all the processing before the next set of out-
put from touchscreen arrives, in order to achieve the same
detection frame rate as the touchscreen.

To evaluate the achievable frame rate, we measure the av-
erage processing time from Inkput obtains the output from
touchscreen till it successfully estimates the touch and hover
positions as the 10 participants use 1 to 5 fingers to draw
various patterns on the printed stripes. The average process-
ing time is plotted in Fig. 21. The results demonstrate that
Inkput is able to achieve the same average output frame rate as
the original touchscreen (13-15 frames/s) even under 4 simul-
taneous touches, which account for most of the input/control
commands for mobile VR. Even when the touch points in-
crease to 5, Inkput is still able to provide 10 frames of output
per second. As we have explained in Sec. 6.2, the optimiza-
tion problem can be solved with low latency on smartphone
because Conjugated Gradient method can obtain the opti-
mal solution efficiently. As the number of touches increases,
the computation time increases as a result of larger variable
space. Specifically, since the touch points increases, we need
to solve the xT and yT for each finger, which increases the
dimension of the variable space.

We anticipate that inputs requiring precise and timely con-
trol, such as typing or object control in VR gaming, typically
involves one to two fingers, while inputs with three or more
fingers are generally gestures, such as pinching or rotating
objects which can tolerate relatively high latency. Inkput’s
processing speed is thus sufficient for these practical use
cases.

11 POWER CONSUMPTION
We measure the power consumption of Inkput using a Mon-
soon Power Monitor [56] on Galaxy S5. S5 itself consumes
983.7 ± 21.3 mW when the screen is on but all background
applications turned off. When Inkput is enabled, we have
each user continuously draw patterns with arbitrary number

of fingers for 60 seconds, and the measured power consump-
tion is 1131.5 ± 40.4 mW, only increasing the average power
consumption by less than 150mW. The additional power cost
is negligible compared to that of the display and rendering-
heavy games themselves. The majority of the cost is attrib-
uted to the computation, which can be further reduced by
optimizing the Java signal processing components.

12 USE CASE STUDY
In this section, we introduce case studies of 3 applications
that we developed on top of Inkput, to validate its usability
as an interaction technique.

12.1 Back-of-the-HMD VR Gaming
To verify Inkput for mobile VR, we first integrate the printed
extension with Google Cardboard. As shown in Fig. 1, two
edges of the extension are connected to the two long edges
of the smartphone hosted inside Cardboard. With the help
of Inkput, one can interact with the virtual world in the
similar way of using a touchscreen. For instance, the user
can drag and place a virtual object, or can perform multi-
finger gestures such as zooming in/out.
We now provide a quantitative study to show how the

hover detection can improve user experience when inte-
grated with touch detection. We have implemented an An-
droid VR application that mimics a hunting game, as shown
in Fig. 22. The application displays a target that is 8 mm
in diameter and randomly located on the screen. The user
wears the Cardboard and navigates a finger on the backside
to “shoot” the target as quickly as she can. The red circle in
Fig. 22 illustrates the target whereas the orange circle is the
hovering position detected by Inkput and displayed to the
user to help her adjust the touch position. We compare the
target points and the ones actually touched by the user, with
and without enabling hover detection. Fig. 23 is a scatter plot
of the points for 4 participants, and Fig. 24 shows the error
CDFs of all 10 participants.
In Fig. 23, we observe that the 4 participants accurately

touched the target area in only 20%, 18%, 30% and 12% of the
time, with touch sensing alone. When augmented with hov-
ering detection, the accuracy is increased to up to 98%. The
user who achieved highest accuracy is the one that used the
system multiple times, implying that Inkput’s usability im-
proves over time. Among all the 10 participants, the median
touch errors ranges from 7 to 15 mm, and the 80-percentile
error can be as high as 17 mm for some users. On the other
hand, with hovering detection enabled, the mean touch er-
rors reduce to 2 to 3mm for all users. The results also implies
that the human sense of proprioception can only help very
coarse-grained finger navigation for pre-touch selection. It
needs to be combined with hovering detection to make the
back-of-HMD interaction truly usable.

Figure 23: Actual touch positions relative to the tar-
get of 4 test participants. Left 4 graphs show the re-
sults without hover detection. Right 4 graphs show re-
sults with hover detection helping participants adjust
touch position.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Error (mm)(a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Error (mm)(b)
Figure 24: User touch position error CDF (a) without
hover detection (b) with hover detection.

Inkput

Figure 25: Display to touch latency. Error bars indicate
standard deviation.

In order to evaluate whether the user can get used to
back-of-the-HMD interaction for VR, we also measure the
display-to-touch latency, defined as the time between the
target is displayed on the screen and the user touches the
backside. The latencies are collected in the above experi-
ments with hovering detection enabled. As a comparison, we
run a benchmark experiment, where the participants touch
the smartphone touchscreen directly to select the target. The
average latencies and std. of the 10 users are plotted in Fig. 25.
It can be observed that the latency of Inkput is only slightly
higher than using the touchscreen in the normal way, and
the highest average latency among all participants is only
around 0.93 s.

12.2 Back-of-the-HMD VR Text Input
Typing in VR has always been a challenging task. Most com-
modity VR solutions [8, 9] can only track the external hand-
held controllers’ coordinates/orientations, or track the ori-
entation of the headset [3–5]. There exists no elegant way
to enable the users to type in the same way as typing on
a touchscreen or real keyboard. For example, in Daydream
VR, the user has to rotate the head to navigate a cursor on
a virtual keyboard, and click a button on the controller to
make a keystroke. Similar method is used for most mobile
VR headsets. For high-end VR that can precisely track the
handheld controllers (e.g., HTC VIVE and Oculus Rift), there
are two solutions. SteamVR [57] allows users to manipulate
a virtual laser beam with the handheld controller to navigate
to virtual keys, and click a button to confirm. Another type
of solution is to use two controllers as drum sticks, and click
on the keyboard like hitting the drums. Examples include
Drum Keyboard [58] and Cutie Key [59], both based on the
HTC VIVE controllers.
In contrast, Inkput can exploit the back of the HMD as a

keyboard input interface similar to a normal touchscreen.We
have prototyped such a VR keyboard for Google Cardboard,
and Fig. 26 shows the application view. The orange circle is
the detected hover position displayed on top of the keyboard
to help users avoid mis-clicking. To evaluate the keyboard
performance, we ask the participants to wear the Cardboard,
and type on the back of the phone in their most comfortable
way. As a comparison, we run the same experiment using
DaydreamVR (using the SteamVR keyboard), HTCVIVE (the
Cutie Keys), and head-rotation input method for Daydream
VR. We require the user to type the same set of sentences
using each device. The average typing speed and error rate
plotted in Fig. 27, where the error bar represents std. Error
rate is defined the percentage of letters that the user typed
wrongly across one experiment.

Inkput and Cutie Key achieve the highest typing speed
with around 16 words/minute. The two other approaches
that require users to steer a cursor using either controller
or head-rotation only achieves up to 6.5 words/minute. In
terms of accuracy, Inkput has an error rate of 11%, in com-
parison to 19% (Cutie Key), 5% (SteamVR keyboard), and 8%
(Daydream). The last two are relatively more accurate, pri-
marily because typing speed is fundamentally limited by the
way of interaction. As a result of faster typing speed, Inkput
inevitably experiences higher error rate for letter input, but
it still significantly outperforms the HTC VIVE based Cutie
Key, which is an unfamiliar input method for most people
who are used to typing through touch.

12.3 Keyboard Extension for Smartphones
We show that Inkput’s printed extension can be customized
into a large keyboard, which can save the small touchscreen
real-estate and avoid the notorious finger occlusion problem.

Figure 26: VR keyboard enabled by Inkput. Orange
circle indicates detected hover position, which is dis-
played in the application to help user calibrate touch
position.

Inkpu
t

(a) Inkpu
t(b)

Figure 27: Performance of typing on VR keyboard en-
abled by Inkput and other approaches. (a) Average typ-
ing speed. (b) Letter error rate. Error bars indicate stan-
dard deviations.

This large size extension can be folded and fit into a flip case
when not used.

To create a large extension, the layout of the stripes need
to be adjusted. The length of both N5 and S5’s touchscreen is
around 11 cm. We bend the stripes as they reach out, so that
the interaction area can be extended along the yT direction,
as shown in Fig. 28. Since the design obviously increases the
overall length of each stripe, we increase the stripe width
accordingly to reduce its total resistance to around 200kΩ.
Although the layout of the stripes are different, the working
principles of Inkput remain the same, so neither the calibra-
tion procedure nor the optimization framework need any
modification.
We integrate this large extension with a S5 phone case

that has a flip cover. The extension is folded to fit into the
flip cover, and can be put into use by unfolding anytime. The
keyboard layout cannot be directly printed on the extension,
because the keys become unrecognizable when overlapping
with the stripes. We thus overlay a normal paper-keyboard
printout on top of Inkput’s paper substrate. Fig. 28 shows
the integrated system.

Unfortunately, this extra piece of paper between the con-
ductive stripes and finger would affect the touch sensor read-
ings, and accordingly changes both stripe resistance curve
and stripe interference pattern. To elucidate the effect, we
measure the stripe resistance curve of a stripe on the exten-
sion with and without the keyboard layout sheet covered,
and plot the results in Fig. 29. It can be observed that touch-
screen has weaker output with the keyboard sheet, due to
the fact that finger is not contacting the stripes directly. We
find through measurement that stripe interference pattern
experiences similar changes. Fortunately, the general trend

Figure 28: Customized printed extension to extend the
interaction area of smart phone. The extension is inte-
grated with a flip cover phone case, and can be folded
to fit inside the cover. Keyboard layout printed on nor-
mal paper attached on top of conductive stripes.

 0

 20

 40

 60

 80

 100

 120

 1 3 5 7 9 11 13 15 17 19

T
o
u
c
h
s
c
re

e
n
 o

u
tp

u
t

Touch position index

w/o keyboard
w/ keyboard

Figure 29: Stripe resis-
tance curve affected by
the keyboard sheet.

0%

10%

20%

30%

40%

50%

 10 20 30 40 50 60

E
rr

o
r

ra
te

Key index

Figure 30: Key detection
error rate.

and monotonicity of these two models remain unchanged.
Thus, the slight parametric changes due to the additional paper
layer can be totally captured through a recalibration. Besides,
the user only needs to touch two example keys, on the top
left and right corners of the layout, in order to figure out
the relative position/orientation of the keyboard sheet with
respect to the stripes.
To evaluate the performance of the Inkput keyboard, we

touch each key 40 times following a random order. The error
rates for all the keys are plotted in Fig. 30. Out of the 61 keys,
50 experiences 0% errors, and only one outlier key has an
error rate above 5%. Therefore, Inkput suffices as an accurate
and reliable way of extending the conventional touchscreen-
based mobile interaction.

13 DISCUSSION
Customizing the printed extension. It is straightforward
to customize the dimensions of stripes as well as the paper
substrate in Inkput, to satisfy different application require-
ments. For example, mobile VR requires the printed extension
to be of similar size with the VR headset, while using Inkput
as a extended keyboard for smartphone should allow much
larger interaction area. Touch detection can work properly as
long as the printed stripes have uniform resistivity, and have
end-to-end resistance of around 200kΩ (Sec. 5.2). Therefore,
to increase the size of printed extension while not increasing
the stripe resistance, we ought to increase the width of each

stripe. Note that increasing the length and width propor-
tionally does not change the stripe resistance (which equals
ρs

L
W). As we described in Sec. 5.2, the stripe can be as long as

133 mm with a width of 3 mm in order to not exceed 200kΩ
of total resistance.

Broader use cases for VR. Our VR keyboard case study
shows that back of the phone interaction, although being
a new technique, can be easily familiarized by the users.
To date, most mobile VR applications are limited to passive
viewing experience due to the lack of effective interaction.
With Inkput’s 2D touch sensing ability, a wide range of ap-
plications and games that are only possible on high end VR
systems can now be enabled on mobile VR. Examples include
Human Medical Scan and Robot Repair, available on SteamVR
for HTC VIVE, where the player needs to select and drag
different objects with two controllers simultaneously to pre-
cise locations to perform inspection and other operations
[60, 61]. Such interactions are infeasible for the head-rotation
based systems like Daydream VR. Many other VR games (e.g.,
Xortex [60, 61]) require users to perform selection tasks as
efficient as on touchscreens. We have demonstrated that
Inkput’s accuracy and latency can uniquely satisfy these
needs. In addition, Inkput’s user experience can be further
significantly improved if it can be integrated with VR HMD
or smartphone case by the vendor, which makes the printed
extension even more low-cost.

14 CONCLUSION
Through the Inkput design, we have demonstrated the fea-
sibility of expanding the interaction area of a smartphone
using a simple paper-printed extension. The paper interface
only occupies a tiny edge of the smartphone. But through
proper design of the printed conductive patterns, along with
careful processing of the touchscreen signals, Inkput can
achieve millimeter-level precision when sensing multi-finger
touches on the paper. Our prototype implementation verifies
that Inkput can be extremely low-cost and incurs negligible
detection latency. Our user studies on actual VR applica-
tions also demonstrate that it can approach the usability of
an actual touchscreen. We believe Inkput can enable new
interaction modalities for mobile VR.

ACKNOWLEDGEMENTS
We appreciate the anonymous reviewers for their insightful
comments. This research was supported in part by a Google
Faculty Research Award, Sony Research Award, and the US
National Science Foundation through CNS-1345293, CNS-
14055667, CNS-1525586, CNS-1555426, CNS-1629833, CNS-
1647152, CNS-1719336, CNS-1506657, CNS-1518728, CNS-
1343363, and CNS-1350039.

REFERENCES
[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-

ping: part i,” IEEE robotics & automation magazine, vol. 13, no. 2, pp.
99–110, 2006.

[2] “Google project tango,” https://get.google.com/tango/.
[3] “Google cardboard,” https://vr.google.com/cardboard/.
[4] “Google daydream,” https://vr.google.com/daydream/.
[5] “Samsung gear vr,” http://www.samsung.com/global/galaxy/gear-vr/.
[6] “Hi5 vr glove,” https://hi5vrglove.com.
[7] “Leap motion,” https://www.leapmotion.com/.
[8] “Htc vive,” https://www.vive.com/us/product/vive-virtual-reality-

system/.
[9] “Oculus rift,” https://www.oculus.com/rift/#oui-csl-rift-games=star-

trek.
[10] K. Kato and H. Miyashita, “Extensionsticker: A proposal for a striped

pattern sticker to extend touch interfaces and its assessment,” in Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems. ACM, 2015, pp. 1851–1854.

[11] ——, “Creating a mobile head-mounted display with proprietary con-
trollers for interactive virtual reality content,” in Adjunct Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology. ACM, 2015, pp. 35–36.

[12] S. Olberding, N.-W. Gong, J. Tiab, J. A. Paradiso, and J. Steimle, “A
cuttable multi-touch sensor,” in Proceedings of the 26th annual ACM
symposium on User interface software and technology. ACM, 2013, pp.
245–254.

[13] K. Kato and H. Miyashita, “3d printed physical interfaces that can
extend touch devices,” in Proceedings of the 29th Annual Symposium on
User Interface Software and Technology. ACM, 2016, pp. 47–49.

[14] D. Holman, N. Fellion, and R. Vertegaal, “Sensing touch using resistive
graphs,” in Proceedings of the 2014 conference on Designing interactive
systems. ACM, 2014, pp. 195–198.

[15] A. Wiethoff, H. Schneider, M. Rohs, A. Butz, and S. Greenberg, “Sketch-
a-tui: low cost prototyping of tangible interactions using cardboard
and conductive ink,” in Proceedings of the Sixth International Conference
on Tangible, Embedded and Embodied Interaction. ACM, 2012, pp.
309–312.

[16] “Microsoft hololens,” http://www.microsoft.com/microsoft-
hololens/en-us.

[17] J. Song, G. Sörös, F. Pece, S. R. Fanello, S. Izadi, C. Keskin, andO. Hilliges,
“In-air gestures around unmodified mobile devices,” in Proceedings of
ACM symposium on User interface software and technology, 2014.

[18] X. Chen, J. Schwarz, C. Harrison, J. Mankoff, and S. E. Hudson,
“Air+touch: interweaving touch & in-air gestures,” in Proceedings of
ACM symposium on User interface software and technology, 2014.

[19] S. W. Greenwald, L. Loreti, M. Funk, R. Zilberman, and P. Maes, “Eye
gaze tracking with google cardboard using purkinje images,” in Pro-
ceedings of the 22nd ACM Conference on Virtual Reality Software and
Technology. ACM, 2016, pp. 19–22.

[20] M. Sugimoto and K. Hiroki, “HybridTouch: An Intuitive Manipulation
Technique for PDAs Using Their Front and Rear Surfaces,” in Pro-
ceedings of the Conference on Human-computer Interaction with Mobile
Devices and Services (MobileHCI), 2006.

[21] P. Baudisch and G. Chu, “Back-of-device Interaction Allows Creating
Very Small Touch Devices,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2009.

[22] J. Scott, S. Izadi, L. S. Rezai, D. Ruszkowski, X. Bi, and R. Balakrishnan,
“Reartype: text entry using keys on the back of a device,” in Proceedings
of the 12th international conference on Human computer interaction with
mobile devices and services. ACM, 2010, pp. 171–180.

[23] K. A. Li, P. Baudisch, and K. Hinckley, “Blindsight: Eyes-free Access
to Mobile Phones,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2008.

[24] J. Gugenheimer, D. Dobbelstein, C. Winkler, G. Haas, and E. Rukzio,
“Facetouch: Enabling touch interaction in display fixed uis for mobile
virtual reality,” in Proceedings of the 29th Annual Symposium on User
Interface Software and Technology. ACM, 2016, pp. 49–60.

[25] S. Gupta, D. Morris, S. Patel, and D. Tan, “Soundwave: using the doppler
effect to sense gestures,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2012, pp. 1911–1914.

[26] W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking us-
ing acoustic signals,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 2016, pp.
82–94.

[27] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “Fingerio: Using
active sonar for fine-grained finger tracking,” in Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems. ACM, 2016,
pp. 1515–1525.

[28] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser, “Snooping
keystrokes with mm-level audio ranging on a single phone,” in Proceed-
ings of the 21st Annual International Conference on Mobile Computing
and Networking. ACM, 2015, pp. 142–154.

[29] J. Wang, K. Zhao, X. Zhang, and C. Peng, “Ubiquitous keyboard for
small mobile devices: harnessing multipath fading for fine-grained
keystroke localization,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 2014,
pp. 14–27.

[30] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recognition
using wifi signals,” in Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking. ACM, 2015, pp.
90–102.

[31] T. Wei and X. Zhang, “mtrack: High-precision passive tracking using
millimeter wave radios,” in Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking. ACM, 2015, pp.
117–129.

[32] J. Wang, D. Vasisht, and D. Katabi, “Rf-idraw: virtual touch screen in
the air using rf signals,” in ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4. ACM, 2014, pp. 235–246.

[33] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller, “3d tracking via body
radio reflections.” in NSDI, vol. 14, 2014, pp. 317–329.

[34] B. Chen, V. Yenamandra, and K. Srinivasan, “Tracking keystrokes
using wireless signals,” in Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 2015,
pp. 31–44.

[35] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion.” HotSec, vol. 11, pp. 9–9, 2011.

[36] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in Proceedings of
the fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks. ACM, 2012, pp. 113–124.

[37] S. Pradhan, E. Chai, K. Sundaresan, L. Qiu, M. A. Khojastepour, and
S. Rangarajan, “Rio: A pervasive rfid-based touch gesture interface,”
in Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. ACM.

[38] R. Takada, B. Shizuki, and J. Tanaka, “Monotouch: Single capacitive
touch sensor that differentiates touch gestures,” in Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems. ACM, 2016, pp. 2736–2743.

[39] S. Kratz, T. Westermann, M. Rohs, and G. Essl, “Capwidgets: tangile
widgets versus multi-touch controls on mobile devices,” in CHI’11
Extended Abstracts on Human Factors in Computing Systems. ACM,
2011, pp. 1351–1356.

[40] Y. Zhang, C. J. Yang, S. E. Hudson, C. Harrison, and A. Sample, “Wall++:
Room-scale interactive and context-aware sensing,” in Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, 2018, p. 273.

[41] “Synaptics dsx driver,” https://github.com/MotorolaMobilityLLC/kernel-
msm/tree/lollipop-5.1.1-release-ghost/drivers/input/touchscreen.

[42] “Epson premium photo paper glossy,” https://epson.com/For-
Home/Paper/Photo/Premium-Photo-Paper-Glossy/m/S041667.

[43] “Epson stylus c88+ inkjet printer,” https://epson.com/For-
Home/Printers/Inkjet/Epson-Stylus-C88

[44] “Jr 700 carbon inkjet ink,” https://store.novacentrix.com/product_p/910-
0145-02.html.

[45] G. Barrett and R. Omote, “Projected-capacitive touch technology,” In-
formation Display, vol. 26, no. 3, pp. 16–21, 2010.

[46] E. So, H. Zhang, and Y.-s. Guan, “Sensing contact with analog resis-
tive technology,” in Systems, Man, and Cybernetics, 1999. IEEE SMC’99
Conference Proceedings. 1999 IEEE International Conference on, vol. 2.
IEEE, 1999, pp. 806–811.

[47] J. Y. Han, “Low-cost multi-touch sensing through frustrated total in-
ternal reflection,” in Proceedings of the 18th annual ACM symposium
on User interface software and technology. ACM, 2005, pp. 115–118.

[48] P. Nguyen, U. Muncuk, A. Ashok, K. R. Chowdhury, M. Gruteser, and
T. Vu, “Battery-free identification token for touch sensing devices,” in
Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems CD-ROM. ACM, 2016, pp. 109–122.

[49] C. Hsieh, “Touch-panel market analysis reports 2008-2014,” Technical
report, DisplaySearch, 2014.

[50] T. Grosse-Puppendahl, C. Holz, G. Cohn, R. Wimmer, O. Bechtold,
S. Hodges, M. S. Reynolds, and J. R. Smith, “Finding common ground:
A survey of capacitive sensing in human-computer interaction,” in

Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. ACM, 2017, pp. 3293–3315.

[51] W. H. Hayt, J. E. Kemmerly, and S. M. Durbin, Engineering circuit
analysis. McGraw-Hill New York, 1986.

[52] J. Nocedal and S. J. Wright, Sequential quadratic programming.
Springer, 2006.

[53] “Cplex optimizer,” https://www.ibm.com/analytics/data-
science/prescriptive-analytics/cplex-optimizer.

[54] K. Hinckley, S. Heo, M. Pahud, C. Holz, H. Benko, A. Sellen, R. Banks,
K. O’Hara, G. Smyth, and W. Buxton, “Pre-touch sensing for mobile
interaction,” in Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. ACM, 2016, pp. 2869–2881.

[55] “Truetouch touchscreen controllers,”
http://www.cypress.com/products/truetouch-touchscreen-
controllers.

[56] “Monsoon power monitor,” https://www.msoon.com/online-store.
[57] “Steamvr,” http://store.steampowered.com/steamvr.
[58] “Google daydream drum keyboard,”

https://developers.googleblog.com/2016/05/daydream-labs-
exploring-and-sharing-vrs.html.

[59] “Cutie key,” https://github.com/NormalVR/CutieKeys.
[60] “The lab (video game),” https://en.wikipedia.org/wiki/The_Lab_(video_

game).
[61] “The lab on steam vr,” http://store.steampowered.com/app/450390/

The_Lab/.

https://en.wikipedia.org/wiki/The_Lab_(video_game)
https://en.wikipedia.org/wiki/The_Lab_(video_game)
http://store.steampowered.com/app/450390/The_Lab/
http://store.steampowered.com/app/450390/The_Lab/

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Prototyping of Inkput
	4.1 Touch Sensing Device
	4.2 Conductive Inkjet Printing

	5 Detecting Touch Position along a Single Stripe
	5.1 A Primer on Capacitive Touchscreen
	5.2 Detecting Touch on a Conductive Stripe
	5.3 Detecting Two Touch Points on a Single Stripe

	6 Interference among Neighboring Stripes
	6.1 Interference Pattern
	6.2 Model-Based Optimization Algorithm for Multi-Touch Detection

	7 Hovering Detection
	8 One-Time Calibration
	9 Evaluation
	9.1 Calibration Performance
	9.2 Single Touch Tracking Accuracy
	9.3 Multi-Touch Tracking Accuracy
	9.4 Hover Detection & Tracking Accuracy

	10 Processing Latency
	11 Power Consumption
	12 Use Case Study
	12.1 Back-of-the-HMD VR Gaming
	12.2 Back-of-the-HMD VR Text Input
	12.3 Keyboard Extension for Smartphones

	13 Discussion
	14 Conclusion
	References

